Experimental Hydrothermal Alteration of Rhyolite and Andesite at 325 °C and 300 Bar: Implications for a Potential Role of Volcanic Glass in the Fluid Composition in the Okinawa Trough
Abstract
:1. Introduction
2. Geological Background and Analyzed Materials
3. Experimental System and Sample Analyses
3.1. Liquid-Phase Analyses
3.2. Solid-Phase Analyses
4. Results
5. Discussion
5.1. Substantially Si-Enriched Fluids
5.2. Behavior of Elements Other than Si in the Fluids
5.3. Comparison with Fluids in the Okinawa Trough
5.4. Global Compilation of Fluid Chemistry in the MOR and ABA Systems
5.5. Potential Role of Volcanic Glass/Amorphous Silica in the SMS Deposit Formation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Humphris, S.E.; Klein, F. Progress in deciphering the controls on the geochemistry of fluids in seafloor hydrothermal systems. Ann. Rev. Mar. Sci. 2018, 10, 315–343. [Google Scholar] [CrossRef] [PubMed]
- Von Damm, K.L. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions; Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, R.E., Eds.; Geophysical Monograph Series 95; American Geophysical Union: Washington, DC, USA, 1995; pp. 222–247. [Google Scholar]
- Ishibashi, J.; Urabe, T. Hydrothermal activity related to arc-backarc magmatism in the western Pacific. In Backarc Basins: Tectonics and Magmatism; Taylor, B., Ed.; Springer: New York, NY, USA, 1995; pp. 451–495. [Google Scholar]
- Gamo, T.; Ishibashi, J.; Tsunogai, U.; Okamura, K.; Chiba, H. Unique geochemistry of submarine hydrothermal fluids from arc-back-arc settings of the western Pacific. In Back-Arc Spreading Systems—Geological, Biological, Chemical, and Physical Interactions; Christie, D.M., Fisher, C.R., Lee, S.M., Givens, S., Eds.; Geophysical Monograph Series 166; American Geophysical Union: Washington, DC, USA, 2006; pp. 147–161. [Google Scholar]
- Nakamura, K.; Takai, K. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Prog. Earth Planet. Sci. 2014, 1, 5. [Google Scholar] [CrossRef]
- Alt, J.C. Subseafloor processes in mid-ocean ridge hydrothermal systems. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions; Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, R.E., Eds.; Geophysical Monograph Series 95; American Geophysical Union: Washington, DC, USA, 1995; pp. 83–114. [Google Scholar]
- Seyfried, W.E. Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges. Ann. Rev. Earth Planet. Sci. 1987, 15, 317–335. [Google Scholar] [CrossRef]
- Seyfried, W.E.; Bischoff, J.L. Low temperature basalt alteration by seawater: An experimental study at 70 °C and 150 °C. Geochem. Cosmochim. Acta 1979, 43, 1937–1947. [Google Scholar] [CrossRef]
- Mottl, M.J. Hydrothermal processes at seafloor spreading centers: Application of basalt-seawater experimental results. In Hydrothermal Processes at Seafloor Spreading Centers; Rona, P.A., Bostrom, K., Laubier, L., Smith, K.L., Eds.; Springer: New York, NY, USA, 1983; pp. 199–224. [Google Scholar]
- Yoshizaki, M.; Shibuya, T.; Suzuki, K.; Shimizu, K.; Nakamura, K.; Takai, K.; Omori, S.; Maruyama, S. H2 generation by experimental hydrothermal alteration of komatiitic glass at 300 °C and 500 bars: A preliminary result from on-going experiment. Geochem. J. 2009, 43, e17–e22. [Google Scholar] [CrossRef]
