Granites of the Chazangcuo Copper–Lead–Zinc Mining Area in Tibet, China: Magma Source and Tectonic Implications
Abstract
:1. Introduction
2. Geological Setting
3. Material and Methods
4. Results
4.1. Petrography
4.2. Major Elements
4.3. Trace and Rare Earth Elements
5. Discussion
5.1. Petrogenesis
5.2. Magma Sources and Crystallization Temperatures
5.3. Tectonic Setting
5.4. Relationship Between Rock Masses and Mineralization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.Y.; Huang, B.C.; Ye, K.; Fang, A. Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau. Acta Petrol. Sin. 2008, 24, 1–30. [Google Scholar]
- Liu, D.M.; Wang, J.; Jiang, H.; Zhao, Y.; Guo, T.Y.; Yang, W.R. Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau. Earth Sci. Front. 2024, 31, 154–169. [Google Scholar]
- Pan, G.T.; Wang, L.Q.; Yin, F.G.; Geng, Q.R.; Li, G.M.; Zhu, D.C. Researches on geological-tectonic evolution of Tibetan Plateau: A review, recent advances, and directions in the future. Sediment. Geol. Tethyan Geol. 2022, 42, 151–175. [Google Scholar]
- Wang, J.M.; Wu, F.Y.; Zhang, J.J.; Khanal, G.; Yang, L. The Himalayan collisional orogeny: A metamorphic perspective. Acta Geol. Sin. 2022, 96, 3128–3157. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, Z.H.; Wu, D.G.; Lu, L. Multistage magmatism of the Zetang polymetallic orefield on the Southern Margin of the Gangdise Belt in the Tibetan Plateau and its chronological significance. Acta Geosci. Sin. 2014, 35, 703–712. [Google Scholar]
- Ge, L.S.; Deng, J.; Yang, L.Q.; Zou, Y.L.; Xing, J.B.; Yuan, S.S.; Wu, Y.H. The Meso-Cenozoic Acidic-intermediate magmatism and tectonic evolution of Gangdise Massif, Tibet. Geol. Resour. 2006, 2006, 1–10. [Google Scholar]
- Hou, Z.Q.; Zheng, Y.C.; Yang, Z.M.; Yang, Z.S. Mtallogenesis of continental collision setting: Part I Gangdese Cenozoic porphyry Cu-Mo systems in Tibet. Miner. Depos. 2012, 31, 647–670. [Google Scholar]
- Hu, Y.; Wang, M.Z.; Li, J.C.; Zhou, B.; Yang, Z.J.; Qin, Z.; Tang, L. Zircon U-Pb age and geochemical characteristics of Songduo intrusive rock in the western Gangdese, Tibet. Miner. Explor. 2021, 12, 511–524. [Google Scholar]
- Mo, X.X. Magma and Magmatic/Igneous Rocks: A lithoprobe into the deep earth and records of the Earth’s Evolution. Chin. J. Nat. 2011, 33, 255–259. [Google Scholar]
- Wang, X.D.; Zhang, Z.P.; Liu, L.; Wang, H.T. Zircons U-Pb chronology, geochemistry and tectonic geological significance of granodiorite in Xiajing area, Tibet. Miner. Explor. 2019, 10, 2129–2142. [Google Scholar]
- Mo, X.X.; Dong, G.C.; Zhao, Z.D.; Guo, T.Y.; Wang, L.L.; Chen, T. Timing of magma mixing in Gangdise magmatic belt during the India-Asia collision: Zircon shirmp U-Pb dating. Acta Geol. Sin. 2005, 79, 66–76. [Google Scholar]
- Hou, Z.Q.; Gao, Y.F.; Meng, X.J.; Qu, X.M.; Huang, W. Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen. Acta Petrol. Sin. 2004, 2004, 239–248. [Google Scholar]
- Lee, H.Y.; Chung, S.L.; Lo, C.H.; Ji, J.; Lee, T.Y.; Qian, Q.; Zhang, Q. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics 2009, 477, 20–35. [Google Scholar] [CrossRef]
- Mo, X.X.; Dong, G.C.; Zhao, Z.D.; Zhou, S.; Wang, L.L.; Qiu, R.Z.; Zhang, F.Q. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geol. J. China Univ. 2005, 11, 281–290. [Google Scholar]
- Dong, G.C.; Mo, X.X.; Zhao, Z.D.; Guo, T.Y.; Wang, L.L.; Chen, T. Geochronologic Constraints on the Magmatic Underplating of the Gangdise Belt in the India-Eurasia Collision: Evidence of SHRIMP II Zircon U-Pb Dating. Acta Geol. Sin. 2005, 79, 787–794. [Google Scholar]
- Dong, G.C.; Mo, X.X.; Zhao, Z.D.; Zhu, D.C.; Xie, X.F.; Dong, M.L. The Neocene magmatism from Namuru intrusion in western Gangdese, Tibet and its tectonic significance. Acta Petrol. Sin. 2011, 27, 1983–1992. [Google Scholar]
