Genesis of Pb–Zn Mineralization in the Pulang Cu Polymetallic Deposit in Yunnan Province, China: Insights from Analyses of Geology, Fluid Inclusions and C–H–O–S Isotopes
Abstract
:1. Introduction
2. Regional Geology
3. Deposit Geology
4. Pb–Zn Mineralization in the North Ore Section
5. Samples and Analytical Methods
6. Results
6.1. Petrography and Microthermometry of Fluid Inclusions
6.2. S Isotopic Composition
6.3. H–O Isotopic Composition of Quartz
6.4. C–O Isotopic Composition of Calcite
7. Discussion
7.1. Property, Origin, and Evolution of Pb–Zn Mineralization Fluids
7.2. The Source of Ore-Forming Materials
7.3. Genesis of Pb–Zn Mineralization
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kesler, S.E. Copper, molybdenum and gold abundances in porphyry copper deposits. Econ. Geol. 1973, 68, 106–112. [Google Scholar] [CrossRef]
- Cooke, D.R.; Hollings, P.; Walsh, J.L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 2005, 100, 801–818. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Li, W.C.; Zeng, P.S.; Hou, Z.Q.; White, N.C. The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, Southwest China. Econ. Geol. 2011, 106, 79–92. [Google Scholar]
- Li, W.C.; Yu, H.J.; Yin, G.H. Porphyry metallogenic system of Geza arc in the Sanjiang region, southwestern China. Acta Petrol. Sin. 2013, 29, 1129–1144, (In Chinese with English Abstract). [Google Scholar]
- Zhang, S.Y.; He, W.Y.; Gao, X.; Zhang, H.R.; Yuan, J.J. Ore-forming fluids evolution of the porphyry Cu deposits: Alteration mineralogy and thermodynamic modeling of the Pulang Cu deposit, Zhongdian district. Acta Petrol. Sin. 2020, 36, 1611–1626, (In Chinese with English Abstract). [Google Scholar]
- Chen, L. The Characteristics of Ore-Forming Magma and Tectonic Setting of the Pulang Giant Porphyry Copper Deposit in the Yunnan Province. Ph.D. Thesis, Graduate School of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), Guangzhou, China, 2016. (In Chinese with English Abstract). [Google Scholar]
- Cao, K.; Yang, Z.M.; Mavrogenes, J.; White, N.C.; Xu, J.F.; Li, Y.; Li, W.K. Geology and genesis of the giant Pulang porphyry Cu–Au district, Yunnan, Southwest China. Econ. Geol. 2019, 114, 275–301. [Google Scholar] [CrossRef]
- Leng, C.B.; Zhang, X.C.; Wang, S.X.; Qin, C.J.; Gou, T.Z. Geochemical characteristics of porphyry copper deposits in the Zhongdian area, Yunnan as exemplified by the Xuejiping and Pulang porphyry copper deposits. Acta Mineral. Sin. 2007, 27, 414–422, (In Chinese with English Abstract). [Google Scholar]
- Cao, K.; Yang, Z.M.; Xu, J.F.; Fu, B.; Li, W.K.; Sun, M.Y. Origin of dioritic magma and its contribution to porphyry Cu–Au mineralization at Pulang in the Yidun arc, eastern Tibet. Lithos 2018, 304, 436–449. [Google Scholar] [CrossRef]
- Chen, J.L.; Xu, J.F.; Ren, J.B.; Huang, X.X.; Wang, B.D. Geochronology and geochemical characteristics of Late Triassic porphyritic rocks from the Zhongdian arc, eastern Tibet, and their tectonic and metallogenic implications. Gondwana Res. 2014, 26, 492–504. [Google Scholar] [CrossRef]
