Post-Collisional Tectonomagmatic Evolution, Crustal Reworking and Ore Genesis along a Section of the Southern Variscan Belt: The Variscan Mineral System of Sardinia (Italy)
Abstract
:1. Introduction
2. The Variscan Chain of Sardinia
2.1. The Collisional Structure
2.2. Late Variscan Shearing and Extension: The “Sardinian Puzzle”
2.3. The Sardinia Batholith
- (1)
- (2)
3. The Variscan Metallogenic Stages
- (1)
- Orogenic-type ores, including mesothermal to epithermal vein systems marked by the As-Au ± Sb ± W metallogenic association, structurally controlled by regional-scale shear zones and fold structures; they may be considered as “amagmatic” [110] as they do not display any direct field relationships with granitoids;
- (2)
- Intrusion-related ores, which exhibit quite a large variability, consisting of pegmatite, greisen, and skarn, as well as different types of hypothermal to epithermal veins; these ores are marked by very different associations (Sn-W-Mo-Bi-F, Cu-Fe-Pb-Zn-Ag, REE, etc.).
3.1. The Orogenic-Type Ores
Locality | Geological Features | Ore | Notes | References |
---|---|---|---|---|
BACCU LOCCI 39°32′40″ N 09°32′05″ E | Tectonic units:Gerrei Unit (Arcu de Su Bentu sub-unit); Riu Gruppa Unit Host rocks: mylonite, Middle–Upper Ordovician metarhyolite (“porphyroid”) Type of orebodies: saddle reefs, veins Related structures: mylonitic shear zone, late (post-collisional) folds; dilational jogs in dextral, high-angle reverse faults. Emplacement of mafic dikes between (2) and (3) ore mineralizing stages | (1) Qz-Sp-Ccp-Gn (2) Qz-Apy-Py (3) Qz-Gn-Ccp-Sp-Apy-Ttr-Fb-Au Textures: massive to banded and/or brecciated Alteration: sericitic, silicification, bleaching | Economic resources: As, Pb, Zn, Ag, Cu, Au (up to 12 g/t). NW-SE vein system extended for > 2 km in length, >1 km in width. | [111,113,114,115,121] |
MONTE OLLASTEDDU 39°34′59″ N 09°27′27″ E | Tectonic units: Gerrei Unit (Arcu de Su Bentu sub-unit) Host rocks: Middle–Upper Ordovician metarhyolite (“porphyroid”), Lower Ordovician metasandstones Type of orebodies: sheeted veins, stockwork Related structures: mylonite zone, hinge zone of km-sized isoclinal recumbent fold; mylonitic foliation | (1) Qz-Ank-Apy-Py (2) Qz-Au-Ccp-Gn Textures: brecciated Alteration: sericitic, silicification, bleaching | Economic resources: Au (>30 g/ton in stringer zones) NE-SW vein system > 3.5 in length, >1 km in width Fluid inclusions (Qz): (1) 300–310 °C CO2-bearing low-saline fluids, traces of CH4, N2, and H2S (2) <270 °C, low-CO2, low-saline fluids | [111,112] |
GENNA UREU 39°39′47″ N 09°12′46″ E | Tectonic units: Meana Sardo Unit, Gerrei Unit (Arcu de Su Bentu sub-unit), Riu Gruppa Unit Host rocks: Middle Ordovician metarhyolite, Upper Ordovician shales, Silurian black shales and limestones, Devonian phyllites and marbles Type of orebodies: veins, sheeted veins, stockwork Related structures: high-angle normal faults conjugate of two major thrust faults | (1) Qz-Ank-Apy-Py-Sch (2) Qz-Cal- Sbn-Au Textures: brecciated Alteration: sericitic, bleaching | Economic resources: Sb, W NW-SE mineralized zone >2 km in width with various Au-bearing structures. Au up to 16 g/ton Small gold nuggets in stream sediments. | [111] |
CORTI ROSAS 39°34′02″ N 09°22′04″ E | Tectonic units: Gerrei Unit (Monte Lora sub-unit) Host rocks: Silurian black shales and limestones, Type of orebodies: veins, sheeted veins, stockwork Related structures: low-angle normal fault | (1) Cal-Qz-Py (2) Cal-Ank-Qz-Apy-Sch- Sp-Zkn (3) Cal-Qz-Sbn-Au Textures: brecciated Alteration: sericitic, carbonation | Economic resources: Sb; Au (up to 10 g/ton) NW-SE vein system >1 km in width Geothermometry (Apy): 350 °C for mineralizing stage (2) by Apy geothermometer | [111,122] |
SU SUERGIU 39°29′46″ N 09°22′39″ E | Tectonic units: Gerrei Unit (Monte Lora sub-unit) Host rocks: cataclasite made of Silurian–Devonian black shales and limestones, Type of orebodies: veins, stockwork Related structures: cataclastic shear zone on a major thrust, conjugate faults | (1) Cal-Qz-Py (2) Cal-Ank-Qz-Apy-Sch- Sp-Ccp-Gn- (3) Cal-Qz-Sbn-Btr-Au Textures: brecciated Alteration: sericitic, carbonatic | Economic resources: Sb, W; Au (>2 g/ton) E-W vein system >2 km in length, 1 km in width | [111,118] |
BRECCA 39°28′45″ N 09°33′09″ E | Tectonic units: Gerrei Unit Host rocks: Middle-Upper Ordovician metarhyolites (“porphyroid”) Type of orebodies: veins, stockwork Related structures: hinge zone of a km-sized isoclinal recumbent fold; reverse faults | (1) Qz-Apy-Py-Au (2) Qz-Sbn-Btr-Bou-Ausb Textures: massive to brecciated Alteration: silicification, sericitic, bleaching | Economic resources: Sb; Au (>30 g/ton in high-grade stringer zones) E-W mineralized zone >2 km in length, 1 km in width | [111,121] |
- (1)
- Early As-(W)-quartz veins resulting from hot (300–310 °C) CO2-bearing (and, possibly, CH4, N2, and H2S-bearing), low-saline fluids at trapping pressures of 30–35 Mpa;
- (2)
- Late Au ± Sb ± Pb-Zn-Cu quartz veins related to cooler (<270 °C), low-CO2, low-saline fluids.
- (1)
- In the whole district, the orogenic-type ores apparently predate the granites of the Younger Magmatic Peak;
- (2)
- (3)
- In the Baccu Locci mine area, mafic dikes dated to about 302 Ma [107] were emplaced between two stages of mineralization.
3.2. Intrusion-Related Ores
- (1)
- Skarn systems, including compositionally heterogeneous Fe-Pb-Zn-Cu ± F ± Sn ± W ± Bi ± As oxidized skarns [128] associated with GS1 suite granites, like the Sulcis and Monte Linas plutons [40,129,130,131,132,133], and Fe-Cu ± Pb-Zn, ±Ag-Au, ±W, ±LREE reduced skarns, are more diffused in central–eastern Sardinia [79,134,135]; mineralized ores of both types of skarn systems are typically hosted in retrocessed exoskarns, forming massive to lentiform or vein-type bodies [129,133,135]; high contents of rare metals are also reported in primary skarns and related hornfelses [79,133].
