Petrogenesis and Geochronology of Late Devonian Intrusive Rocks in Eastern Tianshan, Xinjiang, China: Subduction Constraints of the North Tianshan Ocean
Abstract
:1. Introduction
2. Geological Setting
3. Petrography
4. Analytical Methods
4.1. Zircon U–Pb Data
4.2. Geochemical Analyses
5. Analysis Results
5.1. Zircon U–Pb Age
5.2. Lu–Hf Isotopes
5.3. Major- and Trace-Element Geochemistry
5.3.1. Major Elements
5.3.2. Trace Elements
6. Discussion
6.1. Petrogenesis
6.2. Tectonic Setting
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Șengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 22. [Google Scholar] [CrossRef]
- Șengör, A.M.C.; Natal’in, B.A. Paleotectonics of Asia: Fragments of a synthesis. In Tectonic Evolution of Asia; Cambridge University Press: Cambridge, UK, 1996; pp. 486–640. [Google Scholar]
- Jahn, B.M.; Griffin, W.L.; Windley, B. Continental Growth in the Phanerozoic: Evidence from Central Asia. Tectonophysics 2000, 328, 7–10. [Google Scholar] [CrossRef]
- Khain, E.V.; Bibikova, E.V.; Kröner, A.; Zhuravlev, D.Z.; Sklyarov, E.V.; Fedotova, A.A.; Kravchenko-Berezhnoy, I.R. The most ancient ophiolite of the Central Asian fold belt: U–Pb and Pb–Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet. Sci. Lett. 2002, 199, 311–325. [Google Scholar] [CrossRef]
- Yakubchuk, A. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model. J. Asian Earth Sci. 2004, 23, 761–779. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Mao, J.W.; Pirajno, F.; Zhang, Z.H.; Chai, F.M.; Wu, H.; Chen, S.P.; Cheng, L.S.; Yang, J.M.; Zhang, C.Q. A review of the Cu–Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and oreforming processes. J. Asian Earth Sci. 2008, 32, 184–203. [Google Scholar] [CrossRef]
- Xiao, W.J.; Huang, B.C.; Han, C.M.; Sun, S.; Li, J.L. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res. 2010, 18, 253–273. [Google Scholar] [CrossRef]
- Gao, J.; Klemd, R.; Qian, Q.; Zhang, X.; Li, J.L.; Jiang, T.; Yang, Y.Q. The collision between the Yili and Tarim blocks of the Southwestern Altaids: Geochemical and age constraints of a leucogranite dike crosscutting the HP–LT metamorphic belt in the Chinese Tianshan Orogen. Tectonophysics 2011, 499, 118–131. [Google Scholar] [CrossRef]
- Xiao, W.J.; Santosh, M. The western central Assian orogenic belt: A window to accretionary orogenesis and continental growth. Gondwana Res. 2014, 25, 1329–1444. [Google Scholar] [CrossRef]
- Allen, M.; Windley, B.; Zhang, C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics 1992, 220, 89–115. [Google Scholar] [CrossRef]
- Shu, L.S.; Charvet, J.; Zhi, G.L.; Fu, L.H.; Laurent-Charvet, S. A Large-scale Palaeozoic Dextral Ductile Strike-Slip Zone: The Aqikkudug-Weiya Zone along the Northern dargin of the Central Tianshan Belt, Xinjiang, NW China. Acta Geol. Sin. (Engl. Transl.) 1999, 73, 148–163. [Google Scholar]
- Jahn, B.M.; Wu, F.Y.; Hong, D.W. Important crustal growth in the phanerozoic: Isotopic evidence of granitoids from east-central Asia. J. Earth Syst. Sci. 2000, 109, 5–20. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Granitoids of the central Asianorogenic belt and continental growth in the Phanerozoic. Trans. R. Soc. Edinb. Earth Sci. 2000, 91, 181–193. [Google Scholar]
- Laurent-Charvet, S.; Charvet, J.; Monié, P.; Shu, L. Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): New structural and geochronological data. Tectonics 2003, 22, 1–24. [Google Scholar] [CrossRef]