- Wang, B.Q.; Zhou, M.F.; Li, J.W.; Yan, D.P. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization. Lithos 2011, 127, 24–38. [Google Scholar] [CrossRef]
- Wang, S.X.; Zhang, X.C.; Leng, C.B. A tentative study of ore geochemistry and ore-forming mechanism of Pulang porphyry copper deposit in Zhongdian, northwestern Yunnan. Miner. Depos. 2007, 26, 277–288, (In Chinese with English Abstract). [Google Scholar]
- Leng, C.B.; Zhang, X.C.; Qin, C.J.; Wang, S.X.; Ren, T.; Wang, W.Q. Study of fluid inclusions in quartz veinlets in the Xuejiping porphyry copper deposit, Northwest Yunnan, China. Acta Petrol. Sin. 2008, 24, 2017–2028, (In Chinese with English Abstract). [Google Scholar]
- Leng, C.B.; Gao, J.F.; Chen, W.T.; Zhang, X.C.; Tian, Z.D.; Guo, J.H. Platinum-group elements, zircon Hf-O isotopes, and mineralogical constraints on magmatic evolution of the Pulang porphyry Cu-Au system, SW China. Gondwana Res. 2018, 62, 163–177. [Google Scholar] [CrossRef]
- Kong, D.X.; Xu, J.F.; Chen, J.L. Oxygen isotope and trace element geochemistry of zircons from porphyry copper system: Implications for Late Triassic metallogenesis within the Yidun Terrane, southeastern Tibetan Plateau. Chem. Geol. 2016, 441, 148–161. [Google Scholar] [CrossRef]
- Wang, P.; Dong, G.C.; Zhao, G.C.; Han, Y.G.; Li, Y.P. Petrogenesis of the Pulang porphyry complex, southwestern China: Implications for porphyry copper metallogenesis and subduction of the Paleo-Tethys Oceanic lithosphere. Lithos 2018, 304–307, 280–297. [Google Scholar] [CrossRef]
- Wang, D.Z.; Zhu, J.J.; Bi, X.W.; Fu, S.L.; Lu, Z.T.; Wu, L.R.; Hu, R.Z. Increasing sulfur and chlorine contents in ore-forming magmas: The key to Pulang porphyry Cu-Au formation, SW China. Ore Geol. Rev. 2021, 139, 104518. [Google Scholar] [CrossRef]
- Wu, L.R.; Zhai, J.J.; Yu, C.; Shi, B.S.; Li, J.L.; Yang, D. Late Triassic Ore-controlling structures of Pulang porphyry copper deposit in Yunnan province. Resour. Geol. 2021, 30, 126–135, (In Chinese with English Abstract). [Google Scholar]
- Peng, T.P.; Zhao, G.C.; Fan, W.M.; Peng, B.X.; Mao, Y.S. Zircon geochronology and Hf isotopes of Mesozoic intrusive rocks from the Yidun terrane, Eastern Tibetan Plateau: Petrogenesis and their bearings with Cu mineralization. J. Asian Earth Sci. 2014, 80, 18–33. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Li, G.J. Superimposed orogeny and composite metallogenic system: Case study from the Sanjiang Tethyan belt, SW China. Acta Petrol. Sin. 2016, 32, 2225–2247, (In Chinese with English Abstract). [Google Scholar]
- Dewey, J.F. Extensional collapse of orogens. Tectonics 1988, 7, 1123–1139. [Google Scholar] [CrossRef]
