The Raw Material Challenge of Creating a Green Economy
Abstract
:1. Introduction
2. Mineral Usage Growth Due to the Green Energy, Transport, and Industrial Transition
3. How Will We Decarbonize the Economy?
4. Can Recycling or Waste Recovery Deliver Everything We Need?
5. The Future for Mining
5.1. Mineral Supply
5.2. Environmental, Social, and Governance Constraints
5.3. Minerals versus Other Natural Capital
5.4. New Exploration Frontiers and Discovery
5.5. Brownfields and Deep Geological Discovery
5.6. Unlocking Potential with Mineral Processing Advances
6. Rising to the Challenge—A Way Forward
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrington, R. Mining our green future. Nat. Rev. Mater. 2021, 6, 456–458. [Google Scholar] [CrossRef]
- IEA. The Role of Critical Minerals in Clean Energy Transitions. 2021. Available online: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed on 31 May 2023).
- Ekins, P.; Hughes, N.; Brigenzu, S.; Clarke, C.A.; Fischer-Kowalski, M.; Graedel, T.; Hajer, M.; Hashimoto, S.; Hatield-Dodds, S.; Havlik, P.; et al. Resource Efficiency: Potential and Economic Implications; United Nations Environment Program: Paris, France, 2016. [Google Scholar]
- UNDP. Mapping Mining to the SDGs. 2016. Available online: https://www.undp.org/publications/mapping-mining-sdgs-atlas (accessed on 6 November 2023).
- Klose, S.; Pauliuk, S. Sector-level estimates for global future copper demand and the potential for resource efficiency. Resour. Conserv. Recycl. 2023, 193, 106941. [Google Scholar] [CrossRef]
- Kesler, S.E. Mineral Supply and Demand into the 21st Century, USGS Publication 1294. 2007. Available online: https://pubs.usgs.gov/circ/2007/1294/reports/paper9.pdf (accessed on 6 November 2023).
- NOOA News April 2023. Available online: https://www.noaa.gov/news-release/greenhouse-gases-continued-to-increase-rapidly-in-2022 (accessed on 24 October 2023).
- IEA. CO2 Emissions in 2022. 2022. Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 6 November 2023).
- Thiel, G.P.; Stark, A.K. To decarbonize industry, we must decarbonize heat. Joule 2021, 5, 531–550. [Google Scholar] [CrossRef]
- BP. Energy Outlook 2022 Edition. 2022. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2022.pdf (accessed on 6 November 2023).
- Vidal, O.; Goffé, B.; Arndt, N. Metals for a low-carbon society. Nat. Geosci. 2013, 6, 894–896. [Google Scholar] [CrossRef]
- S&P Capital IQ. Copper Discoveries Still Trending down Amid Increasing Budgets, Higher Prices. S&P Global Market Intelligence, Metals and Mining Research. 2023. Available online: https://www.spglobal.com/marketintelligence/en/news-insights/research/copper-discoveries-declining-trend-continues (accessed on 6 November 2023).
- Iglesias-Émbil, M.; Valero, A.; Ortego, A.; Villacampa, M.; Vilaró, J.; Villalba, G. Raw material use in a battery electric car—A thermodynamic rarity assessment. Resour. Conserv. Recycl. 2020, 158, 104820. [Google Scholar] [CrossRef]
- GOV.UK. Road Traffic Estimates in Great Britain. Headline Statistics. 2022. Available online: https://www.gov.uk/government/statistics/road-traffic-estimates-in-great-britain-2022/road-traffic-estimates-in-great-britain-2022-headline-statistics (accessed on 13 November 2023).
- Hagelüken, C.; Goldmann, D. Recycling and circular economy—Towards a closed loop for metals in emerging clean technologies. Miner. Econ. 2022, 35, 539–562. [Google Scholar] [CrossRef]
- Ambrose, H.; O’Dea, J. Electric Vehicle Batteries: Addressing Questions about Critical Materials and Recycling; Union of Concerned Scientists: Cambridge, MA, USA, 2021; Available online: https://www.ucsusa.org/resources/ev-battery-recycling (accessed on 6 November 2023).