- Ji, W.Q.; Wu, F.Y.; Chung, S.L.; Li, J.X.; Liu, C.Z. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. Geol. 2009, 262, 229–245. [Google Scholar] [CrossRef]
- Zhang, H.F.; Xu, W.C.; Guo, J.Q.; Zong, K.Q.; Cai, H.M.; Yuan, H.L. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: Evidence for early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrol. Sin. 2007, 23, 1347–1353. [Google Scholar]
- Zhu, D.C.; Pan, G.T.; Mo, X.X.; Wang, L.Q.; Liao, Z.L.; Zhao, Z.D.; Dong, G.C.; Zhou, C.Y. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese; New insights from volcanic rocks. Acta Petrol. Sin. 2006, 22, 534–546. [Google Scholar]
- Zhu, D.C.; Pan, G.T.; Wang, L.Q.; Mo, X.X.; Zhao, Z.D.; Zhou, C.Y.; Liao, Z.L.; Dong, G.C.; Yuan, S.H. Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdise belt, Tibet, with a discussion of geodynamic setting-related issues. Geol. Bull. China 2008, 27, 1535–1550. [Google Scholar]
- Jiang, X.; Zhao, Z.D.; Zhu, D.C.; Zhang, F.Q.; Dong, G.C.; Mo, X.X.; Guo, T.Y. Zircon U-Pb geochronology and Hf isotopic geochemistry of Jiangba, Bangba, and Xiongba granitoids in western Gangdese, Tibet. Acta Petrol. Sin. 2010, 26, 2155–2164. [Google Scholar]
- Ni, P.; Pan, J.Y.; Han, L.; Cui, J.M.; Gao, Y.; Fan, M.S.; Li, W.S.; Chi, Z.; Zhang, K.H.; Cheng, Z.L. Large-scale granite-related tungsten and tin mineralization in South China: Temporal and spatial distribution, metallogenic model sand exploration implications. Acta Geol. Sin. 2023, 97, 3497–3534. [Google Scholar]
- Wang, R.; Gao, L.E.; Zeng, L.S.; Yan, L.L.; Di, Y.L. Genetic mechanism of the Kongbugang Miocene leucogranite in the Cona area, southern Tibet. Acta Petrol. Sin. 2023, 39, 3555–3571. [Google Scholar] [CrossRef]
- Yang, F.; Wu, G.; Chen, G.Z.; Li, S.H.; Li, Y.L.; Zhang, T.; Chen, Y.J. Petrogenesis and implications for tin mineralization of the Beidashan granitic pluton, southern Great Xing’an Range, NE China: Constraints from whole-rock and accessory mineral geochemistry. J. Asian Earth Sci. 2024, 259, 105883–105897. [Google Scholar] [CrossRef]
- Dai, X.L.; Chen, K.; Zhang, J.K.; Li, Y.S.; He, M.P.; Liu, Z.F. Geochronology and Geochemistry of Granodiorite Porphyry in the Baoshan Cu-Pb-Zn Deposit, South China: Insights into Petrogenesis and Metallogeny. Minerals 2024, 14, 897. [Google Scholar] [CrossRef]
- Liu, W.L. Petrology, Geochemistry and Zircon U-Pb Chronology of the Chazangcuo Granite within Shenzha County, Tibet. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2019. [Google Scholar]
- Gao, S.B. Copper-Iron Polymetal Metallogenic Regularity and Election of Target Areas in the Western of Gangdise Metallogenic Belt, Tibet. Ph.D. Thesis, China University of Geosciences Press, Wuhan, China, 2015. [Google Scholar]
- Li, C.; Zhai, Q.G.; Xu, F.; Zhu, Z.Y. Kinematics of the active North-South-trending Chazangcuo-Shenzha tectonic belt, Xizang (Tibet). Geol. Rev. 2005, 2005, 353–359. [Google Scholar]
- Cheng, L.R.; Wang, T.W.; Li, C.; Wu, S.Z.; Zhao, J.C.; He, Z.H.; Zhang, Y.J.; Zhu, Z.Y.; Zhang, Y.C.; Yang, D.M. Report of Regional Geological Survey of the People’s Republic of China Shenzha County (H45C002004): Scale 1:250000; China University of Geosciences Press: Wuhan, China, 2014. [Google Scholar]
- Jiang, J.S.; Zheng, Y.Y.; Gao, S.B.; Xu, J.; Tian, K.; Haung, L.L.; Yin, S.J.; Zhang, Y.C. Genesis of Chazangcuo Cu-Pb-Zn deposit, Tibet constraints from C-H-O-S-Pb isotope geochemistry. Earth Sci.-J. China Univ. Geosci. 2015, 40, 1006–1016. [Google Scholar]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wang, L.Q.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Middlemost, E.A. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Wang, D.Z.; Shu, L.S. On granitic Tectono-magmatic assemblages. Geol. J. China Univ. 2017, 13, 362–370. [Google Scholar]