- Xiao, W.J.; Zhang, L.C.; Qin, K.Z.; Sun, S.; Li, J.L. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of central Asia. Am. J. Sci. 2004, 304, 370–395. [Google Scholar] [CrossRef]
- Aitchison, J.C.; Ali, J.R.; Davis, A.M. When and where did India and Asia collide? J. Geophys. Res. 2007, 112, B05423. [Google Scholar] [CrossRef]
- Charvet, J.; Shu, L.S.; Laurent-Charvet, S. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): Welding of the Tarim and Junggar plates. Episodes 2007, 30, 162–186. [Google Scholar]
- Xu, X.Y.; Li, R.S.; Chen, J.L.; Ma, Z.P.; Li, Z.P.; Wang, H.L.; Bai, J.K.; Tang, Z. New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area. Acta Petrol. Sin. 2014, 30, 1521–1534, (In Chinese with English Abstract). [Google Scholar]
- Han, Y.G.; Zhao, G.C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Sci. Rev. 2018, 186, 129–152. [Google Scholar] [CrossRef]
- Tang, D.M.; Qin, K.Z.; Sun, H.; Su, B.X.; Xiao, Q.H. The role of crustal contamination in the formation of Ni–Cu sulfide deposits in Eastern Tianshan, Xinjiang, Northwest China: Evidence from trace element geochemistry, Re–Os, Sr–Nd, zircon Hf–O, and sulfur isotopes. J. Asian Earth Sci. 2012, 49, 145–160. [Google Scholar] [CrossRef]
- Charvet, J.; Shu, L.S.; Laurent–Charvet, S.; Wang, B.; Faure, M.; Cluzel, D.; Jong, K.D. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Sci. China Earth Sci. 2011, 54, 166–184. [Google Scholar] [CrossRef]
- Wang, B.; Cluzel, D.; Jahn, B.M.; Shu, L.S.; Chen, Y.; Zhai, Y.Z.; Branquet, Y.; Barbanson, L.; Sizaret, S. Late Paleozoic pre- and syn-kinematic plutons of the Kangguer-Huangshan Shear zone: Inference on the tectonic evolution of the eastern Chinese north Tianshan. Am. J. Sci. 2014, 314, 43–79. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.J.; Windley, B.F.; Huang, B.C.; Han, C.M.; Yuan, C.; Chen, H.L.; Sun, M.; Sun, S.; Li, J.L. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. Int. J. Earth Sci. 2009, 98, 1189–1217. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Sun, S.; Li, J.L.; Huang, B.C.; Han, C.M.; Yuan, C.; Sun, M.; Chen, H.L. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annu. Rev. Earth Planet. Sci. 2015, 43, 477–507. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Han, C.M.; Liu, W.; Wan, B.; Zhang, J.E.; Ao, S.J.; Zhang, Z.Y.; Song, D.F. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Sci. Rev. 2018, 186, 94–128. [Google Scholar] [CrossRef]
- Xia, L.Q.; Xia, Z.C.; Xu, X.Y.; Li, X.M.; Ma, Z.P.; Wang, L.L. Some thoughts on the characteristics of Paleozoic ocean-continent transition from Tianshan Moutains. Northwest. Geol. 2002, 35, 9–20, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.B.; Xu, X. Post-collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China. Acta Geol. Sin. (Engl. Transl.) 2006, 80, 23–31, (In Chinese with English Abstract). [Google Scholar]
- Xia, L.Q.; Xia, Z.C.; Xu, X.Y.; Li, X.M.; Ma, Z.P. Petrogenesis of Carboniferous-early Permian rift-related volcanic rocks in the Tianshan and its neighboring areas, northwestern China. Northwest. Geol. 2008, 41, 1–68, (In Chinese with English Abstract). [Google Scholar]
- Wang, Q.; Wyman, D.A.; Zhao, Z.H.; Xu, J.F.; Bai, Z.H.; Xiong, X.L.; Dai, T.M.; Li, C.F.; Chu, Z.Y. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chem. Geol. 2007, 236, 42–64. [Google Scholar] [CrossRef]
