Temperature Controls Initial REE Enrichment in Peraluminous Granites: Implication from the Parent Granites in the Shangyou Ion-Adsorption Type REE Deposit
Abstract
:1. Introduction
2. Geological Setting
3. Analytic Methods
4. Results
4.1. Petrology
4.2. Zircon U-Pb Dating
4.3. Whole-Rock Elemental Compositions
5. Discussion
5.1. Petrogenesis
5.2. The Controls of Temperature on REE Enrichment in Peraluminous Granites
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, H.P.; Yang, W.B. REE Mineral Resources in China: Review and Perspective. Geotecton. Metallog. 2022, 46, 829–841, (In Chinese with English Abstract). [Google Scholar]
- Chi, R.A.; Tian, J. Review of Weathered Crust Rare Earth Ore. J. Chin. Rare Earth Soc. 2007, 25, 641–650, (In Chinese with English Abstract). [Google Scholar]
- Li, M.Y.H.; Zhao, W.W.; Zhou, M. Nature of Parent Rocks, Mineralization Styles and Ore Genesis of Regolith-Hosted REE Deposits in South China: An Integrated Genetic Model. J. Asian Earth Sci. 2017, 148, 65–95. [Google Scholar] [CrossRef]
- Bao, Z.; Zhao, Z. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 2008, 33, 519–535. [Google Scholar] [CrossRef]
- Sanematsu, K.; Watanabe, Y. Characteristics and genesis of ion adsorption-type rare earth element deposits. Rev. Econ. Geol. 2016, 18, 55–79. [Google Scholar]
- Fu, W.; Li, X.T.; Feng, Y.Y.; Feng, M.; Peng, Z.; Yu, H.X.; Lin, H. Chemical weathering of S-type granite and formation of Rare Earth Element (REE)-rich regolith in South China: Critical control of lithology. Chem. Geol. 2019, 520, 33–51. [Google Scholar] [CrossRef]
- Zhao, X.; Li, N.B.; Niu, H.C.; Wang, J.; Yan, S.; Yang, Y.Y.; Fu, R.X.; Huizenga, J.M. HREE enrichment during magmatic evolution recorded by apatite: Implication for the ion-adsorption HREE mineralization in South China. Lithos 2022, 432–433, 106896. [Google Scholar] [CrossRef]
- Feng, Y.Z.; Xiao, B.; Chu, G.B.; Li, S.S.; Wang, J.; Wen, Z.Q. Late Mesozoic magmatism in the Gucheng district: Implications for REE metallogenesis in South China. Ore Geol. Rev. 2022, 148, 105034. [Google Scholar] [CrossRef]
- Chu, G.; Chen, H.; Feng, Y.; Wu, C.; Li, S.; Zhang, Y.; Lai, C.K. Are South China granites special in forming regolith-hosted REE deposits? Gondwana Res. 2024, 125, 82–90. [Google Scholar] [CrossRef]
- Li, M.Y.H.; Zhou, M.F.; Williams-Jones, A.E. The genesis of regolith-hosted heavy rare earth element deposits: Insights from the world-class Zudong deposit in Jiangxi Province, South China. Econ. Geol. 2019, 114, 541–568. [Google Scholar] [CrossRef]
- Wang, D.H.; Zhao, Z.; Yu, Y.; Wang, C.H.; Dai, J.J.; Sun, Y.; Zhao, T.; Li, J.K.; Huang, F.; Chen, Z.Y.; et al. A Review of the Achievements in the Survey and Study of Ion-absorption Type REE Deposits in China. Acta Geosci. Sin. 2017, 38, 317–325, (In Chinese with English Abstract). [Google Scholar]
- Zhou, M.F.; Li, X.X.; Wang, Z.C.; Li, X.C.; Liu, J.C. The genesis of regolith-hosted rare earth element and scandium deposits: Current understanding and outlook to future prospecting. Chin. Sci. Bull. 2020, 65, 3809–3824, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Borst, A.M.; Smith, M.P.; Finch, A.A.; Estrade, G.; Villanova-de-Benavent, C.; Nason, P.; Marquis, E.; Horsburgh, N.J.; Goodenough, K.M.; Xu, C.; et al. Adsorption of rare earth elements in regolith-hosted clay deposits. Nat. Commun. 2020, 11, 4386. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; He, H.P.; Tan, W.; Liang, X.L.; Ma, L.Y.; Wang, Y.Y.; Qin, X.R.; Zhu, J.X. Groundwater controls REE mineralisation in the regolith of South China. Chem. Geol. 2021, 577, 120295. [Google Scholar] [CrossRef]
- Hua, R.M.; Zhang, W.L.; Gu, S.Y.; Chen, P.R. Comparison between REE granite and W-Sn granite in the Nanling region, South China, and their mineralizations. Acta Petrol. Sin. 2007, 23, 2321–2328, (In Chinese with English Abstract). [Google Scholar]
- Ishihara, S.; Hua, R.; Hoshino, M.; Murakami, H. REE abundance and REE minerals in granitic rocks in the Nanling range, Jiangxi Province, southern China, and generation of the REE-rich weathered crust deposits. Resour. Geol. 2008, 58, 355–372. [Google Scholar] [CrossRef]