- Chappell, B.W.; White, A.J.R. Two contrasting granite type. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Loiselle, M. Characteristics and origin of anorogenic granites. Geol. Soc. Am. 1979, 11, 468. [Google Scholar]
- Pitcher, W.S. Granite type and tectonic environment. Mt. Build. Process. 1982, 19, 40. [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Miller, C.F. Are strongly peraluminous magmas derived from pelitic sedimentary sources? J. Geol. 1985, 93, 673–689. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Qiu, K.F.; Zhou, T.; Chew, D.; Hou, Z.L.; Müller, A.; Yu, H.C.; Lee, R.G.; Chen, H.; Deng, J. Apatite trace element composition as an indicator of ore deposit types: A machine learning approach. Am. Mineral. 2024, 109, 303–314. [Google Scholar] [CrossRef]
- Du, B.F.; Li, S.S.; Zhang, R.Z.; Hu, H.L.; Qiao, T.R.; Qian, J.L.; Yang, F. Geochronology and geochemistry of Late Triassic Baerdaling granitoids in West Kunlun orogenic belt and its constraints on the post-collision tectonic evolution of Paleo-Tethys. Acta Petrol. Sin. 2024, 40, 1887–1906. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.; Chappell, B. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Ajaji, T.; Weis, D.; Giret, A.; Bouabdellah, M. Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: Geochemical, isotopic and geochronological evidence. Lithos 1998, 45, 371–393. [Google Scholar] [CrossRef]
- Nakada, S. Regional variation in chemistry of the Miocene intermediate to felsic magmas in the Outer Zone and the Setouchi Province of Southwest Japan. J. Geol. Soc. Jpn. 1979, 85, 571–582. [Google Scholar] [CrossRef]
- Cheng, T.; Yang, W.; Teng, C.; Yang, X.; Xiao, D. Geochronology and Geochemistry of the Uhelchulu Quartz Diorite-Granodiorite in Inner Mongolia of China: Implications for Evolution of the Hegenshan Ocean in the Early-Middle Devonian. Minerals 2024, 14, 835. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Yang, J.H.; Zheng, Y.F. Discussions on the petrogenesis of granites. Acta Petrol. Sin. 2007, 23, 1217–1238. [Google Scholar]
- Kemp, A.; Hawkesworth, C.J.; Foster, G.; Paterson, B.; Woodhead, J.; Hergt, J.; Gray, C.; Whitehouse, M. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 2007, 315, 980–983. [Google Scholar] [CrossRef]
- Ding, L.L.; Mao, Q.G.; Wang, Y.W.; Guan, Y.C.; Li, T.T. Comparison on the characteristics of cassiterite-bearing and barren granites in the Beidashan Region, Southern Great Xing’an Range. Earth Sci. 2022, 47, 3371–3388. [Google Scholar]
- Zhu, Y.X.; Wang, L.X.; Ma, C.Q.; He, Z.X.; Deng, X.; Tian, Y. Petrogenesis and tectonic implication of the Late Triassic A1-type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China). Lithos 2022, 412, 106595. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Hu, J.; Zhou, H.B.; He, Z.W. Zircon U-Pb geochronoligical and geochemical characteristics of the plagiogranite from the Nageng silver deposit in the Eastern Kunlun and their geological significances. Acta Mineral. Sin. 2023, 43, 640–652. [Google Scholar]
- Barth, M.G.; McDonough, W.F.; Rudnick, R.L. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol. 2000, 165, 197–213. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Yang, M.C.; Chen, B.; Yan, C. Petrogenesis of paleoproterozoic gneissic granites from Jiao-Liao-Ji Belt of North China Craton and their tectonic implications. J. Earth Sci. Environ. 2015, 37, 31–51. [Google Scholar]
- Tao, Z.H.; Li, Y.; Ma, Z.X.; Cai, C.L.; Pei, Y.S.; Zhang, B. The Zircon U-Pb dating and geochemistry of the Baosuose granite in the Northern Sanjiang orogenic belt and their geological significances. Acta Mineral. Sin. 2024, 44, 1–20. [Google Scholar] [CrossRef]