- (2)
- Mo-(W-Sn-Bi ± Cu ± Au) endo- and exo- greisens; in 1980s studies [124,125], these ores have been interpreted as porphyry–Mo deposits; in S Sardinia, Mo-bearing deposits and occurrences are exclusive of the GS1 suite of granites, but they are also present in E Sardinia (e.g., Goene: Table 3) and in the Oschiri-Alà dei Sardi district of N Sardinia [125], always associated with YMP granites;
- (3)
Locality | Geological Features | Ore | Notes | References |
---|---|---|---|---|
Skarn deposits | ||||
PERDA NIEDDA (SW SARDINIA) 39°23′30″ N 08°35′51″E | Related intrusion: Oridda pluton-granite, I-type, ilmenite-series, F-bearing—YMP (289 Ma) Host rocks: Grt-Px-Wo skarn in Lower Cambrian limestones Type of orebodies: massive lenses | (1) Grt-Amp-Bt-Mag-Cas (2) Cas-Flr (3) Chl-Qz-Cal-Sp-Ccp-Gn | Economic resources: Fe, F, Sn Oxidized, proximal iron–tin–skarn, partially greisenized. Fluid inclusions (Flr): Th: 340°–390 °C | [40,131,142] |
ROSAS DISTRICT (SW SARDINIA) Rosas mine 39°12′10″ N 08°35′51″ E Sa Marchesa Mine 39°10′48″ N 08°45′05″E | Related intrusion: Sulcis pluton—granite, I-type, ilmenite-series, F-bearing—YMP (289 Ma) Host rocks: Grt-Px-Wo skarn in tectonic slices of Lower Cambrian limestones and in mafic calc-alkaline dikes Type of orebodies: massive lenses | (1) Amp-Ep-Mag-Cas-Sch (2) Chl-Qz-Cal-Sp-Pyh-Apy-Ccp-Bin-Gn-Ttr-Aca-Au | Economic resources: Pb, Zn, Ag, Cu Oxidized, distal base-metals skarn. | [130,143] |
MONTE TAMARA (SW SARDINIA) 39°08′54″ N 08°45′04″ E | Related intrusion: Sulcis pluton—granite, I-type, ilmenite-series, F-bearing—YMP (289 Ma) Host rocks: Grt-Px-Wo skarn in Lower Cambrian limestones along tectonized stratigraphic contacts Type of orebodies: massive lenses | (1) Cpx-Amp-Ep-Sch-Flr-Mag-Cas-Bin (2) Chl-Qz-Cal-Sp-Pyh-Apy-Mol-Ccp-Stn-Gn-Bi sulf-Py | Economic resources: Pb, Zn, Cu, Oxidized, distal tungsten–tin–skarn. Geothermometry (Apy and Stn): 425°–460 °C (Apy); 284°–315 °C (Stn I) and 255°–270 °C (Stn II) | [133] |
SINIBIDRAXIU (SW SARDINIA) 39°09′38″ N 08°44′44″ E | Related intrusion: Sulcis pluton—granite, I-type, ilmenite-series, F-bearing—YMP (289 Ma) Host rocks: Wo skarn in Lower Cambrian limestones Type of orebodies: columnar subvertical body (manto-type) | (1) Qz-Cal-Apy-Sch (2) Qz-Cal-Sp-CCp-Gn | Economic resources: W, As Oxidized, distal tungsten–skarn Geothermometry (Apy) 375°–400 °C | [133] |
SAN LEONE (SW SARDINIA) 39°10′16″ N 08°55′53″ E | Related intrusion: Sulcis pluton—granite, I-type, ilmenite-series, F-bearing—YMP (289 Ma) Host rocks: Grt-Px-Wo skarn (Ordovician ? limestones) Type of orebodies: massive lenses | (1) Ep-Ilv-Qz-Cal-Mag-Sch-Flr | Economic resources: Fe Oxidized, proximal iron–skarn Fluid inclusions (Flr): Th: 315 °C | [129,142] |
FUNTANA RAMINOSA DISTRICT (E SARDINIA) Funtana Raminosa mine 39°52′40″ N 09°10′18″ E Giacurru mine 39°54′23″ N 09°08′57″ E | Related intrusion: Mandrolisai pluton (?)-granodiorite, I-type, OMP (299 Ma) Host rocks: Px-Grt and Px skarns in Silurian limestones and black shales Type of orebodies: massive lenses | (1) Ep-Mag-Sch (2) Qz.-Cal-Ccp-Sp-Gn-Pyh | Economic resources: Pb, Zn, Ag, Cu, Fe Reduced/oxidized distal base metals–skarn Fluid inclusions (Qz, Sp) Th: 360°–410 °C salinity: 3.4–14.7 wt% NaCleq. (Qz) Th: 235°–335 °C salinity: 5.4–12.4 wt% NaCleq (Sp) | [79,135] |
CORREBOI (E SARDINIA) 40°04′20″ N 09°21′39″ E | Related intrusion: Fonni pluton-granodiorite/monzogranite, I-type, magnetite-series, -OMP ? Host rocks: Px-Grt skarn in Silurian limestones Type of orebodies: massive lenses | (1) Ep-Mag (2) Qz-Cal-Pyh-Ccp-Sp-Gn | Economic resources: Pb, Zn, Cu, Reduced base metals–distal skarn | [134] |
Greisen deposits | ||||
PERD’E’PIBERA (SW SARDINIA) 39°27′19″ N 08°39′07″ E | Related intrusion: Monte Linas pluton—granite, I-type, ilmenite-series, -YMP (289 Ma) Host rocks: granite Type of orebodies: veins and disseminations | (1) Qz-Ms-Mol-Feb (2) Qz-Py-Ccp-Flr | Economic resources: Mo Endogreisen Fluid inclusions (stage 2 Qz) Th: 250 °C salinity: 0–4wt% NaCleq | [40] |
PERDA LADA (SW SARDINIA) 39°26′42″ N 08°40′36″ E | Related intrusion: Monte Linas pluton—granite, I-type, ilmenite-series, -YMP (289 Ma) Host rocks: granite, Lower Ordovician shales Type of orebodies: disseminations and stockwork | (1) Qz-Ms-Mol-Feb (2) Qz-Mol-Py-Ccp-Flr-Au | Economic resources: Mo, Cu Au up to 1 g/ton (1) Endogreisen (2) Exogreisen | [40,125] |
SU SEINARGIU (SW SARDINIA) 39°04′35″N 08°58′29″ E | Related intrusion: Sulcis pluton—granite, I-type, ilmenite-series, -YMP (289 Ma) Host rocks: granite, Lower Ordovician shales Type of orebodies: disseminations and stockwork | (1) Qz-Ms-Mol-Cas | Economic resources: Mo Endogreisen, veins | [125] |
GOENE (E SARDINIA) 39°52′49″ N 09°35′06″ E | Related intrusion: Mt. Tarè intrusion—(leuco-) granite, I-type, magnetite-series (?)–YMP (?) Host rocks: granodiorite, Type of orebodies: disseminations and dry veins | (1) Qz-Ms-Mol-Ccp-Mag | Economic resources: Mo Exogreisen, veins | [125] |
SU LACCHEDDU (N SARDINIA) 40°46′52″ N 09°02′37″ E | Related intrusion: Monte Lerno Pluton leucogranite, I-type, YMP (?) Host rocks: granite, paragneiss Type of orebodies: disseminations and dry veins | (1) Qz-Ms-Mol-Feb-Ccp | Economic resources: Mo, W Exo- and endo-greisen | [125] |
S’ABBAGANA (N SARDINIA) 40°43′19″ N 09°21′46″ E | Related intrusion: Monte Lerno Pluton leuco granite, I-type, YMP (?) Host rocks: fine-grained leucogranite Type of orebodies: disseminations and dry veins | (1) Qz-Ms-Mol-Flr | Economic resources: Mo Endogreisen | [125] |
MONTE UNNE (N SARDINIA) 40°36′59″ N 09°06′14″ E | Related intrusion: Monte Lerno Pluton leuco granite, I-type, YMP (?) Host rocks: fine-grained leucogranite Type of orebodies: disseminations and stockwork of veins and dry veins | (1) Qz-Ms-Bt-Mol-Flr | Economic resources: Mo Endogreisen | [125] |
Hydrothermal veins | ||||
NURAGHE TOGORO 39°27′28″ N 08°35′21″ E | Related intrusion: Monte Linas pluton—granite, I-type, ilmenite-series, -YMP (289 Ma) Host rocks: Upper Ordovician shales Type of orebodies: sheeted veins | (1) Qz-Ms-Feb-Tpz (2) Bi-Bin-Bi telluride-Mld-Au Textures: massive Alteration: sericitic | Economic resources: W Au up to 1 g/ton | [40,136] |
PERDU CARA-SANTA VITTORIA 39°27′ 38″ N 08°32′26″ E | Related intrusion: Monte Linas pluton—granite, I-type, ilmenite-series, -YMP (289 Ma) Host rocks: Upper Ordovician shales Type of orebodies: veins | (1) Qz-Chl-Cas (2) Qz-Apy-Bin (3) Qz-Sp-Ccp-Gn Textures: massive to brecciated Alteration: sericitic, argillic | Economic resources: Sn, As Au < 1 g/ton Fluid inclusion (Cst and Qz) Th: 380°–410 °C salinity: 24–25 wt% NaCleq (Cst) Th: 260–280 °C salinity: 0–12 wt% NaCleq (Qz) | [40] |
CANALE SERCI 39°27′19″ N 08°39′07″ E | Related intrusion: Monte Linas pluton—granite, I-type, ilmenite-series, -YMP (289 Ma) Host rocks: Upper Ordovician shales Type of orebodies: veins | (1) Qz-Chl-Cas (2) Qz-Sp-Py-Ccp-Gn-Stn Textures: massive to brecciated Alteration: sericitic, argillic | Economic resources: Zn, Pb, Sn Fluid inclusion (Qz) Th: 100 °C Salinity: 21–23 wt% NaCleq | [40] |
FLUMINI DE BINU (SW SARDINIA) 39°06′19″ N 08°59′17″ E | Related intrusion: Sulcis pluton—granite, I-type, ilmenite-series, -YMP (289 Ma) Host rocks: granite Type of orebodies: sheeted veins, stockwork, dry veins | (1) Qz-Ms-Mol-Cas-Py Textures: massive Alteration: sericitic, argillic | Economic resources: Mo Veins and exogreisen system | [125] |
SANTA LUCIA (SE SARDINIA) 39°24′36″ N 09°34′53″ E | Related intrusion: San Vito pluton (?)—granite, I-type, ilmenite-series, -YMP (285 Ma) Host rocks: Lower Ordovician shales, Middle-Upper Ordovician rhyodacite Type of orebodies: veins | (1) Qz-Feb-Sch-Py (2) Qz-Apy-Ccp-Sp-Gn Textures: massive to brecciated Alteration: sericitic (?) | Economic resources: Pb, Zn, Cu | [144] |
ARCU IS PANGAS (SE SARDINIA) 39°28′05″ N 09°35′01″ E | Related intrusion: San Vito pluton—granite, I-type, ilmenite-series, -YMP (285 Ma) Host rocks: Upper Ordovician Type of orebodies: veins and dry veins | (1) Qz-Ms-Mol-Ccp-Py Alteration: sericitic | Economic resources: Mo Veins and exogreisen system | [125] |
PERDA MAJORI (SE SARDINIA) 39°34′17″ N 09°36′02″ E | Related intrusion: Quirra pluton—granite, I-type, ilmenite-series, -YMP (285 Ma) Host rocks: Lower Ordovician shales Type of orebodies: veins | (1) Qz-Mol-Feb-Sch-Cas-Tpz-Bin (2) Qz-Flr-Sp-Py-Ccp-Gn Textures: massive to brecciated Alteration: sericitic | Economic resources: Mo, W Fluid inclusion (Qz, Feb, Flr) Th: 320°–420 °C salinity: 1–4.5 wt% NaCleq (Qz) Th: 310°–330 °C (Feb) salinity: 6–7 wt% NaCleq Th: 120°–180 °C salinity: 0.5–3 wt% NaCleq (Flr) | [145,146] |
4. Discussion
4.1. Variscan Extension, Crustal Fertilization, and Ore Systems: The Sardinian Variscan Mineral System
4.2. Crustal-Scale Plumbing Systems
4.3. The pre-Variscan Metallogenic Sources
4.4. Crustal Metallogenic Fertility and Distribution of Variscan Ores in Sardinia
5. Conclusions
- (a)
- Starting from about 320 Ma, post-collisional shearing coupled with general extension and decompression of the crust marked the tectonic evolution of the Sardinia–Corsica massif. The late Variscan extension characterizing the Carboniferous–Permian transition is documented up to about 280 Ma. Generalized decompression triggered partial melting of the Sub-Continental Lithospheric Mantle (SCLM) and asthenosphere upwelling, producing lithospheric delamination, high heat flow, and mantle–crust interactions. In this setting, the resulting thermal engine produced devolatilization by HT/LP metamorphism and large amounts of felsic melts, partly contaminated by mantle-derived components. This tectonic and magmatic evolution paved the way to what we call the Sardinian Variscan Mineral System.