- Oberle, B.; Brereton, D.; Mihaylova, A. (Eds.) Towards Zero Harm: A Compendium of Papers Prepared for the Global Tailings Review; Global Tailings Review: St Gallen, Switzerland, 2020; Available online: https://globaltailingsreview.org/ (accessed on 6 November 2023).
- Shaw, R.A.; Petavratzi, E.; Bloodworth, A.J. Resource Recovery from Mine Waste. In Waste as a Resource; Hester, R.E., Harrison, R.M., Eds.; The Royal Society of Chemistry: London, UK, 2013. [Google Scholar] [CrossRef]
- Araujo, F.S.M.; Taborda-Llano, I.; Nunes, E.B.; Santos, R.M. Recycling and Reuse of Mine Tailings: A Review of Advancements and Their Implications. Geosciences 2022, 12, 319. [Google Scholar] [CrossRef]
- Šajn, R.; Ristović, I.; Čeplak, B. Mining and Metallurgical Waste as Potential Secondary Sources of Metals—A Case Study for the West Balkan Region. Minerals 2022, 12, 547. [Google Scholar] [CrossRef]
- Wanhainen, C.; Broman, C.; Martinsson, O. The Aitik Cu–Au–Ag deposit in northern Sweden: A product of high salinity fluids. Miner. Depos. 2003, 38, 715–726. [Google Scholar] [CrossRef]
- Mining.Com. 2021. Available online: https://www.mining.com/mining-copper-tailings-could-answer-supply-deficits-later-this-decade/0 (accessed on 6 November 2023).
- Legge, H.; Müller-Falcke, C.; Nauclér, T.; Östgren, E. Creating the Zero-Carbon Mine, McKinsey & Company. 2021. Available online: https://www.mckinsey.com/industries/metals-and-mining/our-insights/creating-the-zero-carbon-mine (accessed on 6 November 2023).
- Mudd, G.M.; Yellishetty, M.; Reck, B.K.; Graedel, T.E. Quantifying the Recoverable Resources of Companion Metals: A Preliminary Study of Australian Mineral Resources. Resources 2014, 3, 657–671. [Google Scholar] [CrossRef]
- Yilmaz, E.; Koohestani, B.; Cao, S. Recent practices in mine tailings’ recycling and reuse. In Managing Mining and Minerals Processing Wastes, Concepts Design and Applications; Qi, C., Benson, C.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 271–304. [Google Scholar] [CrossRef]
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens, W.W. The Limits to Growth; Universe: New York, NY, USA, 1972. [Google Scholar]
- Skinner, B.J. Second iron age ahead. Am. Sci. 1976, 64, 258–269. [Google Scholar]
- Laherrere, J. Copper Peak. (Posted by de Sousa, L., 2010). Oild Rum Eur. 2010, 6307, 1–27. Available online: http://europe.theoildrum.com/node/6307 (accessed on 6 November 2023).
- Sverdrup, H.; Ragnarsdóttir, K.V. Natural Resources in a Planetary Perspective. Geochem. Perspect. 2014, 3, 129–341. [Google Scholar] [CrossRef]
- Arndt, T.; Fontboté, L.; Hedenquist, J.W.; Kesler, S.E.; Thompson, J.F.H.; Wood, D.G. Future Global Mineral Resources. Geochem. Perspect. 2017, 6, 1–171. [Google Scholar] [CrossRef]
- Jowitt, S.M.; Mudd, G.M.; Thompson, J.F.H. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Commun. Earth Environ. 2020, 1, 13. [Google Scholar] [CrossRef]
- Kesler, S.E.; Wilkinson, B.H. Earth’s copper resources estimated from tectonic diffusion of porphyry copper deposits. Geology 2008, 36, 255–258. [Google Scholar] [CrossRef]
- Mudd, G.M.; Weng, Z.; Jowitt, S.M. A Detailed Assessment of Global Cu Resource Trends and Endowments. Econ. Geol. 2013, 108, 1163–1183. [Google Scholar] [CrossRef]
- Seck, G.S.; Hache, E.; Bonnet, C.; Simoën, M.; Carcanague, S. Copper at the crossroads: Assessment of the interactions between low-carbon energy transition and supply limitations. Resour. Conserv. Recycl. 2020, 163, 105072. [Google Scholar] [CrossRef]
- Manalo, P. Discovery to Production Averages 15.7 Years for 127 Mines. 2023. Available online: https://www.spglobal.com/marketintelligence/en/news-insights/research/discovery-to-production-averages-15-7-years-for-127-mines (accessed on 9 November 2023).
