Petrogenesis of Late Stenian Syn-Orogenic A-Type Granites in the Chhotanagpur Gneissic Complex and Eastern Indian Shield
Abstract
:1. Introduction
2. Geological Setting
Geology of the Study Area
3. Material and Methods
3.1. Sampling and Optical Petrography
3.2. Major and Trace Elements
3.3. Mineral Separation and Sample Preparation
3.4. Cathodoluminescence and BSE Imaging
3.5. In Situ U-Pb Dating of Zircon
3.6. In Situ Lu-Hf Systematics of Zircon
4. Results
4.1. Optical Petrography
4.2. Zircon Morphology
4.3. Zircon Geochronology
4.4. Zircon Hf-Isotopic Compositions
Analysis No. | Age Population | 206Pb/238U Date (Ma) | ±1 s | Measurements | Initial | Model Ages (Ga) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
176Hf/177Hf | ±1SE | 176Lu/177Hf | 176Yb/177Hf | 176Hf/177Hf Initial (t = o) | εHf Initial (t = o) | ±1SE | TDM | TDMC | ||||
190-1_029 | 995.2 Ma | 956 | 32 | 0.282188 | 0.000011 | 0.0003 | 0.017 | 0.282182 | 1.01 | 0.38 | 1.42 | 1.73 |
190-1_015 | 969 | 14 | 0.282154 | 0.000011 | 0.0006 | 0.032 | 0.282142 | −0.13 | 0.37 | 1.48 | 1.81 | |
190-1_040 | 981 | 37 | 0.282151 | 0.000015 | 0.0043 | 0.196 | 0.282069 | −2.44 | 0.53 | 1.64 | 1.96 | |
190-1_079r | 984 | 6 | 0.282147 | 0.000008 | 0.0012 | 0.055 | 0.282125 | −0.38 | 0.29 | 1.51 | 1.84 | |
190-1_039 | 995 | 34 | 0.282136 | 0.000010 | 0.0005 | 0.024 | 0.282125 | −0.10 | 0.36 | 1.50 | 1.83 | |
190-1_022 | 997 | 15 | 0.28216 | 0.000009 | 0.0007 | 0.033 | 0.282146 | 0.67 | 0.32 | 1.48 | 1.79 | |
190-1_085r | 998 | 7 | 0.282179 | 0.000008 | 0.0013 | 0.06 | 0.282154 | 0.99 | 0.28 | 1.47 | 1.77 | |
190-1_035 | 999 | 25 | 0.282097 | 0.000011 | 0.0015 | 0.085 | 0.282067 | −2.09 | 0.38 | 1.60 | 1.96 | |
190-1_031 | 1003 | 22 | 0.282156 | 0.000011 | 0.0006 | 0.028 | 0.282145 | 0.77 | 0.39 | 1.48 | 1.78 | |
190-1_028 | 1005 | 35 | 0.282115 | 0.000011 | 0.0014 | 0.078 | 0.282087 | −1.22 | 0.39 | 1.57 | 1.91 | |
190-1_014c | 1008 | 7 | 0.28212 | 0.000012 | 0.0016 | 0.078 | 0.282088 | −1.12 | 0.41 | 1.57 | 1.90 | |
190-1_034 | 1008 | 23 | 0.282178 | 0.000010 | 0.0006 | 0.029 | 0.282167 | 1.68 | 0.34 | 1.45 | 1.73 | |
190-1_005 | 1011 | 11 | 0.282173 | 0.000014 | 0.0006 | 0.028 | 0.282162 | 1.58 | 0.47 | 1.45 | 1.74 | |
190-1_040pit | 1046.2 Ma | 1012 | 85 | 0.28213 | 0.000016 | 0.0046 | 0.191 | 0.282040 | −2.75 | 0.57 | 1.69 | 2.01 |
190-1_006 | 1024 | 12 | 0.282127 | 0.000013 | 0.0015 | 0.066 | 0.282097 | −0.43 | 0.47 | 1.55 | 1.87 | |
190-1_014 | 1027 | 15 | 0.282137 | 0.000009 | 0.001 | 0.047 | 0.282118 | 0.37 | 0.31 | 1.52 | 1.83 | |
190-1_016 | 1032 | 29 | 0.282109 | 0.000014 | 0.0008 | 0.044 | 0.282093 | −0.38 | 0.48 | 1.55 | 1.88 | |
190-1_079c | 1040 | 8 | 0.282153 | 0.000010 | 0.0011 | 0.052 | 0.282130 | 1.11 | 0.36 | 1.50 | 1.79 | |
190-1_036 | 1044 | 27 | 0.282096 | 0.000012 | 0.0018 | 0.090 | 0.282060 | −1.29 | 0.43 | 1.61 | 1.94 | |
190-1_060r | 1053 | 8 | 0.282167 | 0.000009 | 0.0007 | 0.032 | 0.282153 | 2.23 | 0.31 | 1.47 | 1.73 | |
190-1_022c | 1056 | 8 | 0.282108 | 0.000013 | 0.0011 | 0.054 | 0.282084 | −0.15 | 0.44 | 1.56 | 1.88 | |
190-1_021 | 1063 | 43 | 0.282141 | 0.000010 | 0.0009 | 0.043 | 0.282123 | 1.40 | 0.35 | 1.51 | 1.79 | |
190-1_090r | 1066 | 12 | 0.282107 | 0.000011 | 0.0011 | 0.061 | 0.282083 | 0.04 | 0.37 | 1.57 | 1.88 | |
190-1_017 | 1071 | 33 | 0.282141 | 0.000012 | 0.001 | 0.041 | 0.282120 | 1.47 | 0.42 | 1.51 | 1.79 | |
190-1_026 | 1323.8 Ma | 1304 | 22 | 0.282073 | 0.000009 | 0.0003 | 0.017 | 0.282065 | 4.92 | 0.33 | 1.58 | 1.76 |
190-1_007 | 1311 | 10 | 0.282152 | 0.000012 | 0.001 | 0.046 | 0.282128 | 7.32 | 0.41 | 1.50 | 1.62 | |
190-1_080 | 1311 | 8 | 0.282103 | 0.000012 | 0.0004 | 0.023 | 0.282092 | 6.07 | 0.41 | 1.54 | 1.70 | |
190-1_034.2 | 1313 | 9 | 0.28207 | 0.000011 | 0.001 | 0.049 | 0.282044 | 4.40 | 0.39 | 1.61 | 1.80 | |
190-1_009 | 1315 | 12 | 0.282059 | 0.000019 | 0.0026 | 0.104 | 0.281992 | 2.61 | 0.68 | 1.70 | 1.91 | |
190-1_066 | 1317 | 13 | 0.282155 | 0.000011 | 0.0011 | 0.053 | 0.282127 | 7.42 | 0.39 | 1.50 | 1.62 | |
190-1_002c | 1319 | 15 | 0.282086 | 0.000010 | 0.0004 | 0.021 | 0.282075 | 5.65 | 0.35 | 1.56 | 1.73 | |
190-1_030 | 1319 | 47 | 0.282064 | 0.000012 | 0.0019 | 0.112 | 0.282014 | 3.49 | 0.41 | 1.66 | 1.86 | |
190-1_027 | 1320 | 29 | 0.282072 | 0.000009 | 0.0006 | 0.026 | 0.282056 | 5.00 | 0.32 | 1.59 | 1.77 | |
190-1_008 | 1322 | 14 | 0.282031 | 0.000015 | 0.0007 | 0.032 | 0.282013 | 3.50 | 0.51 | 1.65 | 1.86 | |
190-1_013 | 1328 | 14 | 0.28213 | 0.000013 | 0.0025 | 0.108 | 0.282066 | 5.54 | 0.44 | 1.59 | 1.74 | |
190-1_043 | 1346 | 8 | 0.28207 | 0.000009 | 0.0003 | 0.013 | 0.282063 | 5.84 | 0.32 | 1.58 | 1.74 | |
190-1_013r | 1349 | 10 | 0.282122 | 0.000013 | 0.0017 | 0.072 | 0.282078 | 6.45 | 0.47 | 1.57 | 1.70 |
4.5. Major and Trace Elements Chemistry
5. Discussion
5.1. Zircon U-Pb Ages
5.2. Geochemical Affinity of Magma
5.3. Physicochemical Parameters of the Arfvedsonite Granite Magma
5.4. Petrogenetic Model
5.5. Nature of the Source Rocks
5.5.1. Evidences from Trace Elements
5.5.2. Evidence from Radiogenic Isotopes
5.6. Major and Trace Element Modeling of Fractional Crystallization
5.7. Tectonic Implications
- Zhao et al. [131] have suggested that the parental magma of the alkaline magmatism can be derived from the partial melting of the orogenic lithospheric mantle and the subducted continental crust during the exhumation stage of the syn-collisional phase of orogeny. These authors have explained the origin of late Triassic (~201 to 212 Ma old) syn-exhumation (syn-collisional) alkaline intrusives during the continental collision from the Sulu orogeny. The alkaline rocks are characterized by the arc-like patterns in primitive-mantle-normalized trace element diagrams, with relative enrichment of LILE and LREE but relative depletion of HFSE, suggesting a fertile mantle source. Enriched radiogenic Sr–Nd–Hf isotopic characteristics [radiogenic Sr and unradiogenic Nd and Hf isotopes (indicating long-term depletion Sr relative to Rb, Sm relative to Nd, and Lu relative to Hf—in comparison to primitive mantle) in the alkaline rocks indicate their derivation from an enriched mantle source.