- (b)
- In the initial stages of the SVMS, fluids and magma from disparate reservoirs both migrated from lower–middle crustal source zones to upper crustal levels, interacting along the way with upper crustal materials whose composition was determined by pre-Variscan events, and particularly (i.e., E Sardinia), by the Middle–Late Ordovician subduction zone products and related magmatic arc. Fluid flow was focused along pre-existing crustal anisotropies, and fluids were entrapped at different crustal levels above the ductile–brittle transition, producing the orogenic-type mineralization characterized by a distinctive Au-As-Sb-W metallogenic association, principally clustered in SE Sardinia. The age of these events in SE Sardinia may be roughly constrained in the range of 305–295 Ma.
- (c)
- The ascent of magmas generated the huge Sardinia Corsica Batholith through repeated emplacement at shallow crustal levels of coalescing granitoid pulses; the distribution and chronology of intrusions result from the evolution and migration of the heath flow, affecting compositionally different portions of the middle and lower crust. A thermal peak was constrained at about 315–310 Ma in N Sardinia, where partial melting produced large volumes of magma and fed granitoid intrusions. In central—southern Sardinia, partial melting was more limited and temporally localized in the Early Permian (290–280 Ma), resulting in the emplacement of smaller granitoid intrusions, though more specialized and fertile for mineralization. A great variety of ore deposits is associated with various granite suites of central–southern Sardinia, including the F-bearing ilmenite series GS1 granite suite, related to Sn-W-Mo-Bi mineralization, particularly relevant in SW Sardinia, and the more oxidized granites of central Sardinia, related to Pb-Zn-Cu-Fe ± LREE ± Au ores.
- (d)
- In the above-described Mineral System, the strong compositional differences between the crust of E and SW Sardinia are reflected by the different Variscan granite-related metallogenic associations and ore distribution. This relation with the Variscan structure of the crust is further confirmed by the exclusive presence of the orogenic Au-As-Sb-W association in E Sardinia only. As the Variscan crusts inherit the compositional characteristics derived from their pre-Variscan history, the Variscan ore generation peak of Sardinia also inherits the geochemical signature of the pre-Variscan metallogeny.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moràvek, P.; Pouba, Z. Precambrian and Phanerozoic history of gold mineralization in the Bohemian Massif. Econ. Geol. 1987, 82, 2098–2114. [Google Scholar] [CrossRef]
- Moràvek, P. Gold in metallogeny of the Central and W European units of the Peri-Alpine Variscan Belt. Glob. Tect. Metallog. 1996, 5, 145. [Google Scholar] [CrossRef]
- Dill, H. The Late Variscan and Early Alpine metallogeny in Central Europe. In Variscan Metallogeny in the Alpine Orogenic Belt; Grecula, P., Nemeth, Z., Eds.; Mineralia Slovaca Monographs: Bratislava, Slovakia, 1996; pp. 93–108. [Google Scholar]
- Rickard, D. European Phanerozoic metallogenesis. Mineral. Depos. 1999, 3, 417–421. [Google Scholar] [CrossRef]
- Marignac, C.; Cuney, P. Ore deposits of the French Massif Central: Insight into the metallogenesis of the Variscan collision belt. Mineral. Depos. 1999, 34, 472–504. [Google Scholar] [CrossRef]
- Bouchot, V.; Milesi, J.-P.; Ledru, P. Crustal scale hydrothermal palaeofield and related Au, Sb, W orogenic deposits at 310–305 Ma (French Massif Central, Variscan Belt). SGA News 2000, 10, 6–12. [Google Scholar]
- Kozlov, V.D. Geochemical Evolution of the Variscan Granitoid Magmatism as Related to the Metallogeny of the Bohemian Massif. Geol. Ore Depos. 2000, 42, 414–428. [Google Scholar]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Cuney, M.; Alexandrov, P.; Le Carlier de Veslud, C.; Cheilletz, A.; Raimbault, L.; Ruffet, G.; Scaillet, S. The timing of W-Sn-rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: The case of the Limousin area (Massif Central, France). Geol. Soc. Spec. Pub. 2002, 204, 213–228. [Google Scholar] [CrossRef]
- Tornos, F.; Inverno, C.M.C.; Casquet, C.; Mateus, A.; Ortiz, G.; Oliveira, V. The metallogenic evolution of the Ossa-Morena Zone. J. Iber. Geol. 2004, 30, 143–181. [Google Scholar]
- Blundell, D.; Arndt, N.; Cobbold, P.R.; Heinrich, C. Processes of tectonism, magmatism and mineralization: Lessons from Europe. Ore Geol. Rev. 2005, 27, 333–349. [Google Scholar] [CrossRef]
- Bouchot, V.; Ledru, P.; Lerouge, C.; Lescuyer, J.-L.; Milesi, J.-P. Late Variscan mineralizing systems related to orogenic processes: The French Massif Central. Ore Geol. Rev. 2005, 27, 169–197. [Google Scholar] [CrossRef]
- Romeo, I.; Lunar, R.; Capote, R.; Quesada, C.; Dunning, G.R.; Pina, R.; Ortega, L. U–Pb age constraints on Variscan magmatism and Ni–Cu–PGE metallogeny in the Ossa–Morena Zone (SW Iberia). J. Geol. Soc. 2006, 163, 837–846. [Google Scholar] [CrossRef]
- De Boorder, H. Spatial and temporal distribution of the orogenic gold deposits in the Late Paleozoic Variscides and Southern Tianshan: How orogenic are they? Ore Geol. Rev. 2012, 46, 1–31. [Google Scholar] [CrossRef]
- De Boorder, H. The Central European, Tarim and Siberian Large Igneous Provinces, Late Paleozoic orogeny and coeval metallogeny. Glob. Tect. Metall. 2018, 10, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Štemprok, M.; Blecha, V. Variscan Sn-W-Mo metallogeny in the gravity picture of the Krušné hory/Erzgebirge granite batholith (Central Europe). Ore Geol. Rev. 2015, 69, 285–300. [Google Scholar] [CrossRef]
- Ackerman, L.; Haluzová, E.; Creaser, R.A.; Pašava, J.; Veselovský, F.; Breiter, K.; Erban, V.; Drábek, M. Temporal evolution of mineralization events in the Bohemian Massif inferred from the Re–Os geochronology of molybdenite. Miner. Depos. 2017, 52, 651–662. [Google Scholar] [CrossRef]
- von Raumer, J.F.; Nesbor, H.-D.; Stampfli, G.M. The north subducting Rheic Ocean during the Devonian: Consequences for the Rhenohercynian ore sites. Int. J. Earth Sci. 2017, 106, 2279–2296. [Google Scholar] [CrossRef]
- Harlaux, M.; Romer, R.L.; Mercadier, J.; Morlot, C.; Marignac, C.; Cuney, M. 40 Ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite. Mineral. Depos. 2018, 53, 21–51. [Google Scholar] [CrossRef]
- Romer, R.L.; Kroner, U. Sediment and weathering control on the distribution of Paleozoic magmatic tin–tungsten mineralization. Mineral. Depos. 2015, 50, 327–338. [Google Scholar] [CrossRef]
- Romer, R.L.; Kroner, U. Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res. 2016, 31, 60–95. [Google Scholar] [CrossRef]
- Romer, R.L.; Kroner, U. Paleozoic gold in the Appalachians and Variscides. Ore Geol. Rev. 2018, 92, 475–505. [Google Scholar] [CrossRef]
- Martínez Catalan, J.R.; Arenas, R.; Díaz García, F.; Gomez-Barreiro, J.; Gonzalez Cuadra, P.; Abati, J.; Castiñeiras, P.; Fernandez-Suarez, J.; Sanchez Martínez, S.; Andonaegui, P.; et al. Space and time in the tectonic evolution of the northW Iberian Massif: Implications for the Variscan belt. 2007. In 4-D Framework of Continental Crust; Hatcher, R.D., Jr., Carlson, M.P., McBride, J.H., Martínez Catalan, J.R., Eds.; Memoir; Geological Society of America: Boulder, CO, USA, 2021; Volume 200, pp. 403–423. [Google Scholar] [CrossRef]
- Martínez Catalan, J.R.; Schulmann, K.; Ghienne, J.-F. The Mid-Variscan Allochthon: Keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth Sci. Rev. 2021, 220, 103700. [Google Scholar] [CrossRef]
- Boni, M.; Balassone, G.; Iannace, A. Base metal ores in the lower Paleozoic of southwestern Sardinia. In Carbonate-Hosted Lead-Zinc Deposits: 75th Anniversary Volume; Special Publication; Society of Economic Geologists: Littleton, CO, USA, 1996; Volume 4, pp. 18–28. [Google Scholar] [CrossRef]