- Adams, C.; Frost, G.; Webber, W. Enter the Triple Bottom Line. In The Triple Bottom Line; Routledege: London, UK, 2013; ISBN 9781849773348. [Google Scholar] [CrossRef]
- Pell, R.; Tijsseling, L.; Goodenough, K.; Wall, F.; Dehaine, Q.; Grant, A.; Deak, D.; Yan, X.; Whattoff, P. Towards sustainable extraction of technology materials through integrated approaches. Nat. Rev. Earth Environ. 2021, 2, 665–679. [Google Scholar] [CrossRef]
- Braungart, M.; McDonough, W. Cradle to Cradle: Remaking the Way We Make Things; North Point Press: New York, NY, USA, 2002. [Google Scholar]
- Thomson, I.; Boutilier, R.G. Social license to operate. In SME Mining Engineering Handbook; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1, pp. 1779–1796. [Google Scholar]
- Prno, J.; Slocombe, D.S. Exploring the origins of ‘social license to operate’ in the mining sector: Perspectives from governance and sustainability theories. Resour. Policy 2012, 37, 346–357. [Google Scholar] [CrossRef]
- Moffat, K.; Zhang, A. The paths to social licence to operate: An integrative model explaining community acceptance of mining. Resour. Policy 2014, 39, 61–70. [Google Scholar] [CrossRef]
- Suopajärvi, L.; Umander, K.; Jungsberg, L. Social license to operate in the frame of social capital: Exploring local ac-ceptance of mining in two rural municipalities in the European North. Resour. Policy 2019, 64, 101498. [Google Scholar]
- Prno, J. An analysis of factors leading to the establishment of a social licence to operate in the mining industry. Resour. Policy 2013, 38, 577–590. [Google Scholar] [CrossRef]
- Mercer-Mapstone, L.; Rifkin, W.; Louis, W.R.; Moffat, K. Company-community dialogue builds relationships, fairness, and trust leading to social acceptance of Australian mining developments. J. Clean. Prod. 2018, 184, 671–677. [Google Scholar] [CrossRef]
- Herrington, R.; Gordon, S. Delivering Critical Raw Materials: Ecological, Ethical and Societal Issues. In Geoethics for Future: Facing Global Challenges; Elsevier: Amsterdam, The Netherlands, under review.
- Ekins, P.; Simon, S.; Deutsch, L.; Folke, C.; De Groot, R. A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecol. Econ. 2003, 44, 165–185. [Google Scholar] [CrossRef]
- Boldy, R.; Santini, T.; Annandale, M.; Erskine, P.D.; Sonter, L.J. Understanding the impacts of mining on ecosystem services through a systematic review. Extr. Ind. Soc. 2021, 8, 457–466. [Google Scholar] [CrossRef]
- Meney, K.; Pantelic, L.; Cooper, T.; Pittard, M. Natural Capital Accounting for The Mining Sector: Beenup Site Pilot Case Study; Prepared by Syrinx Environmental PL for BHP; 2023; ISBN 978-0-6456956-0-1. Available online: https://www.bhp.com/-/media/documents/environment/2023/230502_bhpbeenuppilotcasestudynaturalcapitalaccountingreport.pdf (accessed on 6 November 2023).