- Li, T. Element abundances of China’s continental crust and its sedimentary layer and upper continental crust. Geochimica 1994, 1994, 40–145. [Google Scholar]
- Chu, K.L.; Wang, J.X.; Fang, X.; Guo, D.B.; Huang, S.J.; Qi, Y.H. Geochronology, petrogeochemistry, Nd-Pb-Hf isotope characteristics, and geological significance of a Beryllium-tungsten deposit in Southern Miaomiaojing, Gansu province. Acta Geosci. Sin. 2024, 2024, 1–22. [Google Scholar]
- Pearce, J. Sources and settings of granitic rocks. Epis. J. Int. Geosci. 1996, 19, 120–125. [Google Scholar] [CrossRef]
- Allegre, C.; Minster, J. Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sci. Lett. 1978, 38, 1–25. [Google Scholar] [CrossRef]
- Altherr, R.; Holl, A.; Hegner, E.; Langer, C.; Kreuzer, H. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos 2000, 50, 51–73. [Google Scholar] [CrossRef]
- Sui, Z.M.; Chen, Y.J. Zircon saturation temperatures of granites in Eastern Great Xing’an Range, and its geological signification. World Geol. 2011, 30, 162–172. [Google Scholar]
- Xie, L.; Dun, D.; Zhu, L.D.; NiMa, C.R.; Yang, W.G.; Tao, G.; Li, C.; He, B.; He, Y. Zircon U-Pb geochronology, geochemistry and geological significance of the Zhaduding A-type granites in northern Gangdise, Tibet. Geol. China 2015, 42, 1214–1227. [Google Scholar]
- Liang, X.; Zhang, J.Q.; Wang, J.G.; Zhang, X.Q.; Zhang, L.G.; Wang, S.; Yang, X.P.; Cheng, Z.; Hou, D.H.; Chen, Y.Y.; et al. A genetic mineralogical study of zircons from the early Late-Cretaceous quartz monzodiorite in the southern margin of the Gangdise Magmatic Arc, Tibet, China. Bull. Mineral. Petrol. Geochem. 2021, 40, 165–177. [Google Scholar]
- Jia, Y.G.; Zhao, J.; Guan, L.W.; Duguer, W.W.; Chen, Y.X.; Chen, J. Zircon U-Pb-Hf isotopic compositions and their geological significance of Early Devonian granites in Wenquan, Xinjiang. J. Jilin Univ. (Earth Sci. Ed.) 2023, 53, 1132–1148. [Google Scholar]
- Lin, M.; Zhang, G.B.; Song, S.G.; Li, H.J.; Zhang, L.J. The validity of Ti-in-zircon thermometry in low-temperature/high-pressure eclogites. Earth Sci. 2019, 44, 4034–4041. [Google Scholar]
- Yousefi, F.; Lentz, D.R.; McFarlane, C.R.; Walker, J.A.; Thorne, K.G. Zircon compositional systematics from Devonian oxidized I-type granitoids: Examination of porphyry Cu fertility indices in the New Brunswick Appalachians, Canada. Front. Earth Sci. 2024, 12, 1363029. [Google Scholar] [CrossRef]
- Niu, J.L.; Wu, S.T.; Yang, Y.H.; Zhang, C.; Wang, H.; Gong, Q.J. Application of Ti-in-quartz and Ti-in-zircon thermometers in geoscience and progress of microbeam analysis technology of Ti content. Acta Petrol. Sin. 2024, 40, 323–337. [Google Scholar] [CrossRef]
- Tuttle, O.F.; Bowen, N.L. Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol. Soc. Am. Mem. 1958, 74, 1–146. [Google Scholar]
- Zhang, H.F.; Xu, W.C.; Guo, J.Q.; Zong, K.Q.; Cai, H.M.; Yuan, H.L. Indosinian orogenesis of the Gangdise Terrane: Evidences from Zircon U-Pb dating and petrogenesis of granitoids. Earth Sci.-J. China Univ. Geosci. 2007, 2007, 155–166. [Google Scholar]
- Zhu, D.C.; Pan, G.T.; Wang, L.Q.; Mo, X.X.; Zhao, Z.D.; Zhou, C.Y.; Liao, Z.L.; Dong, G.C.; Yuan, S.H. Spatial-temporal distribution and tectonic setting of Jurassic magmatism in the Gangdise belt, Tibet, China. Geol. Bull. China 2008, 27, 458–468. [Google Scholar]
- Ji, W.Q.; Wu, F.Y.; Chung, S.L.; Liu, C.Z. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Sci. Sin. (Terrae) 2009, 39, 849–871. [Google Scholar] [CrossRef]
- Xu, R.H.; Scharer, U.; Allegre, C.J. Magmatism and metamorphism in the Lhasa block (Tibet): A gcochronological study. J Geol. 1985, 93, 41–57. [Google Scholar] [CrossRef]