- Santoro, L.; Boni, M.; Putzolu, F.; Mondillo, N. Base-metal sulphides and barite in the Palaeozoic of SW Sardinia: From tectonically deformed SedEx and Irish-type deposits to post-Variscan hydrothermal karst and vein ores. In Irish-Type Deposits around the World; Andrew, C.J., Hitzman, M.W., Stanley, G., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 2023; pp. 425–442. [Google Scholar] [CrossRef]
- Bechstädt, T.; Boni, M. Sedimentological, Stratigraphical and ore Deposits Field Guide of the Autochthonous Cambro-Ordovician of SouthW Sardinia. In Descriptive Memories of the Geological Map of Italy; ISPRA: Rome, Italy, 1994; Volume 48, pp. 1–434. [Google Scholar]
- Pistis, M.; Loi, A.; Dabard, M.-P. Influence of relative sea-level variations on the genesis of palaeoplacers, the examples of Sarrabus (Sardinia, Italy) and the Armorican Massif (W France). C. R. Geosci. 2016, 348, 150–157. [Google Scholar] [CrossRef]
- Naitza, S.; Oggiano, G.; Cuccuru, S.; Casini, L.; Puccini, A.; Secchi, F.; Funedda, A.; Tocco, S. Structural and magmatic controls on Late Variscan Metallogenesis: Evidence from Southern Sardinia (Italy). In Mineral Resources in a Sustainable World, Proceedings of the 13th Biennial SGA Meeting, Nancy, France, 24–27 August 2015; André-Mayer, A.-S., Cathelineau, M., Muchez, P., Pirard, E., Sindern, S., Eds.; ASGA: New Orleans, LA, USA, 2015; Volume 1, pp. 161–164. [Google Scholar]
- Boni, M.; Muchez, P.; Schneider, J. Permo-Mesozoic multiple fluid flow and ore deposits in Sardinia: A comparison with post-Variscan mineralization of Western Europe. Geol. Soc. Spec. Pub. 2002, 204, 199–211. [Google Scholar] [CrossRef]
- Lattanzi, P. Epithermal precious metal deposits of Italy—An overview. Mineral. Depos. 1999, 34, 630–638. [Google Scholar] [CrossRef]
- Naitza, S.; Fadda, S.; Fiori, M.; Peretti, R.; Secchi, F. The metallogenic potential of an old European mining region: The case of Sardinia (Italy). In Life with Ore Deposits on Earth, Proceedings of 15th Biennial SGA Meeting, Glasgow, UK, 27–30 August 2019; Society for Geology Applied to Mineral Deposits: Mountain View, CA, USA, 2019; Volume 4, pp. 1458–1461. [Google Scholar]
- Padalino, G.; Pretti, S.; Tamburrini, D.; Tocco, S.; Uras, I.; Violo, M.; Zuffardi, P. Ore Deposition in Karst Formations with Examples from Sardinia. In Ores in Sediments; Amstutz, G.C., Bernard, A.J., Eds.; International Union of Geological Sciences; Springer: Berlin/Heidelberg, Germany, 1973; Volume 3, pp. 209–220. [Google Scholar] [CrossRef]
- Boni, M.; Gilg, H.A.; Aversa, G.; Balassone, G. The “calamine” of southwest Sardinia (Italy): Geology, mineralogy and stable isotope geochemistry of nonsulfide Zn-mineralization. Econ. Geol. 2003, 98, 731–748. [Google Scholar] [CrossRef]
- Garbarino, C.; Grillo, S.M.; Padalino, G.; Tocco, S.; Violo, M. Lithospheric evolution and metallogenesis: The Pb-Zn-Fe-Ba mineralization of the Cambrian carbonatic platform, the sulphides of the Ordovician -Silurian volcanism and Hercynian magmatism of Sardinia. In The Lithosphere in Italy; Boriani, A., Bonafede, M., Piccardo, G.B., Vai, G.B., Eds.; Atti dei Convegni Lincei; Accademia dei Lincei: Rome, Italy, 1989; Volume 80, pp. 427–443. [Google Scholar]
- Oggiano, G.; Mameli, P. Diamictite and oolitic ironstones, a sedimentary association at Ordovician–Silurian transition in the north Gondwana margin: New evidence from the inner nappe of Sardinia Variscides (Italy). Gondwana Res. 2006, 9, 500–511. [Google Scholar] [CrossRef]
- Naitza, S. Contributo alla Conoscenza della Metallogenesi del Paleozoico Sardo: Prospezione Litogeochimica per Metalli Nobili (PGE-Au) Nelle Sequenze Anossiche del Siluriano-Devoniano della Sardegna Meridionale. Ph.D. Thesis, University of Cagliari, Cagliari, Italy, 1997. [Google Scholar]
- Venerandi, I. Ni-Co-As-Sb bearing deposits in the black shales of the Paleozoic Basement of Sardinia. Ital. J. Geosci. 2007, 126, 3–10. [Google Scholar]
- Garbarino, C.; Naitza, S.; Tocco, S.; Farci, A.; Rayner, J. Orogenic Gold in the Paleozoic Basement of SE Sardinia. In Mineral Exploration and Sustainable Development; Eliopoulos, D.G., Ed.; Mill Press: Rotterdam, The Netherlands, 2003; pp. 767–770. [Google Scholar]
- Naitza, S.; Conte, A.M.; Cuccuru, S.; Oggiano, G.; Secchi, F.; Tecce, F. A Late Variscan tin province associated to the ilmenite-series granites of the Sardinian Batholith (Italy): The Sn and Mo mineralization around the Monte Linas ferroan granite. Ore Geol. Rev. 2017, 80, 1259–1278. [Google Scholar] [CrossRef]
- Moroni, M.; Naitza, S.; Ruggieri, G.; Aquino, A.; Costagliola, P.; De Giudici, G.; Caruso, S.; Ferrari, E.; Fiorentini, M.; Lattanzi, P. The Pb-Zn-Ag vein system at Montevecchio-Ingurtosu, southwestern Sardinia, Italy: A summary of previous knowledge and new mineralogical, fluid inclusion, and isotopic data. Ore Geol. Rev. 2019, 115, 103194. [Google Scholar] [CrossRef]
- Moroni, M.; Rossetti, P.; Naitza, S.; Magnani, L.; Ruggieri, G.; Aquino, A.; Tartarotti, P.; Franklin, A.; Ferrari, E.; Castelli, D. Factors Controlling Hydrothermal Nickel and Cobalt Mineralization—Some Suggestions from Historical Ore Deposits in Italy. Minerals 2019, 9, 429. [Google Scholar] [CrossRef]
- Scano, I. Vein intersection zones and host rock composition as controlling factors in polymetallic ore shoots genesis: Insights from the Southern Arburèse five-element (Ni-Co-As-Bi-Ag) vein system (SW Sardinia). Rend. Online Soc. Geol. Ital. 2023, 61, 17–26. [Google Scholar] [CrossRef]
- Boni, M.; Balassone, G.; Fedele, L.; Mondillo, N. Post-Variscan hydrothermal activity and ore deposits in southern Sardinia (Italy): Selected examples from Gerrei (Silius vein system) and Iglesiente district. Per. Mineral. 2009, 78, 19–35. [Google Scholar] [CrossRef]
- Castorina, F.; Masi, U.; Gorello, I. Rare earth element and Sr-Nd isotopic evidence for the origin of fluorite from the Silius vein deposit (southeastern Sardinia, Italy). J. Geochem. Explor. 2020, 215, 106535. [Google Scholar] [CrossRef]
- Mameli, P.; Mongelli, G.; Oggiano, G.; Dinelli, E. Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (W Sardinia, Italy): Insights on conditions of formation and parental affinity. Int. J. Earth Sci. 2006, 96, 887–902. [Google Scholar] [CrossRef]
- Ruggieri, G.; Lattanzi, P.; Luxoro, S.; Dessì, R.; Benvenuti, M.; Tanelli, G. Geology, mineralogy, and fluid inclusion data of the Furtei high-sulphidation gold deposit, Sardinia, Italy. Econ. Geol. 1997, 92, 1–19. [Google Scholar] [CrossRef]
- Sinisi, R.; Mameli, P.; Mongelli, G.; Oggiano, G. Different Mn-ores in a continental arc setting: Geochemical and mineralogical evidences from Tertiary deposits of Sardinia (Italy). Ore Geol. Rev. 2012, 47, 110–125. [Google Scholar] [CrossRef]
- Rossi, P.; Oggiano, G.; Cocherie, A. A restored section of the ‘‘southern Variscan realm’’ across the Sardinia Corsica microcontinent. C. R. Geosci. 2009, 341, 224–238. [Google Scholar] [CrossRef]
- Carmignani, L.; Carosi, R.; Di Pisa, A.; Gattiglio, M.; Musumeci, G.; Oggiano, G.; Pertusati, P.C. The Hercynian chain in Sardinia (Italy). Geodin. Acta 1994, 7, 31–47. [Google Scholar] [CrossRef]
- Casini, L.; Funedda, A.; Oggiano, G. A balanced foreland–hinterland deformation model for the Southern Variscan belt of Sardinia, Italy. Geol. J. 2010, 45, 634–649. [Google Scholar] [CrossRef]
- Ferrara, G.; Ricci, C.A.; Rita, F. Isotopic ages and tectono-metamorphic history of the metamorphic basement of North-E Sardinia. Contrib. Mineral. Petrol. 1978, 68, 99–106. [Google Scholar] [CrossRef]
- Del Moro, A.; Di Pisa, A.; Oggiano, G.; Villa, I. Isotopic ages of two contrasting tectonometamorphic episodes in the Variscan chain of N Sardinia. In Geologia del Basamento Italiano; Abstract Volume; Università degli Studi di Siena: Siena, Italy, 1991; pp. 33–35. [Google Scholar]
- Palmeri, R.; Fanning, M.; Franceschelli, M.; Memmi, I.; Ricci, C.A. SHRIMP dating of zircons in eclogite from the Variscan basement in north-E Sardinia (Italy). N. Jb. Miner. Mh. 2004, 4, 275–288. [Google Scholar] [CrossRef]