- Jung et al. [122] have shown that alkaline rocks from the Otjimbingwe alkaline complex (Damara orogen) intruded through a large-scale shear zone. Monzodiorites to syenites and granites of the alkaline suite are interpreted to be the result of fractional crystallization and crustal assimilation of a parental alkaline magma that was derived by small degrees of partial melting from a phlogopite-bearing SCLM during a continent–continent collision. Mantle-normalized multi-element diagrams of these rocks show depletion in Nb (Ta), P, and Ti. However, these show strongly fractionated REE patterns, and enriched radiogenic Sr-Nd isotopic characteristics. These alkaline rocks display features similar to the anorogenic within-plate magmatism. The mantle melted due to the rise of SCLM to shallow depths after the rupture of the cold lithospheric plate. According to Jung et al. [122], the absence of arc rocks, blueschists, and eclogites and the occurrence of syn-collisional A-type granites in the Damara Orogen can be explained by a model of flat subduction of an oceanic plate below a continent.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liégeois, J.P.; Black, R. Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforas (Mali). Geol. Soc. Lond. Spec. Publ. 1987, 30, 381–401. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Frost, C.D.; Frost, B.R. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. J. Petrol. 2011, 52, 39–53. [Google Scholar] [CrossRef]
- Giret, A.; Bonin, B.; Leger, J.M. Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-composition. Can. Mineral. 1980, 18, 481–495. [Google Scholar]
- Harris, N.B.W.; Marriner, G.F. Geochemistry and petrogenesis of a peralkaline granite complex from the Midian Mountains, Saudi Arabia. Lithos 1980, 13, 325–337. [Google Scholar] [CrossRef]
- Bonin, B. From orogenic to anorogenic environments: Evidence from associated magmatic episodes. Schweiz. Mineral. Petrogr. Mitteilungen 1988, 68, 301–311. [Google Scholar]
- Mondal, S.; Upadhyay, D.; Banerjee, A. REE mineralization in Siwana peralkaline granite, western India-role of fractional crystallization, hydrothermal remobilization, and feldspar-fluid interaction. Lithos 2021, 396, 106240. [Google Scholar] [CrossRef]
- Eby, G.N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 1990, 26, 115–134. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Li, H.; Jahn, B.M.; Wilde, S. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem. Geol. 2002, 187, 143–173. [Google Scholar] [CrossRef]
- Cui, X.; Sun, M.; Zhao, G. Syn-orogenic A-type granites and post-collisional I-type granites in the southern Chinese Altai: Petrogenesis and implications for granite classification. Gondwana Res. 2022, 111, 20–34. [Google Scholar] [CrossRef]
- Jiang, D.S.; Erdmann, S.; Deng, G.X.; Guo, H.H.; Wu, F.; Xu, X.S.; Xu, H.; Zhao, Z.F.; Huang, F. Barium isotope evidence for the generation of peralkaline granites from a fluid-metasomatized crustal source. Chem. Geol. 2022, 614, 121197. [Google Scholar] [CrossRef]
- Clemens, J.D.; Holloway, J.R.; White, A.J.R. Origin of an A-type granite; experimental constraints. Am. Mineral. 1986, 71, 317–324. [Google Scholar]
- Jahn, B.M.; Litvinovsky, B.A.; Zanvilevich, A.N.; Reichow, M. Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: Evolution, petrogenesis and tectonic significance. Lithos 2009, 113, 521–539. [Google Scholar] [CrossRef]
- Litvinovsky, B.A.; Vapnik, Y.; Eyal, M.; Eyal, Y. The role of mantle and the ancient continental crust in the generation of post-collisional high-K calc-alkaline and alkaline granites, with main reference to the Arabian-Nubian Shield. Lithos 2021, 388, 106049. [Google Scholar] [CrossRef]
- Zhao, P.; Jahn, B.M.; Xu, B.; Liao, W.; Wang, Y. Geochemistry, geochronology and zircon Hf isotopic study of peralkaline-alkaline intrusions along the northern margin of the North China Craton and its tectonic implication for the southeastern Central Asian Orogenic Belt. Lithos 2016, 261, 92–108. [Google Scholar] [CrossRef]
- Condie, K.C.; Pisarevsky, S.A.; Puetz, S.J.; Roberts, N.M.; Spencer, C.J. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events. Earth Planet. Sci. Lett. 2023, 610, 118125. [Google Scholar] [CrossRef]
- Schmitt, A.K.; Trumbull, R.B.; Dulski, P.; Emmermann, R. Zr-Nb-REE mineralization in peralkaline granites from the Amis Complex, Brandberg (Namibia): Evidence for magmatic pre-enrichment from melt inclusions. Econ. Geol. 2002, 97, 399–413. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Z.; Santosh, M.; Zhang, D. Geochronology, geochemistry and metallogenic implications of the Boziguo’er rare metal-bearing peralkaline granitic intrusion in South Tianshan, NW China. Ore Geol. Rev. 2014, 61, 157–174. [Google Scholar] [CrossRef]
- Yang, W.B.; Niu, H.C.; Li, N.B.; Hollings, P.; Zurevinski, S.; Xing, C.M. Enrichment of REE and HFSE during the magmatic-hydrothermal evolution of the Baerzhe alkaline granite, NE China: Implications for rare metal mineralization. Lithos 2020, 358, 105411. [Google Scholar] [CrossRef]
- Su, J.H.; Zhao, X.F.; Li, X.C.; Chang, S.R.; Wu, Y.B.; Spandler, C. A linkage between early Silurian Nb-REE enriched alkaline magmatism and neoproterozoic subduction metasomatized mantle in South Qinling, Central China. Lithos 2023, 440, 107046. [Google Scholar] [CrossRef]