- Hou, Z.Q. Tectono-magmatic evolution of the Yidun island-arc and geodynamic setting of Kuroko-type sulfide deposits in Sanjiang region, SW China. Resour. Geol. 1993, 17, 336–350. [Google Scholar]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Reid, A.J.; Wilson, C.J.L.; Liu, S. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan plateau. J. Struct. Geol. 2005, 27, 119–137. [Google Scholar] [CrossRef]
- Yang, T.N.; Hou, Z.Q.; Wang, Y.; Zhang, H.R.; Wang, Z.L. Late Paleozoic to Early Mesozoic tectonic evolution of northeast Tibet: Evidence from the Triassic composite western Jinsha-Garzê-Litang suture. Tectonics 2012, 31, TC4004. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Mo, X.X. The evolution of Yidun island-arc and implications in the exploration of Kuroko-type volcanogenic massive sulphide deposits in Sanjiang area, China. Sci. J. China Univ. Geosci. 1991, 16, 153–164, (In Chinese with English Abstract). [Google Scholar]
- Deng, J.; Liu, X.F.; Wang, Q.F.; Dilek, Y.; Liang, Y.Y. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking: Lithospheric extension in the North China Craton, eastern Asia. Geol. Soc. Am. Bull. 2017, 129, 1379–1407. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Yang, Y.Q.; Qu, X.M.; Huang, D.H.; Lu, Q.T.; Wang, H.P.; Yu, J.J.; Tang, S.H. Tectonic evolution and mineralization systems of the Yidun Arc Orogen in Sanjiang Region, China. Acta Geogr. Sin. 2004, 78, 109–120, (In Chinese with English Abstract). [Google Scholar]
- Leng, C.B.; Huang, Q.Y.; Zhang, X.C.; Wang, S.X.; Zhong, H.; Hu, R.Z.; Bi, X.W.; Zhu, J.J.; Wang, X.S. Petrogenesis of the Late Triassic volcanic rocks in the Southern Yidun arc, SW China: Constraints from the geochronology, geochemistry, and Sr–Nd–Pb–Hf isotopes. Lithos 2014, 190–191, 363–382. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Yang, Y.Q.; Wang, H.P.; Qu, X.M.; Lu, Q.T.; Huang, D.H.; Wu, X.Z.; Yu, J.J.; Tang, S.H.; Zhao, J.H. Collision-Orogenic Progress and Mineralization System of Yidun Arc; Geological Publishing House: Beijing, China, 2003; pp. 1–345. [Google Scholar]
- Wang, B.Q.; Wang, W.; Chen, W.T.; Gao, J.F.; Zhao, X.F.; Yan, D.P.; Zhou, M.F. Constraints of detrital zircon U–Pb ages and Hf isotopes on the provenance of the Triassic Yidun Group and tectonic evolution of the Yidun Terrane, Eastern Tibet. Sediment. Geol. 2013, 289, 74–98. [Google Scholar] [CrossRef]
- Zeng, P.S.; Mo, X.X.; Yu, X.H.; Hou, Z.Q.; Xu, Q.D.; Wang, H.P.; Li, H.; Yang, C.Z. Porphyries and porphyry copper deposits in Zhongdian Area, Northwestern Yunnan. Miner. Depos. 2003, 22, 393–400, (In Chinese with English Abstract). [Google Scholar]
- Liu, X.D. The Evolution of Ore-Forming Fluid of the Pulang Porphyry Copper Polymetallic Deposit in the Northwest Yunnan Province, China. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Leng, C.B.; Zhang, X.C.; Hu, R.Z.; Wang, S.X.; Zhong, H.; Wang, W.Q.; Bi, X.W. Zircon U–Pb and molybdenite Re–Os geochronology and Sr–Nd–Pb–Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China. J. Asian Earth Sci. 2012, 60, 31–48. [Google Scholar] [CrossRef]