- Shibuya, T.; Yoshizaki, M.; Masaki, Y.; Suzuki, K.; Takai, K.; Russell, M.J. Reactions between basalt and CO2-rich seawater at 250 and 350 °C, 500 bars: Implications for the CO2 sequestration into the modern oceanic crust and the composition of hydrothermal vent fluid in the CO2-rich early ocean. Chem. Geol. 2013, 359, 1–9. [Google Scholar] [CrossRef]
- Shibuya, T.; Yoshizaki, M.; Sato, M.; Shimizu, K.; Nakamura, K.; Omori, S.; Suzuki, K.; Takai, K.; Tsunakawa, H.; Maruyama, S. Hydrogen-rich hydrothermal environments in the Hadean ocean inferred from serpentinization of komatiites at 300 °C and 300 bars. Prog. Earth Planet. Sci. 2015, 2, 46. [Google Scholar] [CrossRef]
- Seyfried, W.E.; Ding, K.; Berndt, M.E. Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges. Geochem. Cosmochim. Acta 1991, 55, 3559–3580. [Google Scholar] [CrossRef]
- Seyfried, W.E.; Ding, K. Phase equilibria in subseafloor hydrothermal systems: A review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot spring fluids at midocean ridges. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions; Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, R.E., Eds.; Geophysical Monograph Series 95; American Geophysical Union: Washington, DC, USA, 1995; pp. 248–273. [Google Scholar]
- Hajash, A.; Chandler, G.W. An experimental investigation of high-temperature interactions between seawater and rhyolite, andesite, basalt and peridotite. Contrib. Miner. Petrol. 1981, 78, 240–254. [Google Scholar] [CrossRef]
- Shiraki, R.; Sakai, H.; Endoh, M.; Kishima, N. Experimental studies on rhyolite- and andesite-seawater interactions at 300 °C and 1000 bars. Geochem. J. 1987, 21, 139–148. [Google Scholar] [CrossRef]
- Chiba, H. Chemical modeling of seawater-rock interaction: Effect of rock-type on the fluid chemistry and mineral assemblage. In Biogeochemical Processes and Ocean Flux in the Western Pacific; Sakai, H., Nozaki, Y., Eds.; Terra Scientific Publishing Company (TERRAPUB): Tokyo, Japan, 1995; pp. 469–486. [Google Scholar]
- Ogawa, Y.; Shikazono, N.; Ishiyama, D.; Sato, H.; Mizuta, T. An experimental study on felsic rock–artificial seawater interaction: Implications for hydrothermal alteration and sulfate formation in the Kuroko mining area of Japan. Miner. Depos. 2005, 39, 813–821. [Google Scholar] [CrossRef]
- Hannington, M.; Jamieson, J.; Monecke, T.; Petersen, S.; Beaulieu, S. The abundance of seafloor massive sulfide deposits. Geology 2011, 39, 1155–1158. [Google Scholar] [CrossRef]
- Nakano, A.; Matsumura, M.; Ishibashi, J. Geochemistry of hydrothermal fluids from the Hatoma Knoll in the South Okinawa Trough. JAMSTEC J. Deep Sea Res. 2001, 18, 139–144. [Google Scholar]
- Kishida, K.; Sohrin, Y.; Okamura, K.; Ishibashi, J. Tungsten enriched in submarine hydrothermal fluids. Earth Planet. Sci. Lett. 2004, 222, 819–827. [Google Scholar] [CrossRef]
- Toki, T.; Itoh, M.; Iwata, D.; Ohshima, S.; Shinjo, R.; Ishibashi, J.; Tsunogai, U.; Takahata, N.; Sano, Y.; Yamanaka, T.; et al. Geochemical characteristics of hydrothermal fluids at Hatoma Knoll in the southern Okinawa Trough. Geochem. J. 2016, 50, 493–525. [Google Scholar] [CrossRef]