- Schärer, U.; Xu, R.H.; Allègre, C.J. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region, Tibet. Earth Planet. Sci. Lett. 1984, 69, 311–320. [Google Scholar] [CrossRef]
- Chu, M.F.; Chung, S.L.; Song, B.; Liu, D.Y.; O’Reilly, S.Y.; Pearson, N.J.; Ji, J.Q.; Wen, D.J. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 2006, 34, 745–748. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Z.X.; Du, Y.S.; Tian, W.X.; Li, J.P.; Wang, C.P. New results and major progress in regional geological survey of the Lhazê County Sheet. Geol. Bull. China 2004, 23, 471–474. [Google Scholar]
- Zhu, J.; Du, Y.S.; Liu, Z.X.; Feng, Q.L.; Tian, W.X.; Li, J.P.; Wang, C.P. The genesis and tectonic significance of Mesozoic radiolarian siliceous rocks in the middle section of Yarlung Zangbo suture zone, Tibet. Sci. Sin. (Terrae) 2005, 35, 1131–1139. [Google Scholar]
- Zheng, L.L.; Liao, G.Y.; Geng, Q.R.; Dong, H.; Sun, Z.M.; Lou, X.Y.; Li, S. New results and major progress in regional geological survey of the Mêdog County Sheet. Geol. Bull. China 2004, 23, 458–462. [Google Scholar]
- Liu, J.B.; Na, X.H.; Zhang, Z.; Wang, L.M. Dating and geochemistry of the Late Cretaceous granitoids near Menba area in Gangdise Belt and their tectonic setting. Glob. Geol. 2012, 31, 638–647. [Google Scholar]
- He, Z.H.; Yang, D.M.; Zheng, C.Q.; Huang, Y.C. Geochemistry of the Indosinian granitoids in the Mamba area, Gangdise belt, Tibet and its tectonic significance. Geol. Bull. China 2005, 24, 354–359. [Google Scholar]
- Mo, X.X.; Zhao, Z.D.; Zhu, D.C.; Yu, X.H.; Dong, G.C.; Zhou, S. On the lithosphere of Indo-Asia Collision Zone in Southern Tibet: Petrological and geochemical constraints. Earth Sci.-J. China Univ. Geosci. 2009, 34, 17–27. [Google Scholar]
- Yang, C.Y.; Feng, J.J.; Li, Y.B.; Zhang, J.S.; Zhang, G.; Xia, Y.Y. Eocene Tuolong I-type granite in Linzhou area, Tibet: Constraints on the timing of the collision between India and Eurasian plates. Acta Petrol. et Mineral. 2022, 41, 1080–1096. [Google Scholar]
- Li, C.; Wang, T.W.; Li, H.M.; Zeng, Q.G. Discovery of Indosinian megaporphyritic granodiorite in the Gangdise area: Evidence for the existence of Paleo-Gangdise. Geol. Bull. China 2003, 22, 364–366. [Google Scholar]
- Yang, Z.M.; Hou, Z.Q.; Xia, D.X.; Song, Y.C.; Li, Z. Relationship between Western Porphyry and mineralization in Qulong copper deposit of Tibet and its enlightenment to further exploration. Miner. Depos. 2008, 27, 28–36. [Google Scholar]
- Qiu, K.F.; Deng, J.; Laflamme, C.; Long, Z.Y.; Wan, R.Q.; Moynier, F.; Yu, H.C.; Zhang, J.Y.; Ding, Z.J.; Goldfarb, R. Giant Mesozoic gold ores derived from subducted oceanic slab and overlying sediments. Geochim. et Cosmochim. Acta 2023, 343, 133–141. [Google Scholar] [CrossRef]
- Harris, N.B.; Pearce, J.A.; Tindle, A.G. Geochemical characteristics of collision-zone magmatism. Geol. Soc. Lond. Spec. Publ. 1986, 19, 67–81. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Deng, J.F.; Wu, Z.X.; Zhao, G.C.; Zhao, H.L.; Luo, Z.H.; Mo, X.X. Precambrian granitic rocks, continental crustal evolution and craton formation of the North China Platform. Acta Petrol. Sin. 1999, 15, 190–198. [Google Scholar]
- Deng, J.F.; Feng, Y.F.; Di, Y.J.; Liu, C.; Xiao, Q.H.; Su, S.G.; Zhao, G.C.; Meng, F.; Ma, S.; Yao, T. Magmatic arc and Ocean-Continent transition: Discussion. Geol. Rev. 2015, 61, 473–484. [Google Scholar]
- Ma, Y.J.; Liu, Y.J.; Liang, T.; Lu, R.; Bao, G.; Lei, W.S. Zircon U-Pb dating and geochemical features of the Jiaozishan granite in the South Margin of the North China Craton and its tectonic implications. Northwestern Geol. 2024, 57, 95–109. [Google Scholar]
- Deng, K.; Wang, J.G.; Dong, Y.J.; He, L.W.; Yuan, R.H.; Zhang, Z.G.; Chen, S.G.; Xin, T. Genesis and Geological Significance of Late Cretaceous Intermediate Intrusions in Sangye, Tibet. Geoscience 2023, 37, 375–389. [Google Scholar]