- Di Vincenzo, G.; Carosi, R.; Palmeri, R. The relationship between tectonometamorphic evolution and argon isotope records in white mica: Constraints from in situ 40Ar–39Ar laser analysis of the Variscan basement of Sardinia. J. Petrol. 2004, 45, 1013–1043. [Google Scholar] [CrossRef]
- Giacomini, F.; Bomparola, R.M.; Ghezzo, C.; Guldbransen, H. The geodynamic evolution of Southern European Variscides: Constraint from the U/Pb geochronology and geochemistry of the lower Paleozoic magmatic-sedimentary sequences of Sardinia (Italy). Contrib. Mineral. Petrol. 2006, 152, 19–42. [Google Scholar] [CrossRef]
- Giacomini, F.; Dallai, L.; Carminati, E.; Tiepolo, M.; Ghezzo, C. Exhumation of a Variscan orogenic complex: Insights into the composite granulitic–amphibolitic metamorphic basement of south-east Corsica (France). J. Metamorph. Geol. 2008, 26, 403–436. [Google Scholar] [CrossRef]
- Casini, L.; Maino, M.; Langone, A.; Oggiano, G.; Corvò, S.; Reche Estrada, J.; Liesa, M. HTLP metamorphism and fluid-fluxed melting during multistage anatexis of continental crust (N Sardinia, Italy). J. Metamorph. Geol. 2022, 41, 25–57. [Google Scholar] [CrossRef]
- Oggiano, G.; Di Pisa, A. Geologia della Catena Ercinica in Sardegna—Zona assiale. In Geologia della Catena Ercinica in Sardegna, Guida all’Escursione; Carmignani, L., Pertusati, P.C., Barca, S., Carosi, R., Di Pisa, A., Gattiglio, M., Musumeci, G., Oggiano, G., Eds.; Gruppo Informale di Geologia Strutturale: Siena, Italy, 1992; pp. 147–177. [Google Scholar]
- Conti, P.; Patta, E.D. Large scale W-directed tectonics in southeastern Sardinia. Geodin. Acta 1998, 11, 217–231. [Google Scholar] [CrossRef]
- Conti, P.; Carmignani, L.; Funedda, A. Change of nappe transport direction during the Variscan collisional evolution of central-southern Sardinia (Italy). Tectonophysics 2001, 332, 255–273. [Google Scholar] [CrossRef]
- Casini, L.; Funedda, A. Potential of pressure solution for strain localization in the Baccu Locci Shear Zone (Sardinia, Italy). J. Struct. Geol. 2014, 66, 188–204. [Google Scholar] [CrossRef]
- Leone, F.; Ferretti, A.; Hammann, W.; Loi, A.; Pillola, G.L.; Serpagli, E. A general view on the post-Sardic Ordovician sequence from SW Sardinia. Rend. Soc. Paleont. Ital. 2002, 1, 51–68. [Google Scholar]
- Loi, A.; Cocco, F.; Oggiano, G.; Funedda, A.; Vidal, M.; Ferretti, A.; Leone, F.; Barca, S.; Naitza, S.; Ghienne, J.-F.; et al. The Ordovician of Sardinia (Italy): From the “Sardic Phase” to the end-Ordovician glaciation, palaeogeography and geodynamic context. Geol. Soc. Spec. Pub. 2023, 532, 409–431. [Google Scholar] [CrossRef]
- Cocco, F.; Oggiano, G.; Funedda, A.; Loi, A.; Casini, L. Stratigraphic, magmatic and structural features of Ordovician tectonics in Sardinia (Italy): A review. J. Iber. Geol. 2018, 44, 619–639. [Google Scholar] [CrossRef]
- Cocco, F.; Loi, A.; Funedda, A.; Casini, L.; Ghienne, J.-F.; Pillola, G.L.; Vidal, M.; Meloni, M.A.; Oggiano, G. Ordovician tectonics of the South European Variscan Realm: New insights from Sardinia. Int. J. Earth Sci. 2022, 112, 321–344. [Google Scholar] [CrossRef]
- Cocco, F.; Funedda, A. The Sardic Phase: Field evidence of Ordovician tectonics in SE Sardinia, Italy. Geol. Mag. 2019, 156, 25–38. [Google Scholar] [CrossRef]
- Funedda, A. Foreland- and hinterland-verging structures in fold-and-thrust belt: An example from the Variscan foreland of Sardinia. Int. J. Earth Sci. 2009, 98, 1625–1642. [Google Scholar] [CrossRef]
- Cocco, F.; Funedda, A. Mechanical Influence of Inherited Folds in Thrust Development: A Case Study from the Variscan Fold-and-Thrust Belt in SW Sardinia (Italy). Geosciences 2021, 11, 276. [Google Scholar] [CrossRef]
- Edel, J.-B.; Casini, L.; Oggiano, G.; Rossi, P.; Schulmann, K. Early Permian 90° clockwise rotation of the Maures–Esterel–Corsica–Sardinia block confirmed by new palaeomagnetic data and followed by a Triassic 60° clockwise rotation. Geol. Soc. Spec. Pub. 2014, 405, 333–361. [Google Scholar] [CrossRef]
- Edel, J.-B.; Schulmann, K.; Lexac, O.; Lardeaux, J.M. Late Paleozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth Sci. Rev. 2018, 177, 589–612. [Google Scholar] [CrossRef]
- Secchi, F.; Casini, L.; Cifelli, F.; Naitza, S.; Carta, E.; ·Oggiano, G. Syntectonic magmatism and reactivation of collisional structures during late Variscan shearing (SW Sardinia, Italy). Int. J. Earth Sci. 2022, 111, 1469–1490. [Google Scholar] [CrossRef]
- Gaggero, L.; Gretter, N.; Langone, A.; Ronchi, A. U-Pb geochronology and geochemistry of late Paleozoic volcanism in Sardinia (southern Variscides). Geosciences 2017, 8, 1263–1284. [Google Scholar] [CrossRef]
- Rossi, P.; Cocherie, A.; Fanning, C.M. Evidence in Variscan Corsica of a brief and voluminous Late Carboniferous to Early Permian volcanic-plutonic event contemporaneous with a high-temperature/low-pressure metamorphic peak in the lower crust. Bull. Soc. Géol. France 2015, 186, 171–192. [Google Scholar] [CrossRef]
- Rossi, P.; Cocherie, A. Genesis of a Variscan batholith: Field, petrological and mineralogical evidence from the Sardinia Corsica batholith. Tectonophysics 1991, 195, 319–346. [Google Scholar] [CrossRef]
- Conte, A.M.; Cuccuru, S.; D’Antonio, M.; Naitza, S.; Oggiano, G.; Secchi, F.; Casini, L.; Cifelli, F. The post-collisional late Variscan ferroan granites of southern Sardinia (Italy): Inferences for inhomogeneity of lower crust. Lithos 2017, 294–295, 263–282. [Google Scholar] [CrossRef]
- Casini, L.; Cuccuru, S.; Maino, M.; Oggiano, G.; Tiepolo, M. Emplacement of the Arzachena Pluton (Corsica–Sardinia Batholith) and the geodynamics of incoming Pangaea. Tectonophysics 2012, 544–545, 31–49. [Google Scholar] [CrossRef]
- Casini, L.; Cuccuru, S.; Puccini, A.; Oggiano, G.; Rossi, P. Evolution of the Corsica–Sardinia Batholith and late-orogenic shearing of the Variscides. Tectonophysics 2015, 646, 65–78. [Google Scholar] [CrossRef]
- Meloni, M.A.; Oggiano, G.; Funedda, A.; Pistis, M.; Linnemann, U. Tectonics, ore bodies, and gamma-ray logging of the Variscan basement, southern Gennargentu massif (central Sardinia, Italy). J. Maps 2017, 13, 196–206. [Google Scholar] [CrossRef]
- Cocherie, A.; Rossi, P.; Fanning, C.M.; Guerrot, C. Comparative use of TIMS and SHRIMP for U–Pb zircon dating of A-type granites and mafic tholeiitic layered complexes and dykes from the Corsican Batholith (France). Lithos 2005, 82, 185–219. [Google Scholar] [CrossRef]
- Casini, L.; Cuccuru, S.; Maino, M.; Oggiano, G.; Puccini, A.; Rossi, P. Structural map of Variscan northern Sardinia (Italy). J. Maps 2015, 11, 75–84. [Google Scholar] [CrossRef]
- Secchi, F.; Naitza, S.; Oggiano, G.; Cuccuru, S.; Puccini, A.; Conte, A.M.; Giovanardi, T.; Mazzucchelli, M. Geology of late-Variscan Sàrrabus pluton (south-E Sardinia, Italy). J. Maps 2021, 17, 591–606. [Google Scholar] [CrossRef]
- Secchi, F.; Brotzu, P.; Callegari, E. The Arburèse igneous complex (SW Sardinia, Italy) –an example of dominant igneous fractionation leading to peraluminous cordierite-bearing leucogranites as residual melts. Chem. Geol. 1991, 92, 213–249. [Google Scholar] [CrossRef]
- Brotzu, P.; Callegari, E.; Secchi, F. The search for the parental magma of the high-K calc-alkaline igneous rocks series in the southernmost Sardinia batholith. Per. Mineral. 1993, 63, 253–280. [Google Scholar]
- Musumeci, G.; Spano, M.E.; Cherchi, G.P.; Franceschelli, M.; Pertusati, P.C.; Cruciani, G. Geological map of the Monte Grighini Variscan Complex (Sardinia, Italy). J. Maps 2015, 11, 287–298. [Google Scholar] [CrossRef]
- Cuccuru, S.; Naitza, S.; Secchi, F.; Puccini, A.; Casini, L.; Pavanetto, P.; Linnemann, U.; Hofmann, M.; Oggiano, G. Structural and metallogenic map of late Variscan Arbus igneous complex (SW Sardinia, Italy). J. Maps 2016, 12, 860–865. [Google Scholar] [CrossRef]
- Frezzotti, M.L. Magmatic immiscibility and fluid phase evolution in the Mount Genis granite (southeastern Sardinia, Italy). Geochim. Cosmochim. Acta 1992, 56, 21–33. [Google Scholar] [CrossRef]