- Toki, T.; Nohara, T.; Urata, Y.; Shinjo, R.; Hokakubo-Watanabe, S.; Ishibashi, J.; Kawagucci, S. Sr isotopic ratios of hydrothermal fluids from the Okinawa Trough and the implications of variation in fluid–sediment interactions. Prog. Earth Planet. Sci. 2022, 9, 59. [Google Scholar] [CrossRef]
- Halbach, P.; Nakamura, K.; Wahsner, M.; Lange, J.; Sakai, H.; Käselitz, L.; Hansen, R.D.; Yamano, M.; Post, J.; Prause, B.; et al. Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin. Nature 1989, 338, 496–499. [Google Scholar] [CrossRef]
- Nozaki, T.; Nagase, T.; Takaya, Y.; Yamasaki, T.; Otake, T.; Yonezu, K.; Ikehata, K.; Totsuka, S.; Kitada, K.; Sanada, Y.; et al. Subseafloor sulphide deposit formed by pumice replacement mineralization. Sci. Rep. 2021, 11, 8809. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, J.; Ikegami, F.; Tsuji, T.; Urabe, T. Hydrothermal activity in the Okinawa Trough back-arc basin: Geological background and hydrothermal mineralization. In Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept; Ishibashi, J., Okino, K., Sunamura, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 337–359. [Google Scholar]
- Sibuet, J.-C.; Hsu, S.-K.; Shyu, C.-T.; Liu, C.-S. Structural and kinematic evolutions of the Okinawa Trough backarc basin. In Backarc Basins: Tectonics and Magmatism; Taylor, B., Ed.; Springer: New York, NY, USA, 1995; pp. 343–379. [Google Scholar]
- Kikunaga, R.; Song, K.; Chiyonobu, S.; Fujita, K.; Shinjo, R.; Okino, K. Shimajiri Group equivalent sedimentary rocks dredged from sea knolls off Kume Island, central Ryukyus: Implications for timing and mode of rifting of the middle Okinawa Trough back-arc basin. Island Arc 2021, 30, e12425. [Google Scholar] [CrossRef]
- Kawagucci, S. Fluid geochemistry of high-temperature hydrothermal fields in the Okinawa Trough. In Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept; Ishibashi, J., Okino, K., Sunamura, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 387–403. [Google Scholar]
- Ishizuka, H.; Kawanobe, Y.; Sakai, H. Petrology and geochemistry of volcanic rocks dredged from the Okinawa Trough, an active back-arc basin. Geochem. J. 1990, 24, 75–92. [Google Scholar] [CrossRef]
- Shinjo, R.; Kato, Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos 2000, 54, 117–137. [Google Scholar] [CrossRef]
- Ueda, H.; Shibuya, T.; Sawaki, Y.; Saitoh, M.; Takai, K.; Maruyama, S. Reactions between komatiite and CO2-rich seawater at 250 and 350 °C, 500 bars: Implications for hydrogen generation in the Hadean seafloor hydrothermal system. Prog. Earth Planet. Sci. 2016, 3, 35. [Google Scholar] [CrossRef]
- Wetzel, L.R.; Shock, E.L. Distinguishing ultramafic- from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions. J. Geophys. Res. 2000, 105, 8319–8340. [Google Scholar] [CrossRef]
- Gallant, R.M.; Von Damm, K.L. Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge. Geochem. Geophys. Geosyst. 2006, 7, Q06018. [Google Scholar] [CrossRef]
- Von Damm, K.L.; Bischoff, J.L.; Rosenbauer, R.J. Quartz solubility in hydrothermal seawater: An experimental study and equation describing quartz solubility for up to 0.5 M NaCl solutions. Am. J. Sci. 1991, 291, 977–1007. [Google Scholar] [CrossRef]