- Wang, D.Z.; Hu, R.Z.; Hollings, P.; Bi, X.W.; Zhong, H.; Pan, L.C.; Leng, C.B.; Huang, M.L.; Zhu, J.J. Remelting of a Neoproterozoic arc root: Origin of the Pulang and Songnuo porphyry Cu deposits, Southwest China. Miner. Depos. 2021, 56, 1043–1070. [Google Scholar] [CrossRef]
- Li, W.C.; Zhang, X.F.; Yu, H.J.; Dong, T.; Liu, X.L. Geology and mineralization of the Pulang supergiant porphyry copper deposit (5.11 Mt) in Shangri-la, Yunnan Province, China: A review. Geol. China 2022, 5, 662–695. [Google Scholar]
- Leng, C.B.; Cooke, D.R.; Hou, Z.Q.; Evans, N.J.; Zhang, X.C.; Chen, W.T.; Danišík, M.; McInnes, B.I.; Yang, J.H. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating. Econ. Geol. 2018, 113, 1077–1092. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.F.; Yuan, Y.S.; Zhang, Q.; Wang, L.J. Hydrothermal evolution and mineralization of the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys, Southwest China: Constraints from fluid inclusions and D-O-S isotopes. Ore Geol. Rev. 2021, 139, 104430. [Google Scholar] [CrossRef]
- Cao, K. Magmatism and Genesis of the Giant Pulang Porphyry Cu–Au Deposit, Yunnan, SW China. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Cao, K.; Yang, Z.M.; White, N.C.; Hou, Z.Q. Generation of the giant porphyry Cu-Au deposit by repeated recharge of mafic magmas at Pulang in eastern Tibet. Econ. Geol. 2022, 117, 57–90. [Google Scholar] [CrossRef]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O–NaCI solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Gong, B.; Zheng, Y.F.; Chen, R.X. An online method combining a thermal conversion elemental analyzer with isotope ratio mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples. Rapid Commun. Mass Spectrom. 2007, 21, 1386–1392. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Coplen, T.; Kendall, C.; Hopple, J. Comparison of stable isotope reference samples. Nature 1983, 302, 236–238. [Google Scholar] [CrossRef]
- O’Neil, J.R.; Clayton, R.N.; Mayeda, T.K. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 1969, 51, 5547–5558. [Google Scholar] [CrossRef]
- Matthew, S.M.; Pilar, L.S.; Robert, J.B. HokieFlincs_H2O-NaCl: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Comput. Geosci. 2012, 49, 334–337. [Google Scholar]
- Driesner, T.; Heinrich, C.A. The system H2O-NaCl. Part I: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta 2007, 71, 4880–4901. [Google Scholar] [CrossRef]
- Liu, J.T. Late-Triassic Cu Mineralization in Porphyry Environment, Northwest Yunnan, China. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2014. (In Chinese with English Abstract). [Google Scholar]
- Zhang, C.Z. Study on the Fluid Characteristics and Ore-Forming Material Sources of the Peripheral Ore Bodies of Pulang Porphyry Copper Deposit in Northwest Yunnan. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2020. (In Chinese with English Abstract). [Google Scholar]