- Stanley, C.J.; Jones, G.C.; Rumsey, M.S.; Blake, C.; Roberts, A.C.; Stirling, J.A.; Carpenter, G.J.; Whitfield, P.S.; Grice, J.D.; Lepage, Y. Jadarite, LiNaSiB3O7(OH), a new mineral species from the Jadar Basin, Serbia. Eur. J. Miner. 2007, 19, 575–580. [Google Scholar] [CrossRef]
- Benson, T.R.; Coble, M.A.; Dilles, J.H. Hydrothermal enrichment of lithium in intracaldera illite-bearing clay-stones. Sci. Adv. 2023, 9, eadh8183. [Google Scholar] [CrossRef] [PubMed]
- S&P Global Market Intelligence. World Exploration Trends 2022. 2022. Available online: https://www.spglobal.com/marketintelligence/en/news-insights/blog/world-exploration-trends-2022 (accessed on 17 November 2023).
- Vakulchuk, R.; Overland, I. Central Asia is a missing link in analyses of critical materials for the global clean energy transition. One Earth 2021, 4, 1678–1692. [Google Scholar] [CrossRef]
- Herrington, R. Road map to mineral supply. Nat. Geosci. 2013, 6, 892–894. [Google Scholar] [CrossRef]
- Hannington, M.D.; Jamieson, J.; Monecke, T.; Petersen, S.; Beaulieu, S. The abundance of seafloor massive sulfide deposits. Geology 2011, 39, 1155–1158. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A. Deep-Ocean Ferromanganese Crusts and Nodules. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Chapter 11; pp. 273–291. [Google Scholar]
- Zacny, K.; Cohen, M.M.; James, W.W.; Hilscher, B. Asteroid mining. In AIAA Space 2013 Conference and Exposition; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2013; p. 5304. [Google Scholar]
- Cannon, K.M.; Gialich, M.; Acain, J. Precious and structural metals on asteroids. Planet. Space Sci. 2023, 225, 105608. [Google Scholar] [CrossRef]
- Schodde, R. Uncovering exploration trends and the future: Where’s exploration going? In Proceedings of the IMARC Conference, Melbourne, Australia, 22–26 September 2014; Available online: http://minexconsulting.com/wp-content/uploads/2019/04/IMARC-Presentation-by-Richard-Schodde-Sept-2014-FINAL.pdf (accessed on 6 November 2023).
- Wilkinson, J.J.; Cooke, D.; Baker, M.; Chang, Z.; Wilkinson, C.; Chen, H.; Fox, N.; Hollings, P.; White, N.; Gemmell, J.B.; et al. Porphyry indicator minerals and their mineral chemistry as vectoring and fertility tools. In Application of Indicator Mineral Methods to Bedrock and Sediments; McClenaghan, M.B., Layton-Matthews, D., Eds.; Geological Survey of Canada Open File No. 8345; Natural Resources Canada, Geological Survey of Canada: Ottawa, ON, Canada, 2017; pp. 67–77. [Google Scholar]
- Ashton, J.H.; Beach, A.; Blakeman, R.J.; David Coller, D.; Henry, P.; Lee, R.; Hitzman, M.; Hope, C.; Huleatt-James, S.; O’Donovan, B.; et al. Discovery of the Tara Deep Zn-Pb Mineralization at the Boliden Tara Mine, Navan, Ireland: Success with Modern Seismic Surveys. In Metals, Minerals, and Society; Arribas, A.M., Mauk, J.L., Eds.; Society of Economic Geologists (SEG): Littleton, CO, USA, 2018; Volume 21. [Google Scholar] [CrossRef]
- Manske, S.L.; Paul, A.H. Geology of a Major New Porphyry Copper Center in the Superior (Pioneer) District, Arizona. Econ. Geol. 2002, 97, 197–220. [Google Scholar] [CrossRef]
- Pellegrini, M. Fostering the mining potential of the European Union. Eur. Geol. 2016, 42, 10–14. [Google Scholar]
- Martinsson, O. Genesis of the Per Geijer apatite iron ores, Kiruna area, northern Sweden. In Proceedings of the 13th Biennial Meeting of The SGA, Nancy, France, 23–27 August 2015. [Google Scholar]