- Zhang, Z.M.; Ding, H.X.; Dong, X.; Tian, Z.L. The Gangdese arc magmatism: From Neo-Tethyan subduction to Indo-Asian collision. Earth Sci. Front. 2018, 25, 78–91. [Google Scholar]
- Li, J.; Zhong, J.W.; Yu, Y.; Huang, X.L. Insights on magmatism and mineralization from micas in the Xihuashan granite, Jiangxi Province, South China. Geochimica 2013, 42, 393–404. [Google Scholar]
- Li, J.K. In Situ Observation of Separation Mechanism of Ore-Forming Fluid from Granitic Magma in Granite-Related Deposit. J. Jilin Univ. (Earth Sci. Ed.) 2014, 44, 518–526. [Google Scholar]
- Xie, L.; Wang, R.C.; Tian, E.N.; Liu, Z.C.; Wu, F.Y.; Liu, X.C.; Cheng, F.Y.; Hu, H.; Che, X.D.; Liu, C. Oligocene Nb-Ta-W-mineralization related to the Xiaru leucogranite in the Himalayan Orogen. Chin. Sci. Bull. 2021, 66, 4574–4591. [Google Scholar] [CrossRef]
- Qiu, K.F.; Deng, J.; Li, S.S.; Jowitt, S.; Hetherington, C.J.; Balen, D. Roles and perspectives of A-and I-type magmas in rare earth element and gold mineralization. Geol. Soc. Am. Bull. 2024, 136, 1238–1250. [Google Scholar] [CrossRef]
- Qiu, K.F.; Romer, R.L.; Long, Z.Y.; Yu, H.C.; Turner, S.; Wan, R.Q.; Li, X.Q.; Gao, Z.Y.; Deng, J. Potassium isotopes as a tracer of hydrothermal alteration in ore systems. Geochim. et Cosmochim. Acta 2024, 368, 185–196. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Qiu, K.F.; Yin, R.; Long, Z.Y.; Feng, Y.C.; Yu, H.C.; Gao, Z.Y.; Deng, J. Lithospheric mantle as a metal storage reservoir for orogenic gold deposits in active continental margins: Evidence from Hg isotopes. Geology 2024, 52, 423–428. [Google Scholar] [CrossRef]
- Chen, Z.G.; Zhang, L.C.; Wan, B.; Zhang, Y.T.; Wu, H.Y. Geochemistry and geological significances of ore-forming porphyry with low Sr and Yb value in Wunugetushan copper-molybdenum deposit, Inner Mongolia. Acta Petrol. Sin. 2008, 24, 115–128. [Google Scholar]
- Gong, Y.D.; Li, B.L.; Li, Z.H.; Yu, R.T.; Sun, Y.G.; Zhang, S. Petrogenesis and geological significance of granite porphyry dike from Xiaokelehe in North Da Hinggan Mountains: Constraints from Zircon U-Pb age, geochemistry and Hf isotopic composition. J. Jilin Univ. (Earth Sci. Ed.) 2021, 51, 1753–1769. [Google Scholar]
- Qiu, K.F.; Deng, J.; Sai, S.X.; Yu, H.C.; Tamer, M.T.; Ding, Z.J.; Yu, X.F.; Goldfarb, R. Low-Temperature Thermochronology for Defining the Tectonic Controls on Heterogeneous Gold Endowment Across the Jiaodong Peninsula, Eastern China. Tectonics 2023, 42, e2022TC007669. [Google Scholar] [CrossRef]
- Qiu, K.F.; Deng, J.; Yu, H.C.; Rasbury, T.; Tang, Y.W.; Zhu, R.; Zhang, P.C.; Goldfarb, R. The Zaozigou orogenic gold-antimony deposit, West Qinling Orogen, China: Structural controls on multiple mineralization events. Geol. Soc. Am. Bull. 2024, 2024, 1–15. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Deng, J.; McIntire, D.; Gou, Z.Y.; Geng, J.Z.; Chang, Z.S.; Zhu, R.; Li, K.-N.; Goldfarb, R. The giant Zaozigou Au-Sb deposit in West Qinling, China: Magmatic-or metamorphic-hydrothermal origin? Miner. Depos. 2020, 55, 345–362. [Google Scholar] [CrossRef]
- Gou, Z.B.; Wang, X.W.; Zhang, Q.; Lei, C.Y. Geotectonic background and prospecting significance of Cretaceous granites in Xietongmen-Sangri area, Gangdise, Tibet. Miner. Depos. 2010, 29, 1085–1086. [Google Scholar]
- Yang, C.Q.; Ba, Y.; Jiao, J.H.; Yao, S. Geochemical characteristics and tungsten-tin mineralization of the Early Cretaceous highly fractionated A-type granite in Meibagiegin, Xietongmen County, Gangdise Metallogenic Belt. Geol. Rev. 2024, 70, 1807–1832. [Google Scholar]
- Zhang, L.K.; Li, G.M.; Cao, H.W.; Wu, J.Y.; Zhang, Z.; Dong, S.L.; Liang, W. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf isotopic evidence for the Late Jurassic Xurucuo granites in the middle Gangdese area, Tibet. Mineral. Petrol. 2022, 42, 54–67. [Google Scholar]