- Gunnarsson, I.; Arnórsson, S. Amorphous silica solubility and the thermodynamic properties of H4SiO4 in the range of 0° to 350 °C at Psat. Geochim. Cosmochim. Acta 2000, 64, 2295–2307. [Google Scholar] [CrossRef]
- Campbell, A.C.; Palmer, M.R.; Klinkhammer, G.P.; Bowers, T.S.; Edmond, J.M.; Lawrence, J.R.; Casey, J.F.; Thompson, G.; Humphris, S.; Rona, P.; et al. Chemistry of hot springs on the Mid-Atlantic Ridge. Nature 1988, 335, 514–519. [Google Scholar] [CrossRef]
- Charlou, J.L.; Donval, J.P.; Konn, C.; Ondréas, H.; Fouquet, Y.; Jean-Baptiste, P.; Fourré, E. High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges; Geophysical Monograph Series 188; Rona, P.A., Devey, C.W., Dyment, J., Murton, B.J., Eds.; American Geophysical Union: Washington, DC, USA, 2010; pp. 265–296. [Google Scholar]
- Chiba, H.; Ishibashi, J.; Ueno, H.; Oomori, T.; Uchiyama, N.; Takeda, T.; Takamine, C.; Ri, J.; Itomitsu, A. Seafloor Hydrothermal Systems at North Knoll, Iheya Ridge, Okinawa Trough. JAMSTEC J. Deep Sea Res. 1996, 12, 211–219. [Google Scholar]
- Cruse, A.M.; Seewald, J.S.; Sacoccia, P.J.; Zierenberg, R. Hydrothermal fluid composition at Middle Valley, Northern Juan de Fuca Ridge: temporal and spatial variability. In Magma to Microbe: Modeling Hydrothermal Processes at Oceanic Spreading Centers; Geophysical Monograph Series 178; Lowell, R.P., Seewald, J.S., Metaxas, A., Perfit, M.R., Eds.; American Geophysical Union: Washington, DC, USA, 2008; pp. 145–166. [Google Scholar]
- Ronde, C.E.J.; Massoth, G.J.; Butterfield, D.A.; Christenson, B.W.; Ishibashi, J.; Ditchburn, R.G.; Hannington, M.D.; Brathwaite, R.L.; Lupton, J.E.; Kamenetsky, V.S.; et al. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Min. Depos. 2011, 46, 541–584. [Google Scholar] [CrossRef]
- Edmonds, H.N.; German, C.R.; Green, D.R.H.; Huh, Y.; Gamo, T.; Edmond, J.M. Continuation of the hydrothermal fluid chemistry time series at TAG, and the effects of ODP drilling. Geophys. Res. Lett. 1996, 23, 3487–3489. [Google Scholar] [CrossRef]
- Ishibashi, J.; Tsunogai, U.; Wakita, H.; Watanabe, K.; Kajimura, T.; Shibata, A.; Fujiwara, Y.; Hashimoto, J. Chemical Composition of Hydrothermal Fluids from the Suiyo and the Mokuyo Seamounts, Izu-Bonin Arc. JAMSTEC J. Deep Sea Res. 1994, 10, 89–97. [Google Scholar]
- Jean-Baptiste, P.; Charlou, J.L.; Stievenard, M.; Donval, J.P.; Bougault, H.; Mevel, C. Helium and methane measurements in hydrothermal fluids from the mid-Atlantic ridge: the Snake Pit site at 23° N. Earth Planet. Sci. Lett. 1991, 106, 17–28. [Google Scholar] [CrossRef]
- Kataoka, S.; Ishibashi, J.; Yamanaka, T.; Chiba, H. Topography and Fluid geochemistry of the Iheya North Knoll seafloor hydrothermal system in the Okinawa Trough. JAMSTEC J. Deep Sea Res. 2000, 16, 1–7. [Google Scholar]
- Mottl, M.J.; Seewald, J.S.; Wheat, C.G.; Tivey, M.K.; Michael, P.J.; Proskurowski, G.; McCollom, T.M.; Reeves, E.; Sharkey, J.; You, C.F.; et al. Chemistry of hot springs along the Eastern Lau Spreading Center. Geochim. Cosmochim. Acta 2011, 75, 1013–1038. [Google Scholar] [CrossRef]
- Reeves, E.P.; Seewald, J.S.; Saccocia, P.; Bach, W.; Craddock, P.R.; Shanks, W.C.; Sylva, S.P.; Walsh, E.; Pichler, T.; Rosner, M. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim. Cosmochim. Acta 2011, 75, 1088–1123. [Google Scholar] [CrossRef]