- Siame, E.; Pascoe, R. Extraction of lithium from micaceous waste from china clay production. Miner. Eng. 2011, 24, 1595–1602. [Google Scholar] [CrossRef]
- Simons, B.; Andersen, J.C.; Shail, R.K.; Jenner, F.E. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation. Lithos 2017, 278–281, 491–512. [Google Scholar] [CrossRef]
- Herrington, R.J. European Mineral Belts: A review of past and current production—Highlighting the future potential. PDAC Shortcourse New Mines in the Old World, 1 March 2013. [Google Scholar]
- Hoal, K.O.; McNulty, T.P.; Schmidt, R. Metallurgical Advances and Their Impact on Mineral Exploration and Mining. In Wealth Creation in the Minerals Industry: Integrating Science, Business, and Education; Doggett, M.D., Parry, J.R., Eds.; Special Publications of The Society of Economic Geologists; Society of Economic Geologists: Littleton, CO, USA, 2005; Volume 12. [Google Scholar] [CrossRef]
- Jenkin, G.R.T.; Al-Bassam, A.Z.M.; Harris RCAbbott, A.P.; Smith, D.J.; Holwell, D.A.; Chapman, R.J.; Stanley, C.J. The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals. Miner. Eng. 2016, 87, 18–24. [Google Scholar] [CrossRef]
- Tian, G.; Liu, H. Review on the mineral processing in ionic liquids and deep eutectic solvents. Miner. Process. Extr. Met. Rev. 2022, 45, 130–153. [Google Scholar] [CrossRef]
- Johnson, D.B. Biomining—Biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014, 30, 24–31. [Google Scholar] [CrossRef]
- Johnson, D.B.; Roberto, F.F. Evolution and Current Status of Mineral Bioprocessing Technologies. In Biomining Technologies; Johnson, D.B., Bryan, C.G., Schlömann, M., Roberto, F.F., Eds.; Springer: Cham, Switzerlands, 2022; 314p. [Google Scholar] [CrossRef]
- Roberto, F.F.; Schippers, A. Progress in bioleaching: Part B, applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 2022, 106, 5913–5928. [Google Scholar] [CrossRef]
- Santos, A.L.; Schippers, A. Reductive Mineral Bioprocessing. In Biomining Technologies; Johnson, D.B., Bryan, C.G., Schlömann, M., Roberto, F.F., Eds.; Springer: Cham, Switzerlands, 2022; pp. 261–274. [Google Scholar] [CrossRef]
- Lesser, P.; Poelzer, G.; Tost, M. Perceptions of Mining in Europe, Summary Report, MIREU Survey Results. 2020. Available online: https://mireu.eu/documents/mireu-survey-results-perceptions-mining-europe (accessed on 31 May 2023).
- Kivinen, S.; Kotilainen, J.; Kumpula, T. Mining conflicts in the European Union: Environmental and political perspectives. Fenn.—Int. J. Geogr. 2020, 198, 163–179. [Google Scholar] [CrossRef]
- Kim, R.E. Should deep seabed mining be allowed? Mar. Policy 2017, 82, 134–137. [Google Scholar] [CrossRef]
- Lèbre, É.; Kung, A.; Savinova, E.; Valenta, R.K. Mining on land or in the deep sea? Overlooked considerations of a reshuffling in the supply source mix. Resour. Conserv. Recycl. 2023, 191, 106898. [Google Scholar] [CrossRef]
- Herrington, R.; Tibbett, M. Cradle-to-cradle mining: A future concept for inherently reconstructive mine systems? In Proceedings of the Mine Closure 2022: 15th Conference on Mine Closure, Perth, Australia, 4–6 October 2022; pp. 19–28. [Google Scholar] [CrossRef]
- Stevens, R.; Hartnett (Sinclair), J.; Kasege, G. Inclusive Closure and Post-Mining Transition at the Golden Pride Mine, Tanzania. IGF Case Study. 2022. Available online: https://www.iisd.org/publications/brief/igf-case-study-golden-pride-mine-tanzania (accessed on 6 November 2023).