- Cortesogno, L.; Cassinis, G.; Dallagiovanna, G.; Gaggero, L.; Oggiano, G.; Ronchi, A.; Seno, S.; Vanossi, M. The Variscan post-collisional volcanism in Late Carboniferous–Permian sequences of Ligurian Alps, Southern Alps and Sardinia (Italy): A synthesis. Lithos 1998, 45, 305–328. [Google Scholar] [CrossRef]
- Kwak, T.A.P. W-Sn Skarn Deposits and Related Metamorphic Skarns and Granitoids; Developments in Economic Geology; Elsevier: Amsterdam, The Netherlands; Oxford, UK; New York, NY, USA; Tokyo, Japan, 1987; p. 451. [Google Scholar]
- Lehmann, B. Tin granites, geochemical heritage, magmatic differentiation. Geol. Rundsch. 1987, 76, 177–185. [Google Scholar] [CrossRef]
- Černý, P.; Blevin, P.L.; Cuney, M.; London, D. Granite-Related Ore Deposits. In Economic Geology One Hundredth Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists Inc.: Littleton, CO, USA, 2005; pp. 337–370. [Google Scholar] [CrossRef]
- Zorpi, M.J.; Coulon, C.; Orsini, J.-B. Hybridization between felsic and mafic magmas in calc-alkaline granitoids; a case study in northern Sardinia, Italy. Chem. Geol. 1991, 92, 45–86. [Google Scholar] [CrossRef]
- Tommasini, S.; Poli, G. Petrology of the late-Carboniferous Punta Falcone gabbroic complex, northern Sardinia, Italy. Contrib. Mineral. Petrol. 1992, 110, 16–32. [Google Scholar] [CrossRef]
- Cocherie, A.; Rossi, P.; Fouillac, A.M.; Vidal, P. Crust and mantle contributions to granite genesis -an example from the Variscan batholith of Corsica, France, studied by trace element and Nd-Sr-O-isotope systematics. Chem. Geol. 1994, 115, 173–211. [Google Scholar] [CrossRef]
- Tommasini, S.; Poli, G.; Halliday, A.N. The role of sediment subduction and crustal growth in Hercynian plutonism: Isotopic and trace element evidence from the Sardinia—Corsica Batholith. J. Petrol. 1995, 36, 1305–1332. [Google Scholar] [CrossRef]
- Di Vincenzo, G.; Andriessen, P.A.; Ghezzo, C. Evidence of two Different Components in a Hercynian Peraluminous cordierite bearing granite: The San Basilio Intrusion (Central Sardinia, Italy). J. Petrol. 1996, 37, 1175–1206. [Google Scholar] [CrossRef]
- Poli, G.; Tommasini, S. Geochemical modelling of acid-basic magma interaction in the Sardinia-Corsica Batholith: The case study of Sarrabus, southeastern Sardinia, Italy. Lithos 1999, 46, 553–571. [Google Scholar] [CrossRef]
- Renna, M.R.; Tribuzio, R.; Tiepolo, M. Interaction between basic and acid magmas during the latest stages of the post-collisional Variscan evolution: Clues from the gabbro–granite association of Ota (Corsica–Sardinia batholith). Lithos 2006, 90, 92–110. [Google Scholar] [CrossRef]
- Barbey, P.; Gasquet, D.; Pin, C.; Bourgeix, A.L. Igneous banding, schlieren and mafic enclaves in calc-alkaline granites: The Budduso pluton (Sardinia). Lithos 2008, 104, 147–163. [Google Scholar] [CrossRef]
- Secchi, F.; Giovanardi, T.; Naitza, S.; Casalini, M.; Kohút, M.; Conte, A.M.; Oggiano, G. Multiple crustal and mantle inputs in post-collisional magmatism: Evidence from late-Variscan Sàrrabus pluton (SE Sardinia, Italy). Lithos 2022, 420–421, 106697. [Google Scholar] [CrossRef]
- Macera, P.; Conticelli, S.; Del Moro, A.; Di Pisa, A.; Oggiano, G.; Squadrone, A. Geochemistry and Rb-Sr age of syntectonic peraluminous granites of W Gallura, Northern Sardinia: Constraints on their genesis. Period. Mineral. 1989, 58, 25–43. [Google Scholar]
- Poli, G.; Ghezzo, C.; Conticelli, S. Geochemistry of granitic rocks from the Hercynian Sardinia-Corsica Batholith: Implication for magma genesis. Lithos 1989, 23, 247–266. [Google Scholar] [CrossRef]
- Casini, L.; Puccini, A.; Cuccuru, S.; Oggiano, G.; Secchi, G. Late-Variscan fayalite-bearing granites in Sardinia: The lower crust connection. Min. Mag. 2013, 77, 838. [Google Scholar] [CrossRef]
- Casini, L. A Matlab-derived software (geothermMOD1.2) for one-dimensional thermal modeling, and its application to the Sardinia Corsica batholith. Comput. Geosci. 2012, 45, 82–86. [Google Scholar] [CrossRef]
- Puccini, A.; Casini, L.; Cuccuru, S.; Mantovani, F.; Xhixha, M.; Oggiano, G. Thermal budget of the European Variscides. Géol. France 2012, 1, 173–174. [Google Scholar]
- Xhixha, M.K.; Albèri, M.; Baldoncini, M.; Bezzon, G.P.; Buso, G.P.; Callegari, I.; Casini, L.; Cuccuru, S.; Fiorentini, G.; Guastaldi, E.; et al. Uranium distribution in the Variscan Basement of Northeastern Sardinia. J. Maps 2016, 12, 1029–1036. [Google Scholar] [CrossRef]
- Dack, V.A. Internal Structure and Geochronology of the Gerrei Unit in the Flumendosa Area, Variscan External Nappe Zone, Sardinia, Italy. Master’s Thesis, Boise State University, Boise, ID, USA, 2009; p. 98. [Google Scholar]
- Gaggero, L.; Oggiano, G.; Buzzi, L.; Slejko, F.; Cortesogno, L. Post-Variscan mafic dikes from the late orogenic collapse to the Tethyan rift: Evidence from Sardinia. Ofioliti 2007, 32, 15–37. [Google Scholar] [CrossRef]
- Vaccaro, C.; Atzori, P.; Del Moro, A.; Oddone, N.; Traversa, G.; Villa, I.M. Geochronology and Sr isotope geochemistry of late—Hercynian dikes from Sardinia. Schweiz. Mineral. Petrogr. Mitt. 1991, 71, 221–230. [Google Scholar]
- Pirajno, F. Hydrothermal Processes and Mineral Systems; Springer: Berlin/Heidelberg, Germany, 2009; p. 1250. [Google Scholar]
- Funedda, A.; Naitza, S.; Tocco, S. Caratteri giacimentologici e controlli strutturali nelle mineralizzazioni idrotermali tardoerciniche ad As-Sb-W-Au del basamento metamorfico paleozoico della Sardegna sud-orientale. Res. Ass. Min. Sarda 2005, 110, 25–46. [Google Scholar]
- Dini, A.; Di Vincenzo, G.; Ruggieri, G.; Rayner, J.; Lattanzi, P. Monte Ollasteddu, a new late orogenic gold discovery in the Variscan basement of Sardinia (Italy)—Preliminary isotopic (40Ar-39Ar, Pb) and fluid inclusion data. Miner. Depos. 2005, 40, 337–346. [Google Scholar] [CrossRef]
- Funedda, A.; Naitza, S.; Conti, P.; Dini, A.; Buttau, C.; Tocco, S.; Carmignani, L. The geological and metallogenic map of the Baccu Locci mine area (Sardinia, Italy). J. Maps 2011, 1, 103–114. [Google Scholar] [CrossRef]
- Funedda, A.; Naitza, S.; Conti, P.; Dini, A.; Buttau, C.; Tocco, S.; Carmignani, L. Structural control of ore deposits: The Baccu Locci shear zone (SE Sardinia). Rend. Online Soc. Geol. Ital. 2011, 15, 66–68. [Google Scholar]
- Funedda, A.; Naitza, S.; Buttau, C.; Cocco, F.; Dini, A. Structural Controls of Ore Mineralization in a Polydeformed Basement: Field Examples from the Variscan Baccu Locci Shear Zone (SE Sardinia, Italy). Minerals 2018, 8, 456. [Google Scholar] [CrossRef]
- Carmignani, L.; Cortecci, G.; Dessau, G.; Duchi, G.; Oggiano, G.; Pertusati, P.; Saitta, M. The antimony and tungsten deposit of Villasalto in South-E Sardinia and its relationship with Hercynian tectonics. Schweiz. Mineral. Petrogr. Mitt. 1978, 58, 163–188. [Google Scholar]
- Maucher, A. The strata-bound cinnabar-stibnite-scheelite deposits: (discussed with examples from the Mediterranean region). In Handbook of Strata-Bound and Stratiform Ore Deposits; Wolf, K.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1976; Volume 7, pp. 477–503. [Google Scholar] [CrossRef]
- Venerandi, I. The ore parageneses of the Villasalto Sb-W deposit (Gerrei, SE Sardinia). In Zuffar’Days-Symposium; Università di Cagliari: Cagliari, Italy, 1988; pp. 127–135. [Google Scholar]
- Bakos, F.; Carcangiu, G.; Fadda, S.; Mazzella, A.; Valera, R. The gold mineralization of Baccu Locci (Sardinia, Italy): Origin, evolution and concentration processes. Terra Nova 1991, 2, 232–237. [Google Scholar] [CrossRef]
- Warr, L.N. IMA-CNMNC approved mineral symbols. Min. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Lerouge, C.; Bouchot, V.; Douguet, M.; Naitza, S.; Tocco, S.; Funedda, A. Variscan Gold Mineralisation of Baccu Locci and Brecca, Southeastern Sardinia: Petrographic and Geochemical Studies; BRGM Report N RP-54431-FR; BRGM: Orleans, France, 2007; p. 47. Available online: http://infoterre.brgm.fr/rapports/RP-54431-FR.pdf (accessed on 31 October 2023).