- Turner, S.P.; Foden, J.D.; Morrison, R.S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos 1992, 28, 151–179. [Google Scholar] [CrossRef]
- Volkert, R.A.; Feigenson, M.D.; Patino, L.C.; Delaney, J.S.; Drake, A.A., Jr. Sr and Nd isotopic compositions, age and petrogenesis of A-type granitoids of the Vernon Supersuite, New Jersey Highlands, USA. Lithos 2000, 50, 325–347. [Google Scholar] [CrossRef]
- Romano, P.; Andújar, J.; Scaillet, B.; Romengo, N.; Di Carlo, I.; Rotolo, S.G. Phase equilibria of Pantelleria trachytes (Italy): Constraints on pre-eruptive conditions and on the metaluminous to peralkaline transition in silicic magmas. J. Petrol. 2018, 59, 559–588. [Google Scholar] [CrossRef]
- Trua, T.; Deniel, C.; Mazzuoli, R. Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main Ethiopian Rift (MER): Geochemical and isotopic (Sr, Nd, Pb) evidence. Chem. Geol. 1999, 155, 201–231. [Google Scholar] [CrossRef]
- Avanzinelli, R.; Bindi, L.; Menchetti, S.; Conticelli, S. Crystallisation and genesis of peralkaline magmas from Pantelleria Volcano, Italy: An integrated petrological and crystal-chemical study. Lithos 2004, 73, 41–69. [Google Scholar] [CrossRef]
- Litvinovsky, B.A.; Tsygankov, A.A.; Jahn, B.M.; Katzir, Y.; Be’eri-Shlevin, Y. Origin and evolution of overlapping calc-alkaline and alkaline magmas: The Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia). Lithos 2011, 125, 845–874. [Google Scholar] [CrossRef]
- Tian, L.; Sun, D.; Gou, J.; Jiang, S.; Feng, Z.; Zhang, D.; Hao, Y. Petrogenesis of the Newly Discovered Early Cretaceous Peralkaline Granitic Dikes in Baerzhe Area of Jarud Banner, Inner Mongolia: Implications for Deciphering Magma Evolution. Minerals 2022, 12, 1532. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Creaser, R.A.; Price, R.C.; Wormald, R.J. A-type granites revisited: Assessment of a residual-source model. Geology 1991, 19, 163–166. [Google Scholar] [CrossRef]
- Martin, R.F. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos 2006, 91, 125–136. [Google Scholar] [CrossRef]
- Harris, C.; Dreyer, T.; le Roux, P. Petrogenesis of peralkaline granite dykes of the Straumsvola complex, western Dronning Maud Land, Antarctica. Contrib. Mineral. Petrol. 2018, 173, 8. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Bhowmik, S.K.; Roy, A. Tectonothermal evolution of the Central Indian Tectonic Zone and its implications for Proterozoic supercontinent assembly: The current status. Epis. J. Int. Geosci. 2020, 43, 32–144. [Google Scholar] [CrossRef]
- Mohanty, S.P. Structural and tectonic analyses of the Chhotanagpur Gneiss Complex of the Eastern Satpura Orogen, India: Significance for a global model. Geosyst. Geoenviron. 2023, 2, 100202. [Google Scholar] [CrossRef]
- Krishnan, M.S. Tectonics with special reference to India. Proc. Indian Acad. Sci. Sect. B 1961, 53, 49–72. [Google Scholar] [CrossRef]
- Das, A.; Bhattacharyya, C. Alkaline granitoids from the northern shear zone of Puruliya district, West Bengal. Geol. Soc. India 2007, 69, 1208–1214. [Google Scholar]
- Basak, A.; Goswami, B. The physico-chemical conditions of crystallization of the Grenvillian arfvedsonite granite of Dimra Pahar, Hazaribagh, India: Constraints on possible source regions. Mineral. Petrol. 2020, 114, 329–356. [Google Scholar] [CrossRef]
- Das, S.; Dasgupta, N.; Sanyal, S.; Sengupta, S.; Karmakar, S.; Sengupta, P. Dolomitic carbonatite from the Chotanagpur Granite Gneiss Complex: A new DARC (deformed alkaline rocks and carbonatite) in the Precambrian shield of India. Curr. Sci. 2017, 113, 1038–1040. [Google Scholar]
- Das, S.; Sinha, D.K.; Sanyal, S.; Karmakar, S.; Panigrahi, B.; Roy Choudhury, S.; Sengupta, S.; Sengupta, P. Petrogenesis of a nepheline syenite from parts of the Chotanagpur Granite Gneissic Complex: Implications for Neoproterozoic crustal extension in the East Indian Shield. Geol. Mag. 2022, 159, 1295–1322. [Google Scholar] [CrossRef]
- Mazumdar, S.K. Crustal evolution of Chhotanagpur gneissic complex and the mica belt of Bihar. Mem. Geol. Soc. India 1988, 8, 49–83. [Google Scholar]
- Naganjaneyulu, K.; Santosh, M. The Central India Tectonic Zone: A geophysical perspective on continental amalgamation along a Mesoproterozoic suture. Gondwana Res. 2010, 18, 547–564. [Google Scholar] [CrossRef]
- Bhowmik, S.K.; Wilde, S.A.; Bhandari, A.; Pal, T.; Pant, N.C. Growth of the Greater Indian Landmass and its assembly in Rodinia: Geochronological evidence from the Central Indian Tectonic Zone. Gondwana Res. 2012, 22, 54–72. [Google Scholar] [CrossRef]
- Goswami, B.; Bhattacharyya, C. Tectonothermal evolution of Chhotanagpur granite gneiss complex from northeastern part of Puruliya district, West Bengal, eastern India. Indian J. Geol. 2010, 80, 41–54. [Google Scholar]
- Chatterjee, N.; Crowley, J.L.; Ghose, N.C. Geochronology of the 1.55 Ga Bengal anorthosite and Grenvillian metamorphism in the Chotanagpur gneissic complex, eastern India. Precambrian Res. 2008, 161, 303–316. [Google Scholar] [CrossRef]
- Goswami, B.; Bhattacharyya, C. Metamorphism of nepheline syenite gneisses from Chhotanagpur Granite Gneiss Complex, northeastern Puruliya district, eastern India. J. Geol. Soc. India 2008, 71, 209–213. [Google Scholar]
- Kumar, D.; Rao, N.C.; Tripathi, A.; Belyatsky, B.; Prabhat, P.; Rahaman, W.; Satyanarayanan, M. U-Pb Neoproterozoic age and petrogenesis of a calc-alkaline shoshonitic lamprophyre from Simdega area, Chhotanagpur Gneissic Complex (Eastern India): Implication for the evolution of the Central Indian Tectonic Zone and Rodinia tectonics. Chem. Geol. 2023, 631, 121512. [Google Scholar] [CrossRef]