- Yang, Z. Late Triassic Mineralization of the Porphyry Copper Deposits in Yidun Arc, Southwest China. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Zhang, X.F.; Li, W.C.; Yang, Z.; Wang, Y.Q. Stable isotopes and fluid inclusions constraints on the source and evolution of ore fluids in the Xiuwacu W–Mo granite-related quartz-vein deposit, Yunnan Province, China. Ore Geol. Rev. 2021, 136, 104245. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Chen, J.F. Stable Isotope Geochemistry; Science Press: Beijing, China, 2000; pp. 218–247. [Google Scholar]
- Spangenberg, J.; Fontboté, L.; Sharp, Z.D. Carbon and oxygen isotope study of hydrothermal carbonates in the zinc–lead deposits of the San Vicente district, central Peru: A quantitative modeling on mixing processes and CO2 degassing. Chem. Geol. 1996, 133, 289–315. [Google Scholar] [CrossRef]
- Rajabpour, S.; Jiang, S.Y.; Lehmann, B.; Abedini, A.; Gregory, D.D. Fluid inclusion and O-H-C isotopic constraints on the origin and evolution of ore-forming fluids of the Cenozoic volcanic-hosted Kuh-Pang copper deposit, Central Iran. Ore Geol. Rev. 2018, 94, 277–289. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–389. [Google Scholar]
- Veizer, J.; Holser, W.T.; Wilgus, C.K. Correlation of 13C/12C and 34S/32S secular variations. Geochim. Cosmochim. Acta 1980, 44, 579–587. [Google Scholar] [CrossRef]
- Nelson, D.R.; Chivas, A.R.; Chappell, B.W.; McCulloch, M.T. Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim. Cosmochim. Acta 1988, 52, 1–17. [Google Scholar] [CrossRef]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Ray, J.S.; Ramesh, R.; Pande, K. Carbon isotopes in Kerguelen plume-derived carbonatites: Evidence for recycled inorganic carbon. Earth Planet. Sci. Lett. 1999, 170, 205–214. [Google Scholar] [CrossRef]
- Chen, F.C.; Deng, J.; Wang, Q.F.; Li, G.J.; Shu, Q.H.; Yang, C.H.; Liu, J.Y.; Xu, R. The source and evolution of ore fluids in the Heiniuwa gold deposit, Baoshan block, Sanjiang region: Constraints from sulfide trace element, fluid inclusion and stable isotope studies. Ore Geol. Rev. 2018, 95, 725–745. [Google Scholar] [CrossRef]
- Huang, M.L.; Bi, X.W.; Gao, J.F.; Xu, L.L.; Xiao, J.F.; Liu, S.T.; Wang, X.S.; Zhou, T. Sulfur and lead isotopic variations in the giant Yulong porphyry Cu (Mo Au) deposit from the eastern Tibetan Plateau: Implications for origins of S and Pb, and metal precipitation. J. Geochem. Explor. 2019, 197, 70–83. [Google Scholar] [CrossRef]
- Leng, C.B.; Zhang, X.C.; Huang, Z.-L.; Huang, Q.Y.; Wang, S.X.; Ma, D.Y.; Luo, T.Y.; Li, C.; Li, W.B. Geology, Re–Os ages, sulfur and lead isotopes of the Diyanqinamu porphyry Mo deposit, Inner Mongolia, NE China. Econ. Geol. 2015, 110, 557–574. [Google Scholar] [CrossRef]
- Lowell, J.D.; Guilbert, J.M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ. Geol. 1970, 65, 373–408. [Google Scholar] [CrossRef]