- Tang, G.J.; Wang, Q.; Wyman, D.A.; Li, Z.X.; Xu, Y.G.; Zhao, Z.H. Metasomatized lithosphere-asthenosphere interaction during slab rollback: Evidence from Late Carboniferous gabbros in the Luotuogou area, Central Tianshan. Lithos 2012, 155, 67–80. [Google Scholar] [CrossRef]
- Han, B.F.; Guo, Z.J.; Zhang, Z.C.; Zhang, L.; Chen, J.F.; Song, B. Age, geochemistry, and tectonic implications of a Late Paleozoic stitching pluton in the North Tianshan suture zone, western China. Geol. Soc. Am. Bull. 2010, 122, 627–640. [Google Scholar] [CrossRef]
- Zhou, M.F.; Lesher, C.M.; Yang, Z.Y.; Li, J.W.; Sun, M. Geochemistry and petrogenesis of 270 Ma Ni–Cu–(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chem. Geol. 2004, 209, 233–257. [Google Scholar] [CrossRef]
- Xia, L.Q.; Zhang, G.W.; Xia, Z.C.; Xu, X.Y.; Dong, Y.P.; Li, X.M. Constraints on the timing of opening and closeing of the Tianshan Paleozoic oceanic basin: Evidence from Sinian and Carboniferous volcanic rocks. Geol. Bull. China 2002, 21, 55–62, (In Chinese with English Abstract). [Google Scholar]
- Mao, Y.J.; Qin, K.Z.; Li, C.S.; Xue, S.C.; Ripley, E.M. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China. Lithos 2014, 200–201, 111–125. [Google Scholar] [CrossRef]
- Mao, Y.J.; Qin, K.Z.; Tang, D.M.; Feng, H.Y.; Xue, S.C. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni–Cu sulfide deposit, East Tianshan, NW China. J. Asian Earth Sci. 2016, 129, 22–37. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, F.N.; Yu, J.Y.; Ji, W.H.; Feng, Y.M.; Zhang, X.; Gu, P.Y.; Li, X.M.; Wang, K.; Zhu, X.H.; et al. Tectonic Evolution in Northwest China and Its Adjacent Areas; China University of Geosciences Press: Wuhan, China, 2023; Volume 1, pp. 73–194, (In Chinese with English Abstract). [Google Scholar]
- Meng, Y.; Zhang, X.; Wang, K.; Chen, R.M.; Chen, X.Q.; Lu, J.F.; Fu, Q. Biostratigraphic study on the early Devonian in eastern Hami, Xinjiang. J. Stratigr. 2013, 37, 505–512, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA–ICP–MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Andersen, T. Correlation of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot/Ex Version 3.00. A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology, Center Special Publication: Berkeley, CA, USA, 2003; Volume 4, pp. 1–70. [Google Scholar]
- Li, Y.G.; Wang, S.S.; Liu, M.W.; Meng, E.; Wei, X.Y.; Zhao, H.B.; Jin, M.Q. U–Pb dating study of baddeleyite by LA–ICP–MS: Technique and application. Acta Geol. Sin. (Engl. Transl.) 2015, 89, 2400–2418, (In Chinese with English Abstract). [Google Scholar]
- Gao, P.; Yakymchuk, C.; Zhang, J.; Yin, C.Q.; Qian, J.H.; Li, Y.G. Preferential dissolution of U–rich zircon biases the Hf isotope compositions of granites. Geology 2022, 3, 50. [Google Scholar]
- Vervoort, J.D.; Patchett, P.J. Behavior of hafnium and neodymium isotopes in the crust, Constraints from Precambrian crustally derived granites. Geochim. Cosmochim. Acta 1996, 60, 3717–3733, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; Van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM–MC–ICP MS analysis of zircon megacrysts in kimberlites: Geochim. Cosmochim. Acta 2000, 64, 133–147, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Langmuir, C.H.; Beender, A.E.; Bence, A.E. Petrogenesis of basalts from the famous area: Mid-Atlantic ridge. Earth Planet. Sci. Lett. 1977, 36, 133–156. [Google Scholar] [CrossRef]