- Chatterjee, N.; Banerjee, M.; Bhattacharya, A.; Maji, A.K. Monazite chronology, metamorphism–anatexis and tectonic relevance of the mid-Neoproterozoic Eastern Indian Tectonic Zone. Precambrian Res. 2010, 179, 99–120. [Google Scholar] [CrossRef]
- Das, S.; Goswami, B.; Basak, A.; Bhattacharyya, C. A Grenvillian magmatic almandine garnet-bearing ferroan granite intrusion in the Chhotanagpur Gneissic complex, Eastern India: Petrology, petrochemistry, petrogenesis and geodynamic implications. Lithos 2020, 376, 105749. [Google Scholar] [CrossRef]
- Song, S.; Wang, M.; Wang, C.; Niu, Y. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective. Sci. China Earth Sci. 2015, 58, 1284–1304. [Google Scholar] [CrossRef]
- Mondal, R.; Ray, A.; Mouli Chakraborti, T.; Kimura, K. Petrology, geochemistry and U–Pb zircon geochronology of Fe–Ti oxide ore-bearing mafic sill from Saltora-Mejia area of Chotanagpur Granite Gneissic Complex, eastern India: Implication for late tectonic emplacement of mafic rock of E-MORB nature in an orogenic belt. Geol. J. 2024, 59, 201–224. [Google Scholar]
- Satyanarayanan, M.; Balaram, V.; Sawant, S.S.; Subramanyam, K.S.V.; Krishna, G.V.; Dasaram, B.; Manikyamba, C. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry. At. Spectrosc. 2018, 39, 1–15. [Google Scholar] [CrossRef]
- Elhlou, S.; Belousova, E.; Griffin, W.L.; Pearson, N.J.; O’Reilly, S.Y. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim. Cosmochim. Acta 2006, 70, 158. [Google Scholar] [CrossRef]
- Wiedenbeck, M.A.P.C.; Alle, P.; Corfu, F.Y.; Griffin, W.L.; Meier, M.; Oberli, F.V.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Black, L.P.; Gulson, B.L. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR J. Aust. Geol. Geophys. 1978, 3, 227–232. [Google Scholar]
- Gain, S.E.; Gréau, Y.; Henry, H.; Belousova, E.; Dainis, I.; Griffin, W.L.; O’Reilly, S.Y. Mud Tank Zircon: Long-term evaluation of a reference material for U-Pb dating, Hf-isotope analysis and trace element analysis. Geostand. Geoanal. Res. 2019, 43, 339–354. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Griffin, W.L.; Powell, W.J.; Pearson, N.J.; O’Reilly, S.Y. GLITTER: Data reduction software for laser ablation ICP-MS. In Laser Ablation-ICP-MS in the Earth Sciences. Mineralogical Association of Canada Short Course Series; Sylvester, P., Ed.; Mineralogical Association of Canada: Quebec, QC, Canada, 2008; Volume 40, pp. 204–207. [Google Scholar]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Stacey, J.T.; Kramers, L. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Scherer, E.; Munker, C.; Mezger, K. Calibration of the lutetium-hafnium clock. Science 2001, 293, 683–687. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Patchett, P.J.; Tatsumoto, M. Hafnium isotope variations in oceanic basalts. Geophys. Res. Lett. 1980, 7, 1077–1080. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan Igneous Complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Vervoort, J.D.; Blichert-Toft, J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 1999, 63, 533–556. [Google Scholar] [CrossRef]
- Middlemost, E.A. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 35–643. [Google Scholar] [CrossRef]
- Turner, S.; Arnaud, N.; Liu, J.; Rogers, N.; Hawkesworth, C.; Harris, N.; Kelley, S.V.; Van Calsteren, P.; Deng, W. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J. Petrol. 1996, 37, 45–71. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Upper Cretaceous volcanic rocks from the Pontic chain, northern Turkey. Bull. Volcanol. 1975, 39, 557–569. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. In Developments in Geochemistry; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, pp. 63–114. [Google Scholar]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Smithies, R.H.; Spaggiari, C.V.; Kirkland, C.L.; Wingate, M.T.D.; England, R.N. Madura Province: Geochemistry and petrogenesis. In Eucla Basement Stratigraphic Drilling Results Release Workshop: Extended Abstracts: Geological Survey of Western Australia Record; Spaggiari, C.V., Smithies, R.H., Compilers, Eds.; Geological Survey of Western Australia: Perth, Australia, 2015; Volume 10, pp. 17–28. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust. Treatise on Geochemistry; Rudnick, R.L., Ed.; Elsevier-Pergamon: Oxford, UK, 2003; pp. 1–64. [Google Scholar]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon saturation re-revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- Dall’Agnol, R.; de Oliveira, D.C. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos 2007, 93, 215–233. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R.; Ottolini, L.; Foord, E.E. Lithium-bearing fluor-arfvedsonite from Hurricane Mountain, New Hampshire; a crystal-chemical study. Can. Mineral. 1996, 34, 1015–1019. [Google Scholar]
- Marks, M.A.; Rudnick, R.L.; McCammon, C.; Vennemann, T.; Markl, G. Arrested kinetic Li isotope fractionation at the margin of the Ilímaussaq complex, South Greenland: Evidence for open-system processes during final cooling of peralkaline igneous rocks. Chem. Geol. 2007, 246, 207–230. [Google Scholar] [CrossRef]