- Cauceglia, M.; Boni, M.; Mondillo, N. The antimony mineralisation of Corti Rosas (Gerrei, Sardinia). Appl. Earth Sci. 2017, 126, 48–49. [Google Scholar] [CrossRef]
- Costamagna, L.G. Sedimentary evolution of the Pennsylvanian-Permian Mulargia–Escalaplano molassic basin (Sardinia, Italy): The most complete record in the Southern Variscan Realm. Geol. Mag. 2022, 159, 1529–1568. [Google Scholar] [CrossRef]
- Ghezzo, C.; Guasparri, R.; Riccobono, F.; Sabatini, G.; Pretti, S.; Uras, I. Le mineralizzazioni a molibdeno associate al magmatismo intrusivo ercinico della Sardegna. I rapporti con le plutoniti ed i fenomeni di alterazione-mineralizzazione. Rend. Soc. Ital. Mineral. Petrol. 1981, 38, 133–145. [Google Scholar]
- Guasparri, R.; Riccobono, F.; Sabatini, G. Hercynian Mo-mineralizations of porphyry-style in the Sardinian batholith. A discussion on the genesis and a comparison with other deposits of the family. Rend. Soc. Ital. Mineral. Petrol. 1984, 39, 629–648. [Google Scholar]
- Guasparri, R.; Riccobono, F.; Sabatini, G. Leucogranites of Sardinian batholith; petrologic aspects and their relevance to metallogenesis. Per. Mineral. 1984, 53, 17–52. [Google Scholar]
- Boni, M.; Stein, H.J.; Zimmerman, A.; Villa, I.M. Re-Os age for molybdenite from SW Sardinia (Italy): A comparison with 40Ar/39Ar dating of Variscan granitoids. In Mineral Exploration and Sustainable Development; Eliopoulos, D.G., Ed.; Mill Press: Rotterdam, The Netherlands, 2003; pp. 247–250. [Google Scholar]
- Meinert, L.D.; Dipple, G.M.; Nicolescu, S. World Skarn Deposits. In Economic Geology One Hundredth Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists Inc.: Littleton, CO, USA, 2005; pp. 299–336. [Google Scholar] [CrossRef]
- Verkaeren, J.; Bartholomé, P. Petrology of the San Leone Magnetite Skarn (S.W. Sardinia). Econ. Geol. 1979, 74, 53–66. [Google Scholar] [CrossRef]
- Aponte, F.; Balassone, G.; Boni, M.; Costamagna, L.; Di Maio, G. Variscan Skarn Ores in South-West Sardinia: Their relationships with Cambro-Ordovician stratabound deposits. Rend. Soc. Ital. Mineral. Petrol. 1988, 43, 445–462. [Google Scholar]
- Boni, M.; Rankin, A.; Salvadori, M. Fluid inclusion evidence for the development of Zn–Pb–Cu–F skarn mineralization in SW Sardinia, Italy. Min. Mag. 1990, 54, 279–287. [Google Scholar] [CrossRef]
- Boni, M.; Iannace, A.; Köppel, V.; Früh-Green, G.; Hansmann, W. Late to posthercynian hydrothermal activity and mineralization in south-west Sardinia (Italy). Econ. Geol. 1992, 87, 2113–2137. [Google Scholar] [CrossRef]
- Deidda, M.; Naitza, S.M.; Moroni, M.; De Giudici, G.B.; Fancello, D.; Idini, A.; Risplendente, A. Mineralogy of the scheelite-bearing ores of Monte Tamara (SW Sardinia): Insights for the evolution of a Late Variscan W-Sn skarn system. Min. Mag. 2023, 87, 86–108. [Google Scholar] [CrossRef]
- Dessau, G.; Duchi, G.; Moretti, A.; Oggiano, G. Geologia della zona del Valico di Correboi (Sardegna centro-orientale). Rilevamento, tettonica e giacimenti minerari. Boll. Soc. Geol. Ital. 1982, 101, 497–522. [Google Scholar]
- Protano, G.; Riccobono, F.; Sabatini, G. Skarn formation and alteration-mineralization phenomena at Funtana Raminosa (Central Sardinia, Italy). Reconstruction of the thermal history from fluid inclusions. Miner. Petrogr. Acta 1996, 39, 231–249. [Google Scholar]
- Deidda, M.L.; Fancello, D.; Moroni, M.; Naitza, S.; Scano, I. Spatial and Metallogenic Relationships between Different Hydrothermal Vein Systems in the Southern Arburèse District (SW Sardinia). Environ. Sci. Proc. 2021, 6, 13. [Google Scholar] [CrossRef]
- Černý, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef]
- Pani, E. I Tipi delle Pegmatiti Associate al Batolite Sardo: Studio, Caratterizzazione Classificazione. Ph.D. Thesis, University of Cagliari, Cagliari, Italy, 1994. [Google Scholar]
- Pani, E.; Rizzo, R.; Raudsepp, M. Manganoan-fayalite-bearing granitic pegmatite from Quirra, Sardinia; relation to host plutonic rocks and tectonic affiliation. Can. Mineral. 1997, 35, 119–133. [Google Scholar]
- Castorina, F.; Masi, U.; Padalino, G.; Palomba, M. Constraints from geochemistry and Sr–Nd isotopes for the origin of albitite deposits from Central Sardinia (Italy). Miner. Depos. 2006, 41, 323–338. [Google Scholar] [CrossRef]
- Carcangiu, G.; Palomba, M.; Tamanini, M. REE-bearing minerals in the albitites of central Sardinia, Italy. Min. Mag. 1997, 61, 271–283. [Google Scholar] [CrossRef]
- Valera, R. Appunti sulla morfologia, termometria e composizione di fluoriti sarde. Rend. Soc. Ital. Mineral. Petrol. 1974, 30, 459–480. [Google Scholar]
- Cocco, F.; Attardi, A.; Deidda, M.L.; Fancello, D.; Funedda, A.; Naitza, S. Passive structural control on skarn mineralization localization: A case study from the Variscan Rosas Shear Zone (SW Sardinia, Italy). Minerals 2022, 12, 272. [Google Scholar] [CrossRef]
- Biste, M. Stratabound polymetallic and F-Ba-deposits of the Sarrabus-Gerrei region, SE Sardinia. V. Report: The hypothermal Cu-As mineralization with occurrence of wolframite-scheelite near Muravera, SE Sardinia. N. Jb. Miner. Mh. 1977, 12, 548–558. [Google Scholar]
- Dessau, G. Cenni sul giacimento di tungsteno e molibdeno di Perda Majori. Boll. Soc. Geol. Ital. 1956, 75, 239–250. [Google Scholar]
- Giamello, M.; Protano, G.; Riccobono, F.; Sabatini, G. The W-Mo deposit of Perda Majori (SE Sardinia, Italy): A fluid inclusion study of ore and gangue minerals. Eur. J. Mineral. 1992, 4, 1079–1084. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Lexa, O.; Schulmann, K.; Janoušek, V.; Štípská, P.; Guy, A.; Racek, M. Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. J. Metamorph. Geol. 2011, 29, 79–102. [Google Scholar] [CrossRef]
- Ledru, P.; Courrioux, G.; Dallain, C.; Lardeaux, J.-M.; Montel, J.-M.; Vanderhaeghe, O.; Vitel, G. The Velay dome (French Massif Central): Melt generation and granite emplacement during orogenic evolution. Tectonophysics 2001, 342, 207–237. [Google Scholar] [CrossRef]
- Casini, L.; Puccini, A.; Cuccuru, S.; Maino, M.; Oggiano, G. GEOTHERM: A finite-difference code for testing metamorphic P-T-t paths and tectonic models. Comput. Geosci. 2013, 59, 171–180. [Google Scholar] [CrossRef]
- Costa, S.; Rey, P. Lower crustal rejuvenation and growth during post-thickening collapse: Insights from a crustal cross section through a Variscan metamorphic core complex. Geology 1995, 23, 905–908. [Google Scholar] [CrossRef]
- Groves, D.I. The crustal continuum model for late-Archaean lode gold deposits of the Yilgarn block, W Australia. Miner. Depos. 1993, 28, 366–374. [Google Scholar] [CrossRef]
- Egger, A.; Demartin, M.; Ansorge, J.; Banda, E.; Maistrello, M. The gross structure of the crust under Corsica and Sardinia. Tectonophysics 1988, 150, 363–389. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Puxeddu, M. U-Pb zirc and Ar-Ar amphibole ages from Sardinian migmatites (Italy) and review of migmatite ages from the Variscan belt. Per. Mineral. 2019, 88, 203–219. [Google Scholar] [CrossRef]