- Seyfried, W.E.; Pester, N.J.; Ding, K.; Mikaella Rough, M. Vent fluid chemistry of the Rainbow hydrothermal system (36 N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes. Geochim. Cosmochim. Acta 2011, 75, 1574–1593. [Google Scholar] [CrossRef]
- Von Damm, K.L. Chemistry of hydrothermal vent fluids from 9°–10°N, East Pacific Rise: “Time zero,” the immediate posteruptive period. J. Geophys. Res. 2000, 105, 11203–11222. [Google Scholar] [CrossRef]
- Von Damm, K.L.; Edmond, J.M.; Grant, B.; Measures, C.I.; Walden, B.; Weiss, R.F. Chemistry of submarine hydrothermal solutions at 21° N, East Pacific Rise. Geochim. Cosmochim. Acta 1985, 49, 2197–2220. [Google Scholar] [CrossRef]
- Von Damm, K.L.; Edmond, J.M.; Measures, C.I.; Grant, B. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta 1985, 49, 2221–2237. [Google Scholar] [CrossRef]
- Kikuchi, S.; Shibuya, T.; Abe, M.; Uematsu, K. Experimental chondrite–water reactions under reducing and low-temperature hydrothermal conditions: Implications for incipient aqueous alteration in planetesimals. Geochim. Cosmochim. Acta 2022, 319, 151–167. [Google Scholar] [CrossRef]
- Gieskes, J.M.; Gamo, T.; Brumsack, H. Chemical Methods for Interstitial Water Analysis Aboard JOIDES Resolution; Technical Note 15; Texas A&M University: College Station, TX, USA, 1991; Volume 15, pp. 1–60. [Google Scholar]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1968; pp. 65–70. [Google Scholar]
- Ishibashi, J.; Noguchi, T.; Toki, T.; Miyabe, S.; Yamaguchi, S.; Onishi, Y.; Yamanaka, T.; Yokoyama, Y.; Omori, E.; Takahashi, Y.; et al. Diversity of fluid geochemistry affected by processes during fluid upwelling in active hydrothermal fields in the Izena Hole, the middle Okinawa Trough back-arc basin. Geochem. J. 2014, 48, 1–13. [Google Scholar] [CrossRef]
- Kawagucci, S.; Chiba, H.; Ishibashi, J.; Yamanaka, T.; Toki, T.; Muramatsu, Y.; Ueno, Y.; Makabe, A.; Inoue, K.; Yoshida, N.; et al. Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa Trough: Implication for origin of methane in subseafloor fluid circulation systems. Geochem. J. 2011, 45, 109–124. [Google Scholar] [CrossRef]
- Alt, J.C.; Honnorez, J.; Laverne, C.; Emmermann, R. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry, and evolution of seawater-basalt interactions. J. Geophys. Res. 1986, 91, 10309–10335. [Google Scholar] [CrossRef]
- Bowers, T.S.; Taylor, H.P. An integrated chemical and stable-isotope model of the origin of midocean ridge hot spring systems. J. Geophys. Res. 1985, 90, 12583–12606. [Google Scholar] [CrossRef]
- Bowers, T.S.; Campbell, A.C.; Measures, C.I.; Spivack, A.J.; Khadem, M.; Edmond, J.M. Chemical controls on the composition of vent fluids at 13°–11°N and 21°N, East Pacific Rise. J. Geophys. Res. 1988, 93, 4522–4536. [Google Scholar] [CrossRef]
- Tivey, M.K.; Stakes, D.S.; Cook, T.L.; Hannington, M.D.; Petersen, S. A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge: Results of a petrologic and geochemical study. J. Geophys. Res. 1999, 104, 22859–22883. [Google Scholar] [CrossRef]
Rhyolite | Andesite | |
---|---|---|
SiO2 | 73.8 | 61.9 |
TiO2 | 0.3 | 0.9 |
Al2O3 | 13.9 | 15.2 |
Fe2O3 | 2.1 | 9.7 |