- Henley, R.W.; McNabb, A. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Econ. Geol. 1978, 73, 1–20. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Arribas, A.; Reynolds, T.J. Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ. Geol. 1998, 93, 373–404. [Google Scholar] [CrossRef]
- Reynolds, T.J.; Beane, R.E. Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit. Econ. Geol. 1985, 80, 1328–1347. [Google Scholar] [CrossRef]
Vein Type | a | b | c |
---|---|---|---|
Mineral assemblage | Qz–Po–Ccp–Sp–Gn–(Cal, Chl, Py) | Qz–Po–Sp–Gn–(Cal, Py, Ccp, Chl) | Cal–Qz–Po–Gn–(Ccp, Sp, Py) |
Alteration | Ep, Chl | Ser | Ep, Chl |
Vein width | 0.3~1 cm | 0.2~2 cm | 0.2~2 cm |
Structural characteristic | Jagged—wavy | Uneven thickness, straight—wavy | Straight—curved |
Depth | 60.5 m, 503 m | 305~376 m | 25 m, 302 m |
Vein Type | Sample No. | Host Mineral | Fluid Inclusion Type | Genetic Type | Number of Analyses | Tm, ice 1 (°C) | Th, TOT 2 (°C) | Salinity (wt.% NaCl eq.) |
---|---|---|---|---|---|---|---|---|
a | N002-06-1 | Quartz | LV | Primary | 15 | −8.9~−13.9 | 184~197 | 12.7~17.7 |
N002-06-2 | Quartz | LV | Primary | 10 | −8.5~−12.6 | 187~199 | 12.3~16.2 | |
N002-06-3 | Quartz | LV | Primary | 8 | −9.9~−14.0 | 189~208 | 13.8~17.8 | |
b | N002-18-1 | Quartz | LV | Primary | 5 | −7.9~−13.2 | 203~212 | 11.6~17.1 |
N002-18-2 | Quartz | LV | Primary | 6 | −6.9~−11.5 | 226~235 | 10.4~15.5 | |
N002-18-3 | Quartz | LV | Primary | 8 | −7.3~−10.9 | 210~233 | 10.9~14.9 | |
c | N002-15-1 | Quartz | LV | Primary | 5 | −8.6~−13.5 | 194~209 | 12.4~17.1 |
N002-15-2 | Quartz | LV | Primary | 8 | −7.5~−11.2 | 211~220 | 11.1~15.2 |
Vein Type | Sample No. | Sulfide | δ34S (‰ V-CDT) | Vein Type | Sample No. | Sulfide | δ34S (‰ V-CDT) |
---|---|---|---|---|---|---|---|
a | N002-04-1 | Pyrrhotite | 3.4 | N002-18-2-1 | Pyrite | 3.4 | |
N002-04-2 | Pyrrhotite | 2.3 | N002-18-2-2 | Pyrite | 3.9 | ||
N002-04-3 | Pyrrhotite | 3.2 | N002-16-2-1 | Chalcopyrite | 2.2 | ||
N002-06-2 | Pyrrhotite | 3.5 | N002-18-2-2 | Chalcopyrite | 3.4 | ||
N002-06-2-1 | Pyrite | 4.1 | N002-13-1 | Sphalerite | 2.5 | ||
N002-06-3-1 | Pyrite | 3.2 | N002-13-2 | Sphalerite | 2.2 | ||
N002-04-1 | Chalcopyrite | 1.7 | N002-16-2-3 | Sphalerite | 2.3 | ||
N002-06-2-1 | Chalcopyrite | 3.0 | N002-17-1 | Sphalerite | 2.6 | ||
N002-06-2-2 | Chalcopyrite | 3.4 | N002-17-2 | Sphalerite | 3.1 | ||
N002-06-2-3 | Chalcopyrite | 3.9 | N002-18-2-1-1 | Sphalerite | 2.0 | ||
N002-06-3-1 | Chalcopyrite | 2.8 | N002-18-2-1-2 | Sphalerite | 3.8 | ||
N002-04-1-1 | Sphalerite | 2.1 | N002-18-2-2-1 | Sphalerite | 3.3 | ||
N002-04-1-2 | Sphalerite | 1.9 | N002-18-2-2-2 | Sphalerite | 3.7 | ||
N002-04-2 | Sphalerite | 2.1 | c | N002-01-1 | Pyrrhotite | 3.6 | |
N002-04-3 | Sphalerite | 2.1 | N002-01-2 | Pyrrhotite | 3.0 | ||
N002-06-2-1 | Sphalerite | 3.4 | N002-15-1 | Pyrrhotite | 3.0 | ||
N002-06-2-2 | Sphalerite | 3.1 | N002-12-1 | Pyrite | 2.5 | ||