- Larsen, L.M. Clinopyroxenes and coexisting mafic minerals from the alkaline Ilimaussaq intrusion, South Greenland. J. Petrol. 1976, 17, 258–290. [Google Scholar] [CrossRef]
- Jones, A.P.; Peckett, A. Zirconium-bearing aegirines from Motzfeldt, south Greenland. Contrib. Mineral. Petrol. 1981, 75, 251–255. [Google Scholar] [CrossRef]
- Romano, P.; Di Carlo, I.; Andújar, J.; Rotolo, S.G. Water solubility in trachytic and pantelleritic melts: An experimental study. Comptes Rendus Géosci. 2021, 353, 1–17. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Z.; Kusky, T.; Santosh, M.; Zhang, S.; Zhang, D.; Liu, J.; Zhao, Z. Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism. Lithos 2012, 155, 49–66. [Google Scholar] [CrossRef]
- Kerr, A.; Fryer, B.J. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chem. Geol. 1993, 104, 39–60. [Google Scholar] [CrossRef]
- Jakobsen, J.K.; Veksler, I.V.; Tegner, C.; Brooks, C.K. Immiscible iron-and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology 2005, 33, 885–888. [Google Scholar] [CrossRef]
- Zhou, M.F.; Chen, W.T.; Wang, C.Y.; Prevec, S.A.; Liu, P.P.; Howarth, G.H. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China. Geosci. Front. 2013, 4, 481–502. [Google Scholar] [CrossRef]
- Van Tongeren, J.A.; Mathez, E.A. Large-scale liquid immiscibility at the top of the Bushveld Complex, South Africa. Geology 2012, 40, 491–494. [Google Scholar] [CrossRef]
- Han, B.F.; Wang, S.G.; Jahn, B.M.; Hong, D.W.; Kagami, H.; Sun, Y.L. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd–Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chem. Geol. 1997, 138, 135–159. [Google Scholar] [CrossRef]
- Chen, B.; Arakawa, Y. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar fold belt (NW China), with implications for Phanerozoic continental growth. Geochim. Cosmochim. Acta 2005, 69, 1307–1320. [Google Scholar] [CrossRef]
- Lubala, R.T.; Frick, C.; Rogers, J.H.; Walraven, F. Petrogenesis of syenites and granites of the Schiel Alkaline complex, Northern Transvaal, South Africa. J. Geol. 1994, 102, 307–316. [Google Scholar] [CrossRef]
- Shu, X.J.; Jiang, W.; Wang, D.; Cheng, C.; Wang, H.Z. Origin and implication of two newly identified peraluminous A-type granites in the early Paleozoic orogeny, Southeast Asia. Front. Earth Sci. 2023, 11, 1137157. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A.; Xie, L.W.; Yang, Y.H.; Liu, X.M. Tracing magma mixing in granite genesis: In situ U–Pb dating and Hf-isotope analysis of zircons. Contrib. Mineral. Petrol. 2007, 153, 177–190. [Google Scholar] [CrossRef]
- Zhou, M.F.; Robinson, P.T.; Lesher, C.M.; Keays, R.R.; Zhang, C.J.; Malpas, J. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V oxide deposits, Sichuan Province, SW China. J. Petrol. 2005, 46, 2253–2280. [Google Scholar] [CrossRef]
- Liu, P.P.; Zhou, M.F.; Ren, Z.; Wang, C.Y.; Wang, K. Immiscible Fe-and Si-rich silicate melts in plagioclase from the Baima mafic intrusion (SW China): Implications for the origin of bi-modal igneous suites in large igneous provinces. J. Asian Earth Sci. 2016, 127, 211–230. [Google Scholar] [CrossRef]
- Litvinovsky, B.A.; Jahn, B.M.; Eyal, M. Mantle-derived sources of syenites from the A-type igneous suites—New approach to the provenance of alkaline silicic magmas. Lithos 2015, 232, 242–265. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Zhou, M.F. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume. Chem. Geol. 2007, 243, 286–316. [Google Scholar] [CrossRef]
- Green, T.H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol. 1995, 120, 347–359. [Google Scholar] [CrossRef]
- Zhong, S.; Li, S.; Seltmann, R.; Lai, Z.; Zhou, J. The influence of fractionation of REE-enriched minerals on the zircon partition coefficients. Geosci. Front. 2021, 12, 101094. [Google Scholar] [CrossRef]
- Schiano, P.; Monzier, M.; Eissen, J.P.; Martin, H.; Koga, K.T. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib. Mineral. Petrol. 2010, 160, 297–312. [Google Scholar] [CrossRef]
- Winter, J.D. An Introduction to Igneous and Metamorphic Petrology, 1st ed.; Prentice-Hall Inc.: Saddle River, NJ, USA, 2001; pp. 1–697. [Google Scholar]
- Pfänder, J.A.; Jung, S.; Münker, C.; Stracke, A.; Mezger, K. A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget–Evidence from continental basalts from Central Germany. Geochim. Cosmochim. Acta 2012, 77, 232–251. [Google Scholar] [CrossRef]
- Niu, Y.; Collerson, K.D.; Batiza, R.; Wendt, J.I.; Regelous, M. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11 20′ N. J. Geophys. Res. Solid Earth 1999, 104, 7067–7087. [Google Scholar] [CrossRef]
- Jones, A.P.; Smith, J.V.; Dawson, J.B. Mantle metasomatism in 14 veined peridotites from Bultfontein Mine, South Africa. J. Geol. 1982, 90, 435–453. [Google Scholar] [CrossRef]
- Kalfoun, F.; Ionov, D.; Merlet, C. HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth Planet. Sci. Lett. 2002, 199, 49–65. [Google Scholar] [CrossRef]
- Choukroun, M.; O’Reilly, S.Y.; Griffin, W.L.; Pearson, N.J.; Dawson, J.B. Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle. Geology 2005, 33, 45–48. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.F.M.; Nassar, P.E. Cenozoic volcanism in the Middle East: Petrogenesis of alkali basalts from northern Lebanon. Geol. Mag. 2004, 141, 545–563. [Google Scholar] [CrossRef]