- Finucane, S.; Tarnowy, K. New uses for old infrastructure: 101 things to do with the ‘stuff’ next to the hole in the ground. In Proceedings of the 13th International Conference on Mine Closure, Perth, Australia, 3–5 September 2019; pp. 479–496. [Google Scholar] [CrossRef]
- Smit, T. Eden; Corgi Books: London, UK, 2001. [Google Scholar]
- Ali, M.; Jha, N.K.; Pal, N.; Keshavarz, A.; Hoteit, H.; Sarmadivaleh, M. Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook. Earth-Sci. Rev. 2021, 225, 103895. [Google Scholar] [CrossRef]
- Smith, S.M.; Geden, O.; Nemet, G.; Gidden, M.; Lamb, W.F.; Powis, C.; Bellamy, R.; Callaghan, M.; Cowie, A.; Cox, E.; et al. The State of Carbon Dioxide Removal, 1st ed.; Mercator Research Institute on Global Commons and Climate Change (MCC): Berlin, Germany, 2023. [Google Scholar]
- Marín-Beltrán, I.; Demaria, F.; Ofelio, C.; Serra, L.M.; Turiel, A.; Ripple, W.J.; Mukul, S.A.; Costa, M.C. Scientists’ warning against the society of waste. Sci. Total. Environ. 2022, 811, 151359. [Google Scholar] [CrossRef]
Kg/MW | Copper | Nickel | Manganese | Cobalt | Chromium | Molybdenum | Zinc | REE |
---|---|---|---|---|---|---|---|---|
Offshore Wind | 8000 | 240 | 790 | 0 | 525 | 109 | 5500 | 239 |
Onshore Wind | 2900 | 404 | 780 | 0 | 470 | 99 | 5500 | 14 |
Solar PV | 2822 | 1.3 | 0 | 0 | 0 | 0 | 30 | 0 |
Nuclear | 1473 | 1297 | 148 | 0 | 2190 | 70 | 0 | 0.5 |
Coal | 1150 | 721 | 4.63 | 201 | 308 | 66 | 0 | 0 |
Natural Gas | 1100 | 16 | 0 | 1.8 | 48.34 | 0 | 0 | 0 |
Kg/Vehicle | Cu | Li | Ni | Mn | Co | Graphite | Zn | REE | Others |
---|---|---|---|---|---|---|---|---|---|
BE car | 53.2 | 8.9 | 39.9 | 24.5 | 13.3 | 66.3 | 0.1 | 0.5 | 0.31 |
ICE car | 22.3 | 0 | 0 | 11.2 | 0 | 0 | 0.1 | 0 | 0.3 |
Main Host Metal | Companion Elements |
---|---|
Ni | Sc, Co, Ru, Rh, Pd, Os, Ir |
Cu | Co, As, Se, Mo, Ag, Te, Re, Au |
Fe | V, Sc, La, Ce, Pr, Nd |
Zn | Ge, Ag, Cd, In, Tl |
Pb | Ag, Sb, Tl, Bi |
Al | V, Ga |
Ti | Zr, Hf |
REE | Y, Th |
Mo | Re |
Au | Ag, Te |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrington, R.J. The Raw Material Challenge of Creating a Green Economy. Minerals 2024, 14, 204. https://doi.org/10.3390/min14020204
Herrington RJ. The Raw Material Challenge of Creating a Green Economy. Minerals. 2024; 14(2):204. https://doi.org/10.3390/min14020204
Chicago/Turabian StyleHerrington, Richard Jeremy. 2024. "The Raw Material Challenge of Creating a Green Economy" Minerals 14, no. 2: 204. https://doi.org/10.3390/min14020204
APA StyleHerrington, R. J. (2024). The Raw Material Challenge of Creating a Green Economy. Minerals, 14(2), 204. https://doi.org/10.3390/min14020204