- Wang, H.; He, H.P.; Yang, W.B.; Bao, Z.W.; Liang, X.L.; Zhu, J.X.; Ma, L.Y.; Huang, Y. Zircon texture and composition fingerprint HREE enrichment in muscovite granite bedrock of the Dabu ion-adsorption REE deposit, South China. Chem. Geol. 2023, 616, 121231. [Google Scholar] [CrossRef]
- Huang, Y.F.; Tan, W.; Bao, Z.W.; He, H.P.; Liang, X.L.; Huang, J.; Wang, H. Constraints of Parent Rocks on the Formation of Ion Adsorption HREE Deposit in the Weathering Crust of the Shangyou Granite Batholith. Geotecton. Metallog. 2022, 46, 303–317, (In Chinese with English Abstract). [Google Scholar]
- Li, Z.X.; Li, X.H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Charvet, J.; Shu, L.; Faure, M.; Choulet, F.; Wang, B.; Lu, H.; Le Breton, N. Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen. J. Asian Earth Sci. 2010, 39, 309–330. [Google Scholar] [CrossRef]
- Xie, L.; Wang, Z.J.; Wang, R.C.; Zhu, J.C.; Chen, X.D.; Gao, J.F.; Zhao, X. Mineralogical constraints on the genesis of W–Nb–Ta mineralization in the Laiziling granite (Xianghualing district, south China). Ore Geol. Rev. 2018, 95, 695–712. [Google Scholar] [CrossRef]
- Wang, X.N.; Chen, X.L.; Zou, S.H.; Jia, Z.W.; Li, B.; Wang, H.; Xu, D.R. Geochronology, geochemistry, and mineral chemistry of the Lingshan-Huangshan complex, South China: Insights into Nb and Ta enrichment. Ore Geol. Rev. 2023, 157, 105433. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, Q.; Luo, P.; Li, P.Q.; Lu, J.P.; Zhou, H.; Yi, Z.B.; Xu, C. Mineralization diversity of ionadsorption type REE deposit in southern China and the critical influence of parent rocks. Acta Geol. Sin. 2022, 96, 3901–3923, (In Chinese with English Abstract). [Google Scholar]
- Xu, C.; Kynický, J.; Smith, M.P.; Kopriva, A.; Brtnický, M.; Urubek, T.; Yang, Y.; Zhao, Z.; He, C.; Song, W. Origin of heavy rare earth mineralization in South China. Nat. Commun. 2017, 8, 14598. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, D.H.; Bagas, L.; Chen, Z.Y. Geochemical and REE mineralogical characteristics of the Zhaibei Granite in Jiangxi Province, southern China, and a model for the genesis of ion-adsorption REE deposits. Ore Geol. Rev. 2022, 140, 104579. [Google Scholar] [CrossRef]
- Zhao, X.; Li, N.B.; Huizenga, J.M.; Yan, S.; Yang, Y.Y.; Niu, H.C. Rare earth element enrichment in the ion-adsorption deposits associated granites at Mesozoic extensional tectonic setting in South China. Ore Geol. Rev. 2021, 137, 104317. [Google Scholar] [CrossRef]
- Zhao, X.; Li, N.B.; Niu, H.C.; Jiang, Y.H.; Yan, S.; Yang, Y.Y.; Fu, R.X. Hydrothermal alteration of allanite promotes the generation of ion-adsorption LREE deposits in South China. Ore Geol. Rev. 2023, 155, 105377. [Google Scholar] [CrossRef]
- Yusoff, Z.M.; Ngwenya, B.T.; Parsons, I. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chem. Geol. 2013, 349, 71–86. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, D.H.; Chen, Z.H.; Chen, Z.Y. Progress of Research on Metallogenic Regularity of Ion-adsorption Type REE Deposit in the Nanling Range. Acta Geol. Sin. 2017, 91, 2814–2827, (In Chinese with English Abstract). [Google Scholar]
- Zhou, X.M.; Sun, T.; Shen, W.Z.; Shu, L.S.; Niu, Y.L. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Epis. J. Int. Geosci. 2006, 29, 26–33. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol. Center. Spec. Publ. 2012, 5, 75. [Google Scholar]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Zhang, A.; Fan, W.; Zhang, Y.; Zi, J. Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granites in the eastern South China Block. Lithos 2012, 150, 188–208. [Google Scholar] [CrossRef]
- Thomas, R.; Davidson, P. Water in granite and pegmatite-forming melts. Ore Geol. Rev. 2012, 46, 32–46. [Google Scholar] [CrossRef]