- Thirlwall, M.F.; Burnard, P. Pb-Sr-Nd isotope and chemical study of the origin of undersaturated and oversaturated shoshonitic magmas from the Borralan pluton, Assynt, NW Scotland. J. Geol. Soc. 1990, 147, 259–269. [Google Scholar] [CrossRef]
- Li, X.H.; Chen, Z.; Liu, D.; Li, W.X. Jurassic gabbro-granite-syenite suites from Southern Jiangxi Province, SE China: Age, origin, and tectonic significance. Int. Geol. Rev. 2003, 45, 898–921. [Google Scholar] [CrossRef]
- Irving, A.J.; Frey, F.A. Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochim. Cosmochim. Acta 1978, 42, 771–787. [Google Scholar] [CrossRef]
- Wang, K.; Plank, T.; Walker, J.D.; Smith, E.I. A mantle melting profile across the Basin and Range, SW USA. J. Geophys. Res. Solid Earth 2002, 107, ECV-5. [Google Scholar] [CrossRef]
- Xu, Y.G. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 747–757. [Google Scholar] [CrossRef]
- Foley, S.F.; Ezad, I.S.; van der Laan, S.R.; Pertermann, M. Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 1. Melting relations and major element compositions of melts. Geosci. Front. 2022, 13, 101380. [Google Scholar] [CrossRef]
- Wilson, M. Igneous Petrogenesis; Chapman and Hall: New York, NY, USA, 1989. [Google Scholar]
- Rudnick, R.L.; McDonough, W.F.; Chappell, B.W. Carbonatite metasomatism in the northern Tanzanian mantle: Petrographic and geochemical characteristics. Earth Planet. Sci. Lett. 1993, 114, 463–475. [Google Scholar] [CrossRef]
- Dawson, J.B.; Smith, J.V. The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochim. Cosmochim. Acta 1977, 41, 309–323. [Google Scholar] [CrossRef]
- Grégoire, M.; Bell, D.; Le Roex, A. Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: Their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib. Mineral. Petrol. 2002, 142, 603–625. [Google Scholar] [CrossRef]
- Goswami, B.; Das, S.; Basak, A.; Bhattacharyya, C. Discovery of Early Tonian Calc-alkaline and Shoshonitic Metamafic Rocks from the North Purulia Shear Zone, Chhotanagpur Gneissic Complex, Eastern India: Implications of Proterozoic Sub-continental Lithospheric Mantle. Acta Geol. Sin. Engl. Ed. 2023, 97, 68–89. [Google Scholar] [CrossRef]
- Cabero, M.T.; Mecoleta, S.; López-Moro, F.J. OPTIMASBA: A Microsoft Excel workbook to optimise the mass-balance modelling applied to magmatic differentiation processes and subsolidus overprints. Comput. Geosci. 2012, 42, 206–211. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Deady, E.A.; Beard, C.D.; Broom-Fendley, S.; Elliott, H.A.; van den Berg, F.; Öztürk, H. Carbonatites and alkaline igneous rocks in post-collisional settings: Storehouses of rare earth elements. J. Earth Sci. 2021, 32, 1332–1358. [Google Scholar] [CrossRef]
- Jung, S.; Hauff, F.; Berndt, J. Generation of a potassic to ultrapotassic alkaline complex in a syn-collisional setting through flat subduction: Constraints on magma sources and processes (Otjimbingwe alkaline complex, Damara orogen, Namibia). Gondwana Res. 2020, 82, 267–287. [Google Scholar] [CrossRef]
- Liegeois, J.P.; Navez, J.; Hertogen, J.; Black, R. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 1998, 45, 1–28. [Google Scholar]
- Chakraborty, K.; Ray, A.; Chatterjee, A.; Deb, G.K.; Das, K. Neoproterozoic granitic activity in syn-collisional setting: Insight from petrology, geochemistry, and zircon–monazite geochronology of S-type granites of the Chotanagpur Granite Gneissic Complex, eastern India. Geol. J. 2019, 54, 3112–3147. [Google Scholar] [CrossRef]
- Gibson, S.A.; Thompson, R.N.; Weska, R.K.; Dickin, A.P.; Leonardos, O.H. Late-Cretaceoaus rift-related upwelling and melting of the Trinidade starting mantle plume head beneath western Brazil. Contrib. Mineral. Petrol. 1997, 126, 303–314. [Google Scholar] [CrossRef]
- Gîrbacea, R.; Frisch, W. Slab in the wrong place: Lower lithospheric mantle delamination in the last stage of the Eastern Carpathian subduction retreat. Geology 1998, 26, 611–614. [Google Scholar] [CrossRef]
- Gibson, S.A.; Thompson, R.N.; Leat, P.T.; Morrison, M.A.; Hendry, G.L.; Dickin, A.P.; Mitchell, J.G. Ultrapotassic magmas along the flanks of the Oligo–Miocene Rio Grande rift, USA:monitors of the zone of lithospheric mantle extension and thinning beneath a continental rift. J. Petrol. 1993, 34, 187–228. [Google Scholar] [CrossRef]
- Fossen, H.; Tikoff, B. Extended models of transpression and transtension, and application to tectonic settings. Continental Transpressional and Transtensional Tectonics. Geol. Soc. Spec. Publ. 1998, 135, 15–33. [Google Scholar] [CrossRef]
- Vaughan, A.P.M. A tectonomagmatic model for the genesis and emplacement of Caledonian calc-alkaline lamprophyres. J. Geol. Soc. Lond. 1996, 153, 613–623. [Google Scholar] [CrossRef]
- Goswami, B.; Bhattacharyya, C. Petrogenesis of shoshonitic granitoids, eastern India: Implications for the late Grenvillian post-collisional magmatism. Geosci. Front. 2014, 5, 821–843. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Zheng, Y.F.; Zhang, J.; Dai, L.Q.; Li, Q.; Liu, X. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem. Geol. 2012, 328, 70–88. [Google Scholar] [CrossRef]
Analysis No. | Th (ppm) | U (ppm) | Th/U | R A T I O S (Common-Pb Corrected) | DATES (Common-Pb Corrected, Ma) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | ±1s | 207Pb/235U | ±1s | 206Pb/238U | ±1s | 207Pb/206Pb | ±1s | 207Pb/235U | ±1s | 206Pb/238U | ±1s | Disc. | Correction Type | |||||
% | ||||||||||||||||||