N002-06-2-3 | Sphalerite | 2.2 | N002-12-2 | Pyrite | 3.7 | ||
b | N002-13-2 | Pyrrhotite | 2.5 | N002-01-1 | Chalcopyrite | 2.9 | |
N002-16-2-1 | Pyrrhotite | 2.9 | N002-01-2 | Chalcopyrite | 2.7 | ||
N002-16-2-2 | Pyrrhotite | 3.0 | N002-12-1-1 | Chalcopyrite | 1.3 | ||
N002-16-2-3 | Pyrrhotite | 2.5 | N002-12-2-1 | Chalcopyrite | 2.5 | ||
N002-17-1 | Pyrrhotite | 3.3 | N002-01-1 | Sphalerite | 3.2 | ||
N002-17-2 | Pyrrhotite | 3.1 | N002-01-2 | Sphalerite | 3.2 | ||
N002-18-2-1 | Pyrrhotite | 3.5 | N002-12-1-1 | Sphalerite | 1.7 | ||
N002-18-2-2 | Pyrrhotite | 4.5 | N002-12-1-2 | Sphalerite | 1.6 |
Vein Type | Sample No. | Mineral | δ18OQz (‰ V-SMOW) | δDwater (‰ V-SMOW) | Th (°C) | δ18Owater 1 (‰ V-SMOW) |
---|---|---|---|---|---|---|
a | N002-06 | Quartz | 14.5 | −46.9 | 194 | 2.4 |
b | N002-16 | Quartz | 14.8 | −114.5 | 220 | 4.3 |
N002-17 | Quartz | 14.8 | −111.9 | 220 | 4.3 | |
N002-18 | Quartz | 13.8 | −113.3 | 220 | 3.3 | |
c | N002-01 | Quartz | 14.4 | −72.2 | 209 | 3.3 |
N002-05 | Quartz | 14.4 | −85.2 | 209 | 3.3 | |
N002-09 | Quartz | 14.4 | −108.6 | 209 | 3.2 | |
N002-11 | Quartz | 14.7 | −113.6 | 209 | 3.6 | |
N002-15 | Quartz | 14.4 | −120.0 | 209 | 3.3 |
Vein Type | Sample No. | Mineral | δ13CCal (‰ V-PDB) | δ18OCal (‰ SMOW) | Th (°C) | δ18Owater 1 (‰ SMOW) |
---|---|---|---|---|---|---|
a | N002-06 | Calcite | −2.3 | 13.6 | 194 | 4.2 |
N002-08 | Calcite | −5.2 | 13.3 | 194 | 4.0 | |
b | N002-16 | Calcite | −7.9 | 12.8 | 220 | 4.7 |
N002-17 | Calcite | −7.2 | 13.2 | 220 | 5.1 | |
N002-18 | Calcite | −6.9 | 12.8 | 220 | 4.8 | |
c | N002-01 | Calcite | −6.6 | 13.8 | 209 | 5.3 |
N002-05 | Calcite | −6.2 | 12.9 | 209 | 4.3 | |
N002-09 | Calcite | −5.1 | 12.8 | 209 | 4.3 | |
N002-11 | Calcite | −4.2 | 11.9 | 209 | 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zhao, X.; Deng, M.; Li, W.; Su, Y. Genesis of Pb–Zn Mineralization in the Pulang Cu Polymetallic Deposit in Yunnan Province, China: Insights from Analyses of Geology, Fluid Inclusions and C–H–O–S Isotopes. Minerals 2024, 14, 176. https://doi.org/10.3390/min14020176
Xu J, Zhao X, Deng M, Li W, Su Y. Genesis of Pb–Zn Mineralization in the Pulang Cu Polymetallic Deposit in Yunnan Province, China: Insights from Analyses of Geology, Fluid Inclusions and C–H–O–S Isotopes. Minerals. 2024; 14(2):176. https://doi.org/10.3390/min14020176
Chicago/Turabian StyleXu, Jingwei, Xiaoyu Zhao, Mingguo Deng, Wenchang Li, and Yan Su. 2024. "Genesis of Pb–Zn Mineralization in the Pulang Cu Polymetallic Deposit in Yunnan Province, China: Insights from Analyses of Geology, Fluid Inclusions and C–H–O–S Isotopes" Minerals 14, no. 2: 176. https://doi.org/10.3390/min14020176
APA StyleXu, J., Zhao, X., Deng, M., Li, W., & Su, Y. (2024). Genesis of Pb–Zn Mineralization in the Pulang Cu Polymetallic Deposit in Yunnan Province, China: Insights from Analyses of Geology, Fluid Inclusions and C–H–O–S Isotopes. Minerals, 14(2), 176. https://doi.org/10.3390/min14020176