- Hoskin, P.W.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Wilson, M. Review of Igneous Petrogenesis: A Global Tectonic Approach. Terra Nova 1989, 1, 218–222. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petr. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A. I- and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petr. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Pitcher, W.S. Granite Type and Tectonic Environment; Mountain Building Processes; Academic Press: London, UK, 1983; pp. 19–40. [Google Scholar]
- Clemens, J.D. S-type granitic magmas-petrogenetic issues, models and evidence. Earth Sci. Rev. 2003, 61, 1–18. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, J.H.; Fu, L.B.; Huizenga, J.M.; Santosh, M.; Chen, J.J.; Wang, D.Z.; Li, A.B. Multi-stage crustal melting from Late Permian back-arc extension through Middle Triassic continental collision to Late Triassic post-collisional extension in the East Kunlun Orogen. Lithos 2020, 360–361, 105446. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Li, X.W.; Mo, X.X.; Zhao, Z.D.; Zhu, D.C. A discussion on how to discriminate A-type granite. Geol. Bull. China 2010, 29, 278–285, (In Chinese with English Abstract). [Google Scholar]
- Huang, H.Q.; Li, X.H.; Li, W.X.; Li, Z.X. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology 2011, 39, 903–906. [Google Scholar] [CrossRef]
- Douce, A. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. Lond. Spec. Publ. 1999, 168, 55–75. [Google Scholar] [CrossRef]
- Jiao, S.J.; Li, X.H.; Huang, H.Q.; Deng, X.G. Metasedimentary melting in the formation of charnockite: Petrological and zircon U-Pb-Hf-O isotope evidence from the Darongshan S-type granitic complex in Southern China. Lithos 2015, 239, 217–233. [Google Scholar] [CrossRef]
- Zhao, X.; Li, N.B.; Niu, H.C.; Tan, S.C.; Fu, R.X.; Yang, Y. Extension settings favour initial REE enrichment in the parent granites of ion-adsorption REE deposits: Implication from Late-Permian to Triassic granites in South China. J. Geol. Soc. 2024, in press. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Z.; Zou, X.Y.; Chen, Z.Y.; Tu, X.J. Petrogeochemical Characteristics and Metallogenetic Potential of Epimetamorphic Rocks in South Jiangxi Province. Rock Miner. Anal. 2018, 37, 96–107, (In Chinese with English Abstract). [Google Scholar]
- Weinberg, R.F.; Hasalová, P. Water-fluxed melting of the continental crust: A review. Lithos 2015, 212–215, 158–188. [Google Scholar] [CrossRef]
- Collins, W.J.; Murphy, J.B.; Johnson, T.E.; Huang, H. Critical role of water in the formation of continental crust. Nat. Geosci. 2020, 13, 331–338. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jia, R.Y.; Liu, Z.; Liao, S.Y.; Zhao, P.; Zhou, Q. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China: A record of the closure of Paleo-Tethys. Lithos 2013, 156–159, 13–30. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, K.J.; Yan, L.L.; Jin, X.; Zhang, Y.X. Was Late Triassic Tanggula granitoid (central Tibet, western China) a product of melting of underthrust Songpan-Ganzi flysch sediments? Tectonics 2017, 36, 902–928. [Google Scholar] [CrossRef]
- Zhang, F.R. The Geological and Geochemical Characteristics and Its Petrogenesis for Caledonian Granites in the Central-Southern JiangXi Province. Ph.D. Thesis, Nanjing University, Nanjing, China, 2011. (In Chinese with English Abstract). [Google Scholar]
- Huang, C.; Chen, B.; Sun, K.K. A-type granites derived from dehydration melting of calc-alkaline granitoids in East Junggaer (NW China): Implications for the origin of aluminous and peralkaline A-types. Lithos 2023, 440–441, 107043. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Collins, W.J.; Murphy, J.B.; Blereau, E.; Huang, H.Q. Water availability controls crustal melting temperatures. Lithos 2021, 402–403, 106351. [Google Scholar] [CrossRef]
- Mo, J.; Xia, X.P.; Li, P.F.; Spencer, C.J.; Lai, C.K.; Xu, J.; Yang, Q.; Sun, M.D.; Yu, Y.; Milan, L. Water-in-zircon: A discriminant between S- and I-type granitoid. Contrib. Mineral. Petr. 2023, 178, 5. [Google Scholar] [CrossRef]
- Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petr. 2005, 148, 635–661. [Google Scholar] [CrossRef]