190-1_029 | 27 | 34 | 0.79 | 0.071 | 0.007 | 1.563 | 0.150 | 0.160 | 0.006 | 956 | 213 | 955 | 59 | 956 | 32 | 0 | None | |
190-1_015 | 38 | 214 | 0.18 | 0.077 | 0.004 | 1.712 | 0.083 | 0.162 | 0.002 | 1109 | 104 | 1013 | 31 | 969 | 14 | 13.6 | Disc | |
190-1_040 | 73 | 1006 | 0.07 | 0.074 | 0.009 | 1.672 | 0.191 | 0.164 | 0.007 | 1035 | 255 | 998 | 73 | 981 | 37 | 5.6 | None | |
190-1_079r | 106 | 1198 | 0.09 | 0.072 | 0.001 | 1.639 | 0.016 | 0.165 | 0.001 | 988 | 20 | 985 | 6 | 984 | 6 | 0.5 | None | |
190-1_039 | 27 | 727 | 0.04 | 0.073 | 0.008 | 1.679 | 0.172 | 0.167 | 0.006 | 1015 | 229 | 1001 | 65 | 995 | 34 | 2.2 | None | |
190-1_022 | 142 | 1353 | 0.10 | 0.072 | 0.003 | 1.658 | 0.070 | 0.167 | 0.003 | 981 | 91 | 992 | 27 | 997 | 15 | −1.8 | None | |
190-1_085r | 101 | 889 | 0.11 | 0.073 | 0.001 | 1.676 | 0.027 | 0.167 | 0.001 | 1004 | 35 | 1000 | 10 | 998 | 7 | 0.8 | None | |
190-1_035 | 203 | 344 | 0.59 | 0.073 | 0.006 | 1.689 | 0.124 | 0.168 | 0.004 | 1016 | 160 | 1004 | 47 | 999 | 25 | 1.8 | None | |
190-1_031 | 42 | 42 | 1.01 | 0.074 | 0.005 | 1.710 | 0.111 | 0.168 | 0.004 | 1032 | 140 | 1012 | 41 | 1003 | 22 | 3.1 | None | |
190-1_028 | 120 | 880 | 0.14 | 0.072 | 0.008 | 1.685 | 0.179 | 0.169 | 0.006 | 999 | 237 | 1003 | 68 | 1005 | 35 | −0.7 | None | |
190-1_014c | 221 | 2045 | 0.11 | 0.073 | 0.001 | 1.695 | 0.025 | 0.169 | 0.001 | 1004 | 32 | 1007 | 9 | 1008 | 7 | −0.4 | None | |
190-1_034 | 15 | 314 | 0.05 | 0.072 | 0.005 | 1.682 | 0.115 | 0.169 | 0.004 | 988 | 149 | 1002 | 43 | 1008 | 23 | −2.3 | None | |
190-1_005 | 37 | 219 | 0.17 | 0.074 | 0.002 | 1.742 | 0.048 | 0.170 | 0.002 | 1054 | 60 | 1024 | 18 | 1011 | 11 | 4.5 | None | |
190-1_040pit | 2825 | 2380 | 1.19 | 0.074 | 0.018 | 1.724 | 0.407 | 0.170 | 0.016 | 1030 | 541 | 1017 | 152 | 1012 | 85 | 1.9 | None | |
190-1_006 | 213 | 1482 | 0.14 | 0.073 | 0.002 | 1.724 | 0.053 | 0.172 | 0.002 | 1003 | 66 | 1018 | 20 | 1024 | 12 | −2.3 | None | |
190-1_014 | 193 | 1542 | 0.13 | 0.073 | 0.003 | 1.741 | 0.072 | 0.173 | 0.003 | 1018 | 89 | 1024 | 27 | 1027 | 15 | −0.9 | None | |
190-1_016 | 21 | 35 | 0.61 | 0.071 | 0.006 | 1.694 | 0.137 | 0.174 | 0.005 | 950 | 181 | 1006 | 52 | 1032 | 29 | −9.4 | None | |
190-1_079c | 94 | 1058 | 0.09 | 0.075 | 0.001 | 1.785 | 0.030 | 0.175 | 0.001 | 1069 | 36 | 1040 | 11 | 1040 | 8 | 4.4 | None | |
190-1_036 | 215 | 543 | 0.40 | 0.078 | 0.006 | 1.897 | 0.148 | 0.176 | 0.005 | 1156 | 166 | 1080 | 52 | 1044 | 27 | 10.5 | None | |
190-1_060r | 85 | 634 | 0.13 | 0.074 | 0.001 | 1.796 | 0.028 | 0.177 | 0.001 | 1055 | 34 | 1044 | 10 | 1053 | 8 | 1.6 | None | |
190-1_022c | 57 | 407 | 0.14 | 0.074 | 0.002 | 1.817 | 0.036 | 0.178 | 0.001 | 1043 | 45 | 1051 | 13 | 1056 | 8 | −1.3 | Disc | |
190-1_021 | 72 | 597 | 0.12 | 0.078 | 0.010 | 1.924 | 0.223 | 0.179 | 0.008 | 1144 | 262 | 1089 | 77 | 1063 | 43 | 7.8 | None | |
190-1_090r | 1202 | 969 | 1.24 | 0.075 | 0.002 | 1.864 | 0.053 | 0.180 | 0.002 | 1074 | 61 | 1068 | 19 | 1066 | 12 | 0.8 | None | |
190-1_017 | 50 | 693 | 0.07 | 0.076 | 0.007 | 1.884 | 0.171 | 0.181 | 0.006 | 1087 | 200 | 1076 | 60 | 1071 | 33 | 1.8 | None | |
190-1_026 | 482 | 672 | 0.72 | 0.098 | 0.010 | 3.036 | 0.310 | 0.224 | 0.004 | 1591 | 202 | 1417 | 78 | 1304 | 22 | 19.9 | Disc | |
190-1_007 | 598 | 773 | 0.77 | 0.086 | 0.002 | 2.677 | 0.047 | 0.225 | 0.002 | 1341 | 36 | 1322 | 13 | 1311 | 10 | 2.5 | None | |
190-1_080 | 355 | 675 | 0.53 | 0.085 | 0.001 | 2.639 | 0.028 | 0.225 | 0.001 | 1313 | 22 | 1312 | 8 | 1311 | 8 | 0.2 | None | |
190-1_034.2 | 471 | 603 | 0.78 | 0.085 | 0.001 | 2.650 | 0.040 | 0.226 | 0.002 | 1318 | 31 | 1315 | 11 | 1313 | 9 | 0.4 | None | |
190-1_009 | 181 | 729 | 0.25 | 0.085 | 0.002 | 2.662 | 0.067 | 0.226 | 0.002 | 1322 | 52 | 1318 | 19 | 1315 | 12 | 0.6 | None | |
190-1_066 | 138 | 385 | 0.36 | 0.086 | 0.002 | 2.679 | 0.065 | 0.227 | 0.002 | 1333 | 51 | 1323 | 18 | 1317 | 13 | 1.4 | None | |
190-1_002c | 855 | 694 | 1.23 | 0.085 | 0.003 | 2.672 | 0.082 | 0.227 | 0.003 | 1324 | 64 | 1321 | 23 | 1319 | 15 | 0.5 | None | |
190-1_030 | 407 | 772 | 0.53 | 0.085 | 0.010 | 2.672 | 0.299 | 0.227 | 0.009 | 1326 | 239 | 1321 | 83 | 1319 | 47 | 0.7 | None | |
190-1_027 | 623 | 1067 | 0.58 | 0.086 | 0.006 | 2.687 | 0.179 | 0.227 | 0.006 | 1332 | 138 | 1325 | 49 | 1320 | 29 | 1 | None | |
190-1_008 | 1381 | 432 | 3.19 | 0.086 | 0.003 | 2.705 | 0.077 | 0.228 | 0.003 | 1344 | 59 | 1330 | 21 | 1322 | 14 | 1.8 | None | |
190-1_013 | 425 | 720 | 0.59 | 0.085 | 0.003 | 2.694 | 0.081 | 0.229 | 0.003 | 1325 | 62 | 1327 | 22 | 1328 | 14 | −0.3 | None | |
190-1_043 | 319 | 970 | 0.33 | 0.087 | 0.001 | 2.769 | 0.034 | 0.232 | 0.002 | 1349 | 25 | 1347 | 9 | 1346 | 8 | 0.3 | None | |
190-1_013r | 91 | 192 | 0.47 | 0.086 | 0.001 | 2.769 | 0.043 | 0.233 | 0.002 | 1345 | 32 | 1347 | 12 | 1349 | 10 | −0.4 | None |
Sample | DPAG 731A | DPAG 727A | DPAG 728A | DPAG 735 | DPAG 735E | DPAG 736C | DPAG 1 | DPAG 10 | DPAG 735C | DPAG 736 D | DPAG 727 | DPAG 730A | DPAG 732C | DPAG 12 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 70.92 | 74.75 | 74.36 | 77.03 | 77 | 74.71 | 76.7 | 78.63 | 73.64 | 73.76 | 74.21 | 74.05 | 74.54 | 76.7 | 75.07 |
TiO2 | 0.28 | 0.29 | 0.29 | 0.27 | 0.29 | 0.25 | 0.23 | 0.19 | 0.28 | 0.25 | 0.24 | 0.24 | 0.24 | 0.2 | 0.25 |
Al2O3 | 11.82 | 10.75 | 11.61 | 11.36 | 11.69 | 10.73 | 11.64 | 11.63 | 11.77 | 11.31 | 11.53 | 12.03 | 11.11 | 11.68 | 11.48 |
Fe2O3T | 5.05 | 3.56 | 3.82 | 2.69 | 2.48 | 3.53 | 3.65 | 3.1 | 3.64 | 4.85 | 3.84 | 3.66 | 4.84 | 3.24 | 3.71 |