MnO | 0.1 | 0.2 |
MgO | 0.3 | 1.7 |
CaO | 1.8 | 6.1 |
Na2O | 4.5 | 3.4 |
K2O | 2.9 | 0.9 |
P2O5 | 0.1 | 0.2 |
Total | 99.6 | 100.0 |
LOI | 2.0 | 0.0 |
Rhyolite | |||||||||||
Time (h) | Cl | Na | K | Mg | Ca | Si | Fe | Mn | H2 | H2S | pH |
0 | 506 | 503 | n.d. | 0.00 | 0.00 | n.d. | n.d. | n.d. | 0.00 | 0.00 | 7.0 |
24 | 501 | 461 | 40.4 | 0.01 | 1.49 | 22.6 | 0.06 | 0.06 | 0.00 | 0.00 | 4.8 |
70 | 505 | 453 | 41.9 | 0.01 | 1.64 | 25.0 | 0.07 | 0.07 | 0.00 | 0.00 | 4.7 |
240 | 524 | 470 | 43.9 | 0.01 | 1.73 | 26.5 | 0.07 | 0.07 | 0.01 | 0.04 | 4.6 |
408 | 515 | 462 | 42.6 | 0.01 | 1.76 | 26.8 | 0.06 | 0.07 | 0.01 | 0.04 | 4.8 |
744 | 532 | 477 | 42.8 | 0.01 | 1.75 | 27.7 | 0.06 | 0.07 | 0.02 | 0.06 | 4.5 |
1248 | 519 | 455 | 40.7 | 0.00 | 1.85 | 28.1 | 0.08 | 0.08 | 0.03 | 0.04 | 4.5 |
1824 | 517 | 470 | 39.7 | 0.00 | 1.82 | 29.0 | 0.07 | 0.07 | 0.03 | 0.02 | 4.5 |
Andesite | |||||||||||
Time (h) | Cl | Na | K | Mg | Ca | Si | Fe | Mn | H2 | H2S | pH |
0 | 504 | 499 | n.d. | n.d. | n.d. | 0.00 | n.d. | n.d. | n.d. | n.d. | 7.0 |
24 | 494 | 459 | 21.9 | 0.01 | 0.43 | 25.3 | 0.03 | 0.02 | 0.00 | 0.06 | 4.7 |
71 | 502 | 460 | 22.6 | 0.01 | 0.52 | 28.5 | 0.04 | 0.02 | 0.01 | n.d. | 4.4 |
262 | 499 | 470 | 24.2 | 0.00 | 0.61 | 30.0 | 0.03 | 0.01 | 0.02 | 0.09 | 4.1 |
429 | 506 | 480 | 25.0 | 0.01 | 0.71 | 29.7 | 0.03 | 0.01 | 0.03 | 0.13 | 4.2 |
766 | 502 | 458 | 29.5 | 0.01 | 1.34 | 22.3 | 0.03 | 0.01 | 0.04 | 0.14 | 4.7 |
1463 | 512 | 464 | 35.5 | n.d. | 2.60 | 21.9 | 0.02 | 0.01 | 0.12 | 0.22 | 5.2 |
2158 | 505 | 457 | 34.2 | n.d. | 2.78 | 21.7 | 0.03 | 0.01 | 0.14 | 0.22 | 5.5 |
Starting Material | Si | Ti | Al | Fe | Mg | Mn | Ca | Na | K | Cr | P | Ni | S | Total wt.% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Glass | 77.0 | 0.1 | 14.0 | 0.9 | 0.1 | 0.0 | 0.9 | 4.3 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 99.5 |
Glass | 76.8 | 0.1 | 13.8 | 1.0 | 0.0 | 0.0 | 0.9 | 4.5 | 2.9 | 0.0 | 0.0 | 0.0 | 0.0 | 92.2 |
Glass | 77.4 | 0.1 | 13.7 | 0.9 | 0.0 | 0.0 | 0.9 | 4.1 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 95.2 |
Glass | 77.3 | 0.1 | 13.6 | 0.9 | 0.1 | 0.0 | 0.9 | 4.3 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 94.8 |
Glass | 77.5 | 0.1 | 13.6 | 0.9 | 0.1 | 0.0 | 0.8 | 4.3 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 94.7 |
Glass | 78.7 | 0.1 | 13.7 | 0.9 | 0.0 | 0.0 | 0.8 | 3.5 | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 95.1 |
Glass | 78.4 | 0.1 | 13.6 | 0.9 | 0.2 | 0.0 | 0.8 | 3.9 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 | 95.7 |
Glass | 78.3 | 0.2 | 13.6 | 0.9 | 0.0 | 0.1 | 0.8 | 3.8 | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 97.4 |
Glass | 77.6 | 0.1 | 13.5 | 0.8 | 0.1 | 0.1 | 0.9 | 4.1 | 2.9 | 0.0 | 0.0 | 0.0 | 0.0 | 98.1 |
Glass | 77.7 | 0.1 | 13.5 | 0.9 | 0.1 | 0.0 | 0.9 | 4.2 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 95.1 |
Glass | 77.9 | 0.1 | 13.4 | 0.9 | 0.1 | 0.1 | 0.9 | 4.1 | 2.4 | 0.1 | 0.0 | 0.0 | 0.0 | 97.1 |
Glass | 77.5 | 0.1 | 13.4 | 1.1 | 0.2 | 0.1 | 0.8 | 4.1 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 95.3 |
Glass | 77.6 | 0.1 | 13.3 | 0.9 | 0.1 | 0.0 | 0.9 | 4.3 | 2.7 | 0.1 | 0.0 | 0.0 | 0.0 | 95.7 |
Glass | 78.2 | 0.1 | 13.3 | 0.8 | 0.0 | 0.0 | 0.8 | 4.0 | 2.8 | 0.0 | 0.0 | 0.0 | 0.0 | 95.4 |