- Oggiano, G.; Gaggero, L.; Funedda, A.; Buzzi, L.; Tiepolo, M. Multiple early Paleozoic volcanic events at the northern Gondwana margin: U–Pb age evidence from the Southern Variscan branch (Sardinia, Italy). Gondwana Res. 2010, 17, 44–58. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Villaseca, C.; Griffin, W.L.; Belousova, E.; Konc, Z.; Ancochea, E.; O’Reilly, S.Y.; Pearson, N.; Garrido, C.J.; Gervilla, F. The architecture of the European-Mediterranean Lithosphere: A synthesis of the Re-Os evidence. Geology 2013, 41, 547–550. [Google Scholar] [CrossRef]
- Marcello, A.; Pretti, S.; Salvadori, I. Introduction to the minerogenesis and economic geology of Sardinia. In Guidebook to the Field Excursion: Petrology, Geology and Ore Deposits of the Paleozoic Basement of Sardinia, Proceedings of the 16th General Meeting, Pisa, Italy, 3–8 September 1994; International Mineralogical Association: Pisa, Italy, 1994; pp. 37–43. [Google Scholar]
- Garbarino, C.; Grillo, S.M.; Marini, C.; Mazzella, A.; Melis, F.; Padalino, G.; Tocco, S.; Violo, M.; Maccioni, L.; Fiori, M. The Paleozoic metallogenic epochs of the Sardinian microplate (W Mediterranean): An attempt of synthesis on geodynamic evolution and mineralizing processes. Rend. Soc. Ital. Min. Petr. 1984, 39, 193–228. [Google Scholar]
- Loi, A.; Barca, S.; Chauvel, J.-J.; Dabard, M.-P.; Leone, F. Analyse de la sedimentation post-phase sarde: Les dépôts initiaux à placers du SE de la Sardaigne. C. R. Acad. Sci. 1992, 315, 1357–1364. [Google Scholar]
- Ghienne, J.-F.; Bartier, D.; Leone, F.; Loi, A. Characterization of Upper Ordovician Mn-layers of Sardinia: Relationships with the Late Ordovician glaciation. C. R. Acad. Sci. 2000, 331, 257–264. [Google Scholar] [CrossRef]
- Schneider, H.J. Schichtgebundene NE-metall- und F-Ba Lagerstätten im Sarrabus-Gerrei Gebiet, SE Sardinien. I. Bericht: Zur Lagerstaettenkunde und Geologie. N. Jb. Miner. Mh. 1974, 12, 529–541. [Google Scholar] [CrossRef]
- Loi, A.; Dabard, M.-P. Zircon typology and geochemistry in the palaeogeographic reconstruction of the Late Ordovician of Sardinia (Italy). Sediment. Geol. 1997, 112, 263–279. [Google Scholar] [CrossRef]
- Pizarro, H.; Rousse, S.; Bouzari, F.; Bissig, T.; Gregoire, M.; Riquelme, R.; Carretier, S.; Townley, B.; Hoareau, G.; Mpodozis, C. Use of porphyry indicator zircons (PIZs) in the sedimentary record as an exploration tool for covered porphyry copper deposits in the Atacama Desert, Chile. J. Geochem. Explor. 2024, 256, 107351. [Google Scholar] [CrossRef]
- Bierlein, F.P.; Groves, D.I.; Goldfarb, R.J. Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Miner. Depos. 2006, 40, 874. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits? Geosci. Front. 2016, 7, 409–417. [Google Scholar] [CrossRef]
- Ishihara, S. The granitoid series and mineralization. In Economic Geology Seventy-Fifth Anniversary Volume; Skinner, B., Ed.; Society of Economic Geologists Inc.: Littleton, CO, USA, 1981; pp. 458–484. [Google Scholar]
- Lyons, T.; Reinhard, C.; Planavsky, N. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 2014, 506, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Bucholz, C.E.; Stolper, E.M.; Eiler, J.M.; Breaks, F.W. A Comparison of Oxygen Fugacities of Strongly Peraluminous Granites across the Archean–Proterozoic Boundary. J. Petrol. 2018, 59, 2123–2156. [Google Scholar] [CrossRef]
- Sverjensky, D.A.; Lee, N. The Great Oxidation Event and Mineral Diversification. Elements 2010, 6, 31–36. [Google Scholar] [CrossRef]
- Groves, D.I.; Vielreicher, R.M.; Goldfarb, R.J.; Condie, K.C. Controls on the heterogeneous distribution of mineral deposits through time. Geol. Soc. Spec. Pub. 2005, 248, 71–101. [Google Scholar] [CrossRef]
- Frimmel, H.E. Archaean atmospheric evolution: Evidence from the Witwatersrand gold fields, South Africa. Earth Sci. Rev. 2005, 70, 1–46. [Google Scholar] [CrossRef]
District | Ores | Type | References |
---|---|---|---|
Pre-Sardic phase metallogenic peak (early Cambrian–early Ordovician) | |||
SW Sardinia (Iglesiente district) | Fe-Zn-Pb | SEDEX | [25] |
SW Sardinia (Iglesiente district) | Pb-Zn | MVT/Irish-type | [25,26] |
Sardic and Sarrabese phases period (early–middle Ordovician) | |||
SW Sardinia (Iglesiente district) | Ba-Pb | Unconformity-related | [27] |
SW Sardinia (Iglesiente district) | Ba, Zn-Pb | Karst, supergene | [33,34] |
SE Sardinia | base metal protores | Sedimentary, volcanic exhalative | [35] |
Post-Ordovician phases period (late Ordovician–late Devonian) | |||
SE Sardinia (post-Sarrabese phase) | Ti, Zr, REE | Placers | [28] |
NW Sardinia (Nurra district) | Fe | Oolitic iron | [36] |
E Sardinia | base metal, U, V protores | Sedimentary | [37,38] |
Variscan metallogenic peak (Carboniferous—early Permian) | |||
SE Sardinia (Gerrei district) | As-Sb-W-Au (Pb-Zn-Cu-Ag) | Orogenic-type: mesothermal to epithermal veins | [39] |
Southern and central Sardinia | Sn-W-Mo-Bi-F, Cu-Fe-Pb-Zn-Ag, REE | Granite-related hydrothermal, greisen and skarn | [40] |
Post-Variscan I period (early Permian–Jurassic?) | |||
SW Sardinia (Arburèse district) | Pb-Zn (Ag, Ga-Ge-In), Bi-Ni-Co-As-Fe | Low-temperature Montevecchio-type or five-element-type veins | [41,42,43] |
E Sardinia | F-Ba-Pb-Ag, REE | Low-temperature fluorspar veins, Silius-type veins | [44,45] |
SW Sardinia | Ba, Zn-Pb | Karst, supergene | [33,34] |
Post-Variscan II period (Cretaceous) | |||
NW Sardinia (Nurra district) | bauxite | Paleosoil | [46] |
Cenozoic metallogenic peak (Oligocene–Miocene) | |||
W Sardinia | Au-Ag-Te-Cu | High sulfidation and low sulfidation, epithermal, porphyry | [47] |
W Sardinia | Mn | Volcano–sedimentary/exhalative | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naitza, S.; Casini, L.; Cocco, F.; Deidda, M.L.; Funedda, A.; Loi, A.; Oggiano, G.; Secchi, F. Post-Collisional Tectonomagmatic Evolution, Crustal Reworking and Ore Genesis along a Section of the Southern Variscan Belt: The Variscan Mineral System of Sardinia (Italy). Minerals 2024, 14, 65. https://doi.org/10.3390/min14010065
Naitza S, Casini L, Cocco F, Deidda ML, Funedda A, Loi A, Oggiano G, Secchi F. Post-Collisional Tectonomagmatic Evolution, Crustal Reworking and Ore Genesis along a Section of the Southern Variscan Belt: The Variscan Mineral System of Sardinia (Italy). Minerals. 2024; 14(1):65. https://doi.org/10.3390/min14010065
Chicago/Turabian StyleNaitza, Stefano, Leonardo Casini, Fabrizio Cocco, Matteo Luca Deidda, Antonio Funedda, Alfredo Loi, Giacomo Oggiano, and Francesco Secchi. 2024. "Post-Collisional Tectonomagmatic Evolution, Crustal Reworking and Ore Genesis along a Section of the Southern Variscan Belt: The Variscan Mineral System of Sardinia (Italy)" Minerals 14, no. 1: 65. https://doi.org/10.3390/min14010065
APA StyleNaitza, S., Casini, L., Cocco, F., Deidda, M. L., Funedda, A., Loi, A., Oggiano, G., & Secchi, F. (2024). Post-Collisional Tectonomagmatic Evolution, Crustal Reworking and Ore Genesis along a Section of the Southern Variscan Belt: The Variscan Mineral System of Sardinia (Italy). Minerals, 14(1), 65. https://doi.org/10.3390/min14010065