- Ewart, A. The Mineralogy and Petrology of Tertiary-Recent Orogenic Volcanic Rocks with Special Reference to the Andesitic Basaltic Compositional Range; Orogenic Andesites and Related Rocks; Wiley: Chichester, UK, 1982; pp. 25–95. [Google Scholar]
- Maniar, P.; Piccoli, P. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Wilson, M. Igneous Petrogenesis: A Global Tectonic Approach; Unwin Hyman: London, UK, 1989; pp. 1–466. [Google Scholar]
- Gill, J.B. Orogenic Andesites and Plate Tectonics; Springer: Berlin, Germany, 1981; pp. 1–390. [Google Scholar]
- Davis, J.H.; Stevenson, D.J. Physical model of source region of subduction zone volcanics. J. Geophys. Res. 1992, 97, 2037–2070. [Google Scholar] [CrossRef]
- Stolz, A.J.; Jochum, K.P.; Spettel, B.; Hofmann, A.W. Fluid- and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts. Geology 1996, 24, 587–590. [Google Scholar] [CrossRef]
- Pearce, J.A.; Cann, J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett. 1973, 19, 290–300. [Google Scholar] [CrossRef]
- Green, M.G.; Sylvester, P.J. Growthand recycling of early Archaean continental crust: Geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia. Tectonophysics 2000, 322, 69–88. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Weaver, B.L. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth Planet. Sci. Lett. 1991, 104, 381–397. [Google Scholar] [CrossRef]
- Huang, Y.M.; Hawkesworth, C.; Smith, I.; Peter, C.; Black, P. Geochemistry of Late Cenozoic basaltic volcanism in Northland and Coromandei New Zealand: Implications for mantel enrichment processes. Chem. Geol. 2000, 164, 219–238. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 25–394. [Google Scholar] [CrossRef]
- Ayers, J. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones. Contrib. Mineral. Petrol. 1998, 132, 390–404. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Li, H.M.; Jahn, B.M.; Wilde, S. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem. Geol. 2002, 287, 143–173. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminum saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.A.; Lo, C.H.; Yui, T.F.; Lin, Q.; Ge, W.C.; Sun, D.Y. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos 2003, 66, 241–273. [Google Scholar] [CrossRef]
- Landenberger, B.; Collins, W.J. Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelundi Complex, Eastern Australia. J. Petrol. 1996, 37, 145–170. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; pp. 1–312. [Google Scholar]
- Weaver, B.L.; Tarney, J. Empirical approach to estimating the composition of the continental crust. Nature 1984, 310, 575–577. [Google Scholar] [CrossRef]
- Frey, F.A.; Prinz, M. Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis. Earth Planet. Sci. Lett. 1978, 38, 129–176. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.; Lo, C.H. Crust-mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-collisional Mafic-ultramafic Intrusions of the Northern Dabie Complex, Central China. Chem. Geol. 1999, 157, 119–146. [Google Scholar] [CrossRef]
- Patiño Douce, A.E. Effects of pressure and H2O content on the compositions of primary crustal melts. Trans. R. Soc. Edinb. Earth Sci. 1996, 87, 11–21. [Google Scholar]
- Singh, J.; Johannes, W. Dehydration melting of tonalities, Part 1. Beginning of melting. Contrib. Mineral. Petrol. 1996, 125, 16–25. [Google Scholar] [CrossRef]