Glass | 78.3 | 0.1 | 13.2 | 0.8 | 0.1 | 0.1 | 0.8 | 4.4 | 2.1 | 0.0 | 0.0 | 0.1 | 0.0 | 97.7 |
Glass | 79.0 | 0.1 | 13.0 | 0.9 | 0.1 | 0.0 | 0.7 | 3.8 | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 96.9 |
Andesine (av.; n = 16) | 54.2 | 0.0 | 26.2 | 0.2 | 0.0 | 0.0 | 7.1 | 11.9 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 100.4 |
Pyroxene (av.; n = 7) | 50.0 | 0.1 | 0.5 | 20.6 | 24.1 | 0.9 | 3.7 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.4 |
Reaction product | Si | Ti | Al | Fe | Mg | Mn | Ca | Na | K | Cr | P | Ni | S | Total wt.% |
Glass (int.) | 77.9 | 0.0 | 15.2 | 0.8 | 0.1 | 0.1 | 0.8 | 3.3 | 1.6 | 0.1 | 0.0 | 0.0 | 0.0 | 88.1 |
Glass (int.) | 77.7 | 0.1 | 14.8 | 1.1 | 0.3 | 0.0 | 0.7 | 3.5 | 1.6 | 0.0 | 0.0 | 0.1 | 0.0 | 58.0 |
Glass (int.) | 78.3 | 0.1 | 14.6 | 1.1 | 0.1 | 0.0 | 0.8 | 3.2 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 91.2 |
Glass (int.) | 79.4 | 0.1 | 14.8 | 1.2 | 0.1 | 0.0 | 0.8 | 2.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 90.4 |
Glass (int.) | 79.6 | 0.1 | 14.1 | 0.5 | 0.1 | 0.0 | 0.8 | 3.0 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | 63.9 |
Glass (int.) | 78.4 | 0.1 | 13.7 | 1.1 | 0.2 | 0.0 | 0.7 | 4.4 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 92.5 |
Glass (int.) | 79.3 | 0.1 | 13.8 | 0.8 | 0.0 | 0.1 | 0.7 | 3.8 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 95.2 |
Glass (int.) | 80.6 | 0.1 | 14.0 | 0.6 | 0.0 | 0.0 | 0.7 | 2.7 | 1.3 | 0.0 | 0.0 | 0.0 | 0.1 | 93.2 |
Glass (int.) | 79.7 | 0.1 | 13.7 | 1.0 | 0.1 | 0.1 | 0.7 | 3.2 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 94.8 |
Glass (int.) | 79.9 | 0.1 | 13.5 | 1.2 | 0.1 | 0.0 | 0.7 | 3.1 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 92.4 |
Glass (int.) | 80.7 | 0.1 | 13.6 | 0.7 | 0.1 | 0.0 | 0.7 | 2.7 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 95.8 |
Glass (int.) | 81.5 | 0.1 | 13.5 | 0.7 | 0.0 | 0.0 | 0.7 | 2.3 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 92.9 |
Glass (int.) | 81.9 | 0.1 | 13.3 | 0.5 | 0.1 | 0.0 | 0.6 | 2.3 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 82.3 |
Glass (int.) | 82.1 | 0.1 | 12.8 | 0.7 | 0.1 | 0.0 | 0.8 | 2.0 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 84.0 |
Glass (int.) | 81.7 | 0.1 | 12.5 | 0.7 | 0.1 | 0.1 | 0.7 | 2.9 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 91.8 |
Glass (int.) | 82.3 | 0.2 | 12.5 | 0.6 | 0.1 | 0.1 | 0.6 | 2.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 92.2 |
Glass (rim) | 85.5 | 0.0 | 9.6 | 0.2 | 0.0 | 0.0 | 0.5 | 2.6 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 71.2 |
Glass (rim) | 84.9 | 0.1 | 9.0 | 0.7 | 0.1 | 0.1 | 0.8 | 2.8 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 70.3 |
Glass (rim) | 87.2 | 0.0 | 8.5 | 0.1 | 0.0 | 0.0 | 0.4 | 2.4 | 1.3 | 0.0 | 0.0 | 0.1 | 0.0 | 85.9 |
Andesine (av.; n = 33) | 54.0 | 0.0 | 26.4 | 0.2 | 0.0 | 0.0 | 7.2 | 11.7 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 99.7 |
Pyroxene (av.; n = 14) | 49.9 | 0.1 | 0.8 | 21.8 | 24.8 | 0.9 | 1.4 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saitoh, M.; Shibuya, T.; Saito, T.; Torimoto, J.; Ueda, H.; Sato, T.; Suzuki, K. Experimental Hydrothermal