- Wen, D.R.; Chung, S.L.; Song, B.; Iizuka, Y.; Yang, H.J.; Ji, J.Q.; Liu, D.Y.; Gallet, S. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos 2008, 105, 1–11. [Google Scholar] [CrossRef]
- Wen, D.R.; Liu, D.Y.; Chung, S.L.; Chu, M.-F.; Ji, J.Q.; Zhang, Q.; Song, B.; Lee, T.Y.; Yeh, M.W.; Lo, C.H. Zircon SHRIMP U–Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chem. Geol. 2008, 252, 191–201. [Google Scholar] [CrossRef]
- Ji, G.Y.; Jiang, S.H.; Li, G.F.; Yi, J.J.; Zhang, L.L.; Liu, Y.F. Metallogenetic control of magmatism on the Maodeng Sn-Cu Deposit in the Southern Great Xing’an range: Evidence from geochronology, geochemistry, and Sr-Nd-Pb isotopes. Geotecton. et Metallog. 2021, 45, 681–704. [Google Scholar]
- Lai, S.H.; Chen, R.Y.; Zhang, D.; Di, Y.J.; Gong, Y.; Yuan, Y.; Chen, L. Petrogeochemical features and zircon LA-ICPMS U-Pb ages of granite in the Pantian iron ore deposit, Fujian Province and their relationship with mineralization. Acta Petrol. Sin. 2014, 30, 1780–1792. [Google Scholar]
- Qiu, K.F.; Romer, R.L.; Long, Z.Y.; Williams Jones, A.E.; Yu, H.C.; Turner, S.; Wang, Q.F.; Li, S.S.; Zhang, J.Y.; Duan, H.R. The role of an oxidized lithospheric mantle in gold mobilization. Sci. Adv. 2024, 10, eado6262. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Xu, B.; Zheng, Y.; Yang, Z.; Hou, Z.; Huang, K.; Liu, Y.; Zhang, C.; Zhao, L. Two episodes of mineralization in the Mengya’a deposit and implications for the evolution and intensity of Pb–Zn–(Ag) mineralization in the Lhasa terrane, Tibet. Ore Geol. Rev. 2017, 90, 877–896. [Google Scholar] [CrossRef]
- Zheng, Y.C.; Fu, Q.; Hou, Z.Q.; Yang, Z.S.; Huang, K.X.; Wu, C.D.; Sun, Q.Z. Metallogeny of the northeastern Gangdese Pb–Zn–Ag–Fe–Mo–W polymetallic belt in the Lhasa terrane, southern Tibet. Ore Geol. Rev. 2015, 70, 510–532. [Google Scholar] [CrossRef]
CZC-1 | CZC-2 | CZC-3 | CZC-4 | CZC-5 | CZC-6 | CZC-7 | CZC-8 | CZC-9 | CZC-10 | |
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 68.05 | 70.75 | 69.46 | 67.32 | 66.75 | 69.75 | 69.25 | 68.33 | 67.55 | 70.95 |
TiO2 | 0.42 | 0.35 | 0.45 | 0.55 | 0.56 | 0.43 | 0.35 | 0.38 | 0.28 | 0.22 |
Al2O3 | 13.53 | 13.58 | 13.38 | 14.15 | 13.24 | 13.06 | 13.79 | 14.16 | 14.21 | 13.26 |
Fe2O3 | 1.75 | 1.12 | 1.55 | 1.21 | 2.22 | 1.96 | 1.82 | 1.27 | 1.96 | 1.35 |
FeO | 1.15 | 1.02 | 1.41 | 1.07 | 1.02 | 1.15 | 1.08 | 1.12 | 1.05 | 1.02 |
MnO | 1.56 | 0.75 | 0.45 | 1.24 | 2.01 | 0.53 | 1.21 | 1.08 | 0.95 | 0.35 |
MgO | 1.47 | 1.63 | 1.22 | 1.65 | 1.03 | 1.04 | 1.15 | 1.05 | 1.02 | 1.21 |
CaO | 3.75 | 3.35 | 3.28 | 3.7 | 3.93 | 3.12 | 3.14 | 3.75 | 3.64 | 2.96 |
Na2O | 4.05 | 3.44 | 3.85 | 4.53 | 4.15 | 4.25 | 3.86 | 4.32 | 4.48 | 3.64 |
K2O | 3.25 | 3.01 | 3.7 | 3.06 | 4.17 | 3.76 | 3.07 | 3.36 | 3.65 | 3.45 |
P2O5 | 0.22 | 0.11 | 0.14 | 0.16 | 0.07 | 0.14 | 0.04 | 0.07 | 0.05 | 0.03 |
LOI | 0.83 | 0.91 | 1.15 | 1.32 | 0.85 | 0.73 | 1.32 | 1.05 | 1.14 | 1.62 |
ALK | 7.30 | 6.45 | 7.55 | 7.59 | 8.32 | 8.01 | 6.93 | 7.68 | 8.13 | 7.09 |
A/NK | 1.33 | 1.52 | 1.29 | 1.31 | 1.17 | 1.18 | 1.43 | 1.32 | 1.26 | 1.36 |
A/CNK | 0.80 | 0.90 | 0.82 | 0.81 | 0.72 | 0.78 | 0.90 | 0.81 | 0.79 | 0.88 |
AR | 2.46 | 2.23 | 2.66 | 2.48 | 2.87 | 2.96 | 2.39 | 2.50 | 2.67 | 2.55 |
δ | 2.13 | 1.50 | 2.15 | 2.37 | 2.91 | 2.40 | 1.83 | 2.33 | 2.69 | 1.80 |
DI | 75.57 | 75.98 | 78.64 | 75.26 | 77.24 | 81.29 | 75.90 | 76.95 | 77.67 | 79.13 |
SI | 12.65 | 15.50 | 10.42 | 14.35 | 8.23 | 10.08 | 10.53 | 9.46 | 8.43 | 10.90 |
CZC-1 | CZC-2 | CZC-3 | CZC-4 | CZC-5 | CZC-6 | CZC-7 | CZC-8 | CZC-9 | CZC-10 | |
---|---|---|---|---|---|---|---|---|---|---|
Cu | 6829.13 | 3820.43 | 2159.56 | 272.86 | 1861.22 | 156.39 | 6238.43 | 15368.67 | 331.82 | 639.83 |