- Faure, M.; Shu, L.; Wang, B.; Charvet, J.; Choulet, F.; Monie, P. Intracontinental subduction: A possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova 2009, 21, 360–368. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, J.C.; Wan, Y.S.; Kitajima, K.; Wang, D.; Bonamici, C.; Qiu, J.S.; Sun, T. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon. Earth Planet. Sci. Lett. 2013, 366, 71–82. [Google Scholar] [CrossRef]
- Hua, R.M.; Zhang, W.L.; Chen, P.R.; Zhai, W.; Li, G.L. Relationship Between Caledonian Granitoids and Large-scale Mineralization in South China. Geol. J. China Univ. 2013, 19, 1–11, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Q.; Jiang, Y.H.; Wang, G.C.; Liu, Z.; Ni, C.Y.; Qing, L. Origin of Silurian gabbros and I-type granites in central Fujian, SE China: Implications for the evolution of the early Paleozoic orogen of South China. Lithos 2015, 216–217, 285–297. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Duan, M.; Niu, Y.L.; Sun, P.; Chen, S.; Kong, J.J.; Li, J.Y.; Zhang, Y.; Hu, Y.; Shao, F.L. A simple and robust method for calculating temperatures of granitoid magmas. Miner. Petrol. 2022, 116, 93–103. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.F.; Zhao, Z.F. Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis. Lithos 2016, 266–267, 133–157. [Google Scholar] [CrossRef]
- Finger, F.; Schiller, D.; Lindner, M.; Hauzenberger, C.; Verner, K.; Žák, J. Ultrahigh-temperature granites and a curious thermal eye in the post-collisional South Bohemian batholith of the Variscan orogenic belt (Europe). Geology 2022, 50, 542–546. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Skjerlie, K.P.; Johnston, A.D. Vapor-absent melting at 10 kbar of a biotite-and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites. Geology 1992, 20, 263–266. [Google Scholar] [CrossRef]
- Villaros, A.; Stevens, G.; Moyen, J.-F.; Buick, I.S. The trace element compositions of S-type granites: Evidence for disequilibrium melting and accessory phase entrainment in the source. Contrib. Mineral. Petr. 2009, 158, 543–561. [Google Scholar] [CrossRef]
- He, C.; Xu, C.; Zhao, Z.; Kynicky, J.; Song, W.; Wang, L. Petrogenesis and mineralization of ree-rich granites in Qingxi and Guanxi, Nanling Region, South China. Ore Geol. Rev. 2017, 81, 309–325. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Hou, Z.Q.; Lü, Q.T.; Zhang, X.W.; Pan, X.F.; Fan, X.K.; Zhang, Y.Q.; Wang, C.G.; Lü, Y.J. Crustal architectural controls on critical metal ore systems in South China based on Hf isotopic mapping. Geology 2023, 51, 738–742. [Google Scholar] [CrossRef]
- Fan, C.X.; Xu, C.; Shi, A.G.; Smith, M.P.; Kynicky, J.; Wei, C.W. Origin of heavy rare earth elements in highly fractionated peraluminous granites. Geochim. Cosmochim. Acta 2023, 343, 371–383. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.F.; Zhao, Z.F. Triassic granites in South China: A geochemical perspective on their characteristics, petrogenesis, and tectonic significance. Earth Sci. Rev. 2017, 173, 266–294. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Xu, C.; Yan, Q.; Zhu, J. Temperature Controls Initial REE Enrichment in Peraluminous Granites: Implication from the Parent Granites in the Shangyou Ion-Adsorption Type REE Deposit. Minerals 2024, 14, 1222. https://doi.org/10.3390/min14121222
Zou J, Xu C, Yan Q, Zhu J. Temperature Controls Initial REE Enrichment in Peraluminous Granites: Implication from the Parent Granites in the Shangyou Ion-Adsorption Type REE Deposit. Minerals. 2024; 14(12):1222. https://doi.org/10.3390/min14121222
Chicago/Turabian StyleZou, Jiaohua, Chongwen Xu, Qinghe Yan, and Jiang Zhu. 2024. "Temperature Controls Initial REE Enrichment in Peraluminous Granites: Implication from the Parent Granites in the Shangyou Ion-Adsorption Type REE Deposit" Minerals 14, no. 12: 1222. https://doi.org/10.3390/min14121222
APA StyleZou, J., Xu, C., Yan, Q., & Zhu, J. (2024). Temperature Controls Initial REE Enrichment in Peraluminous Granites: Implication from the Parent Granites in the Shangyou Ion-Adsorption Type REE Deposit. Minerals, 14(12), 1222. https://doi.org/10.3390/min14121222