MnO | 0.05 | 0.04 | 0.04 | 0 | 0.01 | 0.03 | 0.05 | 0.04 | 0.04 | 0.05 | 0.05 | 0.04 | 0.02 | 0.04 | 0.04 |
MgO | 0.2 | 0.05 | 0.07 | 0.01 | 0.02 | 0.02 | 0 | 0 | 0.57 | 0.53 | 0.54 | 0.52 | 0.53 | 0 | 0.22 |
CaO | 0.11 | 0.37 | 0.14 | 0.06 | 0.08 | 0.07 | 0.27 | 0.06 | 0.08 | 0.04 | 0.32 | 0.08 | 0.04 | 0.42 | 0.15 |
Na2O | 4.31 | 4.15 | 3.82 | 3.54 | 3.46 | 4.06 | 4.18 | 3.99 | 4.52 | 4.06 | 4.21 | 4.13 | 3.32 | 4.02 | 3.98 |
K2O | 5.56 | 4.67 | 4.69 | 4.61 | 4.71 | 4.74 | 4.78 | 4.77 | 4.73 | 4.64 | 4.73 | 4.83 | 4.68 | 4.89 | 4.79 |
P2O5 | 0.03 | 0.02 | 0.03 | 0.03 | 0.04 | 0.02 | 0 | 0 | 0.01 | 0.03 | 0.01 | 0.03 | 0.02 | 0 | 0.02 |
LOI | 1.17 | 0.46 | 0.68 | 0.64 | 0.71 | 1.02 | 0 | 0 | 0.6 | 0.64 | 0.47 | 0.55 | 2.02 | 0 | 0.64 |
Total | 99.5 | 99.11 | 99.55 | 100.24 | 100.49 | 99.18 | 101.5 | 102.41 | 99.88 | 100.16 | 100.15 | 100.16 | 101.36 | 101.19 | 100.35 |
Na2O + K2O | 9.87 | 8.82 | 8.51 | 8.15 | 8.17 | 8.8 | 8.96 | 8.76 | 9.25 | 8.7 | 8.94 | 8.96 | 8 | 8.91 | 8.77 |
Sc | 1.76 | 1.87 | 1.66 | 2.1 | 1.21 | 2.02 | 2.11 | 1.28 | 1.75 | ||||||
V | 7.11 | 6.63 | 5.13 | 8.31 | 7.95 | 1.35 | 5.15 | 3.03 | 0.6 | 5.03 | |||||
Cr | 11.28 | 8.78 | 7.32 | 9.36 | 12.16 | 4.61 | 7.38 | 7.37 | 1.1 | 7.71 | |||||
Ni | 6.1 | 4.26 | 4.1 | 4.85 | 4.28 | 4.39 | 6.18 | 6.67 | 5.10 | ||||||
Ga | 27.76 | 31.48 | 21.21 | 38.46 | 29.82 | 29.3 | 45.26 | 43.25 | 32.8 | 33.26 | |||||
Rb | 188.04 | 201.21 | 139.28 | 323.9 | 167.8 | 220.89 | 256.4 | 216.1 | 232 | 227 | 246 | 272 | 279 | 316 | 234.69 |
Sr | 162.99 | 11 | 13.52 | 12.94 | 10.9 | 8.47 | 14.56 | 7.71 | 12 | 11 | 17 | 13 | 15 | 23.85 | |
Y | 5.57 | 76.79 | 15.32 | 8.19 | 12.14 | 11.08 | 103.1 | 48.21 | 66 | 65 | 51 | 45 | 55 | 60 | 44.46 |
Zr | 914.14 | 761.48 | 478.87 | 893.18 | 562.56 | 630.6 | 1360 | 876.48 | 741 | 623 | 543 | 773 | 2011 | 996.46 | 868.94 |
Nb | 43.04 | 81.04 | 42.83 | 69.33 | 40.36 | 75.48 | 127 | 44.58 | 123 | 108 | 109 | 142 | 192 | 68.9 | 90.47 |
Cs | 2.08 | 2.58 | 1.75 | 2.13 | 10.77 | 3.47 | 2.87 | 1.81 | 3.43 | ||||||
Ba | 62.61 | 21.27 | 29.42 | 40.21 | 24.53 | 18.85 | 128.9 | 108.24 | 17.9 | 50.22 | |||||
La | 19.85 | 77.33 | 23.19 | 26.2 | 17.98 | 9.36 | 106.2 | 74.59 | 44.34 | ||||||
Ce | 41.28 | 177.45 | 55.77 | 60.43 | 42.17 | 22.73 | 246 | 181.2 | 210 | 115.22 | |||||
Pr | 4.67 | 23.09 | 7.68 | 7.92 | 5.64 | 3.16 | 32.37 | 25.24 | 13.72 | ||||||
Nd | 14.52 | 81.82 | 27.62 | 27.34 | 19.35 | 11.79 | 112.8 | 91.45 | 48.34 | ||||||
Sm | 2.86 | 17.1 | 6.21 | 5.26 | 4.05 | 3.19 | 24 | 18.49 | 10.15 | ||||||
Eu | 0.13 | 0.69 | 0.27 | 0.21 | 0.17 | 0.15 | 0.87 | 0.64 | 0.39 | ||||||
Gd | 1.61 | 12.75 | 4.27 | 3.12 | 2.76 | 2.46 | 16.3 | 12.22 | 6.94 | ||||||
Tb | 0.3 | 2.38 | 0.85 | 0.52 | 0.55 | 0.63 | 3.18 | 2.17 | 1.32 | ||||||
Dy | 1.51 | 11.41 | 4.12 | 2.36 | 2.7 | 3.45 | 15.85 | 9.82 | 6.40 | ||||||
Ho | 0.32 | 2.25 | 0.82 | 0.53 | 0.57 | 0.73 | 2.71 | 1.5 | 1.18 | ||||||
Er | 0.83 | 5.33 | 1.95 | 1.49 | 1.47 | 1.87 | 7.92 | 4.15 | 3.13 | ||||||
Tm | 0.17 | 0.79 | 0.32 | 0.26 | 0.26 | 0.33 | 1.23 | 0.64 | 0.50 | ||||||
Yb | 1.38 | 5.27 | 2.51 | 1.96 | 1.95 | 2.61 | 8.36 | 4.71 | 8.3 | 4.12 | |||||
Lu | 0.22 | 0.85 | 0.47 | 0.31 | 0.33 | 0.51 | 1.36 | 0.82 | 0.61 | ||||||
Hf | 18.61 | 16.84 | 10.71 | 20.53 | 11.28 | 13.46 | 31.05 | 18.35 | 20 | 17.87 | |||||
Ta | 2.23 | 5.76 | 2.5 | 4.81 | 2.65 | 4.42 | 8.47 | 3.32 | 1.5 | 3.96 | |||||
Pb | 30.83 | 13.99 | 22.18 | 17.02 | 25.19 | 17.06 | 13.46 | 9.08 | 3.8 | 16.96 | |||||
Th | 12.63 | 11.81 | 10.17 | 15.58 | 9.56 | 10.68 | 32.15 | 14.16 | 15.5 | 14.69 | |||||
U | 3.81 | 5.9 | 2.68 | 2.53 | 3.43 | 4.54 | 5.23 | 2.58 | 4.2 | 3.88 | |||||
10,000 Ga/Al | 1.24 | 1.55 | 0.97 | 1.79 | 1.35 | 1.45 | 2.06 | 1.97 | 1.49 | 1.54 | |||||
Ce + Zr + Nb + Y | 1004.03 | 1096.8 | 592.79 | 1031.13 | 657.23 | 739.89 | 1836 | 1150.5 | 1335 | 1049.34 | |||||
Nb/Y | 7.73 | 1.06 | 2.80 | 8.47 | 3.32 | 6.81 | 1.23 | 0.92 | 1.86 | 1.66 | 2.14 | 3.16 | 3.49 | 1.15 | 3.27 |
Nb/Ta | 19.30 | 14.07 | 17.13 | 14.41 | 15.23 | 17.08 | 14.99 | 13.43 | 45.93 | 19.06 | |||||
Th/Ta | 5.66 | 2.05 | 4.07 | 3.24 | 3.61 | 2.42 | 3.80 | 4.27 | 10.33 | 4.38 | |||||
Zircon saturation temperature (°C) | 888.6 | 923.2 | 910.3 | 1070.5 | 918.6 | 960.5 | 968.2 | 918.3 | 905.9 | 999 | 936.5 | 938 | 889.5 | 956.8 | 941.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goswami, B.; Basak, A.; Gréau, Y.; Bhattacharyya, C. Petrogenesis of Late Stenian Syn-Orogenic A-Type Granites in the Chhotanagpur Gneissic Complex and Eastern Indian Shield. Minerals 2024, 14, 1153. https://doi.org/10.3390/min14111153
Goswami B, Basak A, Gréau Y, Bhattacharyya C. Petrogenesis of Late Stenian Syn-Orogenic A-Type Granites in the Chhotanagpur Gneissic Complex and Eastern Indian Shield. Minerals. 2024; 14(11):1153. https://doi.org/10.3390/min14111153
Chicago/Turabian StyleGoswami, Bapi, Ankita Basak, Yoann Gréau, and Chittaranjan Bhattacharyya. 2024. "Petrogenesis of Late Stenian Syn-Orogenic A-Type Granites in the Chhotanagpur Gneissic Complex and Eastern Indian Shield" Minerals 14, no. 11: 1153. https://doi.org/10.3390/min14111153
APA StyleGoswami, B., Basak, A., Gréau, Y., & Bhattacharyya, C. (2024). Petrogenesis of Late Stenian Syn-Orogenic A-Type Granites in the Chhotanagpur Gneissic Complex and Eastern Indian Shield. Minerals, 14(11), 1153. https://doi.org/10.3390/min14111153