Pb | 967.36 | 1009.18 | 1723.88 | 39.50 | 804.04 | 111.73 | 743.01 | 3270.46 | 33.91 | 66.18 |
Zn | 3240.07 | 596.29 | 4359.74 | 333.22 | 1371.85 | 54.50 | 1657.68 | 1262.02 | 46.30 | 98.55 |
Ba | 166.79 | 230.97 | 168.30 | 445.50 | 98.57 | 197.29 | 49.23 | 53.61 | 87.08 | 171.33 |
Rb | 92.90 | 107.83 | 89.97 | 98.93 | 95.67 | 106.15 | 55.08 | 81.13 | 58.88 | 115.32 |
Nb | 12.09 | 18.74 | 13.16 | 11.09 | 5.20 | 25.55 | 6.25 | 15.68 | 12.76 | 25.23 |
Ta | 1.48 | 1.57 | 2.01 | 0.74 | 0.91 | 3.08 | 0.42 | 2.09 | 1.21 | 2.91 |
La | 2.93 | 1.99 | 8.75 | 6.03 | 5.27 | 7.32 | 4.91 | 2.22 | 1.48 | 3.66 |
Ce | 23.82 | 37.07 | 29.43 | 37.94 | 12.13 | 75.39 | 13.55 | 10.73 | 10.25 | 49.09 |
Sr | 18.71 | 31.06 | 31.55 | 57.54 | 87.22 | 45.99 | 22.01 | 9.39 | 11.62 | 13.37 |
Nd | 4.00 | 2.88 | 9.45 | 9.09 | 5.75 | 10.24 | 5.96 | 3.25 | 1.36 | 5.92 |
Sm | 1.35 | 0.86 | 2.17 | 2.35 | 1.32 | 2.52 | 1.35 | 0.82 | 0.42 | 1.79 |
Zr | 154.80 | 289.27 | 151.53 | 172.71 | 78.71 | 177.80 | 81.56 | 84.27 | 39.87 | 143.53 |
Hf | 5.64 | 10.19 | 5.47 | 5.52 | 2.24 | 6.78 | 2.72 | 2.37 | 1.67 | 7.42 |
Tb | 0.56 | 0.28 | 0.43 | 0.44 | 0.26 | 0.48 | 0.25 | 0.16 | 0.13 | 0.42 |
Y | 10.39 | 6.49 | 12.51 | 11.02 | 7.98 | 12.64 | 6.82 | 4.61 | 4.75 | 12.05 |
Pr | 1.21 | 0.76 | 2.51 | 2.14 | 1.41 | 2.59 | 1.49 | 0.78 | 0.40 | 1.46 |
Eu | 0.62 | 0.33 | 0.54 | 0.68 | 0.55 | 0.49 | 0.33 | 0.21 | 0.10 | 0.29 |
Gd | 1.62 | 1.15 | 2.20 | 2.70 | 1.47 | 2.92 | 1.40 | 0.91 | 0.53 | 2.17 |
Dy | 2.21 | 1.50 | 2.39 | 2.57 | 1.51 | 3.01 | 1.37 | 0.98 | 0.87 | 2.92 |
Ho | 0.70 | 0.41 | 0.58 | 0.55 | 0.32 | 0.64 | 0.32 | 0.22 | 0.18 | 0.64 |
Er | 1.66 | 1.40 | 1.80 | 1.62 | 0.94 | 2.03 | 0.93 | 0.71 | 0.61 | 2.08 |
Tm | 0.47 | 0.27 | 0.33 | 0.25 | 0.14 | 0.32 | 0.16 | 0.10 | 0.11 | 0.34 |
Yb | 1.79 | 1.47 | 1.99 | 1.54 | 0.84 | 2.11 | 0.98 | 0.68 | 0.80 | 2.43 |
Lu | 0.49 | 0.29 | 0.37 | 0.25 | 0.13 | 0.32 | 0.18 | 0.11 | 0.13 | 0.37 |
ΣREE | 43.43 | 50.66 | 62.94 | 68.15 | 32.04 | 110.38 | 33.18 | 21.88 | 17.37 | 73.58 |
ΣLREE | 33.93 | 43.89 | 52.85 | 58.23 | 26.43 | 98.55 | 27.59 | 18.01 | 14.01 | 62.21 |
ΣHREE | 9.50 | 6.77 | 10.09 | 9.92 | 5.61 | 11.83 | 5.59 | 3.87 | 3.36 | 11.37 |
LREE/HREE | 3.57 | 6.48 | 5.24 | 5.87 | 4.71 | 8.33 | 4.94 | 4.65 | 4.17 | 5.47 |
δEu | 1.28 | 1.01 | 0.75 | 0.82 | 1.20 | 0.55 | 0.73 | 0.74 | 0.65 | 0.45 |
δCe | 3.04 | 7.25 | 1.49 | 2.54 | 1.05 | 4.16 | 1.20 | 1.96 | 3.15 | 5.11 |
(La/Sm)N | 1.37 | 1.46 | 2.54 | 1.61 | 2.51 | 1.83 | 2.29 | 1.70 | 2.22 | 1.29 |
(La/Yb)N | 1.10 | 0.91 | 2.96 | 2.64 | 4.23 | 2.34 | 3.38 | 2.20 | 1.25 | 1.02 |
(Sm/Nd)N | 1.04 | 0.92 | 0.71 | 0.80 | 0.71 | 0.76 | 0.70 | 0.78 | 0.95 | 0.93 |
(Gd/Yb)N | 0.73 | 0.63 | 0.89 | 1.41 | 1.41 | 1.12 | 1.15 | 1.08 | 0.53 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, J.; Wei, S.; Hu, J.; Wang, Z.; Ge, J. Granites of the Chazangcuo Copper–Lead–Zinc Mining Area in Tibet, China: Magma Source and Tectonic Implications. Minerals 2024, 14, 1227. https://doi.org/10.3390/min14121227
Li Y, Wang J, Wei S, Hu J, Wang Z, Ge J. Granites of the Chazangcuo Copper–Lead–Zinc Mining Area in Tibet, China: Magma Source and Tectonic Implications. Minerals. 2024; 14(12):1227. https://doi.org/10.3390/min14121227
Chicago/Turabian StyleLi, Yan, Jianguo Wang, Shengyun Wei, Jian Hu, Zhinan Wang, and Jiawen Ge. 2024. "Granites of the Chazangcuo Copper–Lead–Zinc Mining Area in Tibet, China: Magma Source and Tectonic Implications" Minerals 14, no. 12: 1227. https://doi.org/10.3390/min14121227
APA StyleLi, Y., Wang, J., Wei, S., Hu, J., Wang, Z., & Ge, J. (2024). Granites of the Chazangcuo Copper–Lead–Zinc Mining Area in Tibet, China: Magma Source and Tectonic Implications. Minerals, 14(12), 1227. https://doi.org/10.3390/min14121227