- Beard, J.S.; Lofgren, G.E. Dehydration melting and watersaturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J. Petrol. 1991, 32, 365–401. [Google Scholar] [CrossRef]
- Wolf, M.B.; Wyllie, P.J. Dehydration-melting of amphibolite at 10kbar: The effects of temperature and time. Contrib. Mineral. Petrol. 1994, 115, 369–383. [Google Scholar] [CrossRef]
- Patiño Douce, A.E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. Spec. Publ. 1999, 168, 55–75. [Google Scholar] [CrossRef]
- Turpin, L.; Cuney, M.; Friedrich, M.; Bouchez, J.L.; Aubertin, M. Meta-igneous origin of Hercynian peraluminous granites in N. W. French Massif Central: Implications for crustal history reconstructions. Contrib. Mineral. Petrol. 1990, 104, 163–172. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Beard, J.S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kb. J. Petrol. 1995, 36, 707–738. [Google Scholar] [CrossRef]
- Ratajeski, K.; Sisson, T.W.; Glazner, A.F. Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust. Contrib. Mineral. Petrol. 2005, 149, 713–734. [Google Scholar] [CrossRef]
- Vielzeuf, D.; Holloway, J.R. Experimental determination of the fluid-absent melting relations in the pelitic system, Consequence for crustal differentiation. Contrib. Mineral. Petrol. 1988, 98, 257–276. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Johnston, A.D. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol. 1991, 107, 202–218. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B.; Miller, C.F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precambrian Res. 1991, 51, 1–25. [Google Scholar] [CrossRef]
- Gardien Thompson, A.B.; Grujic, D.; Ulmer, P. Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. J. Geophys. Res. Solid Earth. 1995, 100, 15581–15591. [Google Scholar] [CrossRef]
- Rapp, R.P. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. J. Geophys. Res. 1995, 100, 15601–15610. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Beard, J.S. Effects of P, f (O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. J. Petrol. 1996, 37, 999–1024. [Google Scholar] [CrossRef]
- Skjerlie, K.P.; Johnston, A.D. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J. Petrol. 1996, 37, 661–691. [Google Scholar] [CrossRef]
- Patiño Douce, A.E. Generation of metaluminous Atype granites by low-pressure melting of calc-alkaline granitoids. Geology 1997, 25, 743–746. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; McCarthy, T.C. Melting of crustal rocks during continental collision and subduction. In When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks; Hacker, B.R., Liou, J.G., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 27–55. [Google Scholar]
- Xing, H.; Xue, C.J.; Chi, G.X.; Zhao, X.B.; Liu, C.; Ronghao Man, R.H.; Symons, D.T.A. Petrogenesis of volcanic rocks of the Devonian—Carboniferous Dahalajunshan Formation, Western Tianshan: Implications for crustal growth in an accretionary orogen. Lithos 2021, 386–387, 106003. [Google Scholar] [CrossRef]
- Cai, H.M.; Wang, R.; Liu, G.P.; Gong, X.K. Discovery of late Devonian monzogranite from the eastern Tianshan, and its constrains on the tectonic evolution of the Aqishan—Yamansu belt. Geol. Bull. China 2022, 41, 1184–1190, (In Chinese with English Abstract). [Google Scholar]
- Du, L.; Long, X.P.; Yuan, C.; Zhang, Y.Y.; Huang, Z.Y.; Zhu, H.L. Identification of the Late Devonian back-arc magmatism in the Chinese Eastern Tianshan. Lithos 2023, 454–455, 107283. [Google Scholar] [CrossRef]
- Qin, Z.; Tao, H.F.; Xie, Z.B.; Liu, Y.T. Petrogenesis and geodynamic implications of the Late Devonian dioritic and granitic intrusive rocks in the Dananhu Belt, Eastern Tianshan Orogenic Belt. Heliyon 2024, 10, e26053. [Google Scholar] [CrossRef]
- Gao, J.G.; Li, W.Y.; Gao, Y.X.; Zhang, Z.W.; Zhou, R.H. Geochemical, zircon U–Pb dating and Sr–Nd–Pb isotope characteristics for Late Devonian pluton of the Boluohuoluo area, West Tianshan and its geological implication. Acta Petrol. Sin. 2016, 32, 1379–1390, (In Chinese with English Abstract). [Google Scholar]
- Wood, D.A. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 1980, 50, 11–30. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Bai, J.K.; Li, Z.P.; Ma, Z.P.; Sun, J.M.; Li, T. Angular unconformity at the bottom of the Lower Carboniferous Dahalajunshan Formation: Constraints on the Palaeozoic ocean-continent transition in the Tianshan Mountains. Sediment. Geol. Tethyan Geol. 2015, 35, 86–95, (In Chinese with English Abstract). [Google Scholar]
- Li, X.M.; Xia, L.Q.; Xia, Z.C.; Xu, X.Y.; Ma, Z.P.; Wang, L.S. Petroginesis of the Carboniferous Qi’eshan Group volcanic rocks in the East Tianshan. J. Jilin Univ. (Earth Sci. Ed.) 2006, 36, 336–341, (In Chinese with English Abstract). [Google Scholar]
- Xia, L.Q.; Li, X.M.; Xia, Z.C.; Xu, X.Y.; Ma, Z.P.; Wang, L.S. Carboniferous-Permian rift-related volcanism and mantle plume in the Tianshan, northwestern China. Northwest. Geol. 2006, 39, 1–49, (In Chinese with English Abstract). [Google Scholar]
- Xia, L.Q.; Xia, Z.C.; Xu, X.Y.; Li, X.M.; Ma, Z.P. The discrimination between continental basalt and island arc basalt based on geochemical method. Acta Petrol. Mineral. 2007, 26, 77–89, (In Chinese with English Abstract). [Google Scholar]
- Zhou, T.F.; Yuan, F.; Zhang, D.Y.; Fan, Y.; Liu, S.; Peng, M.X.; Zhang, J.D. Geochronology, tectonic setting and mineralization of granitoids in Jueluotage area, eastern Tianshan, Xinjaing. Acta Petrol. Sin. 2010, 26, 478–502, (In Chinese with English Abstract). [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Zhang, X.; Wang, K.; Zhao, H.; Han, Y.; Qi, Y.; Li, Z. Petrogenesis and Geochronology of Late Devonian Intrusive Rocks in Eastern Tianshan, Xinjiang, China: Subduction Constraints of the North Tianshan Ocean. Minerals 2024, 14, 1144. https://doi.org/10.3390/min14111144
Meng Y, Zhang X, Wang K, Zhao H, Han Y, Qi Y, Li Z. Petrogenesis and Geochronology of Late Devonian Intrusive Rocks in Eastern Tianshan, Xinjiang, China: Subduction Constraints of the North Tianshan Ocean. Minerals. 2024; 14(11):1144. https://doi.org/10.3390/min14111144
Chicago/Turabian StyleMeng, Yong, Xin Zhang, Kai Wang, Haibo Zhao, Yuan Han, Yaogang Qi, and Zuochen Li. 2024. "Petrogenesis and Geochronology of Late Devonian Intrusive Rocks in Eastern Tianshan, Xinjiang, China: Subduction Constraints of the North Tianshan Ocean" Minerals 14, no. 11: 1144. https://doi.org/10.3390/min14111144
APA StyleMeng, Y., Zhang, X., Wang, K., Zhao, H., Han, Y., Qi, Y., & Li, Z. (2024). Petrogenesis and Geochronology of Late Devonian Intrusive Rocks in Eastern Tianshan, Xinjiang, China: Subduction Constraints of the North Tianshan Ocean. Minerals, 14(11), 1144. https://doi.org/10.3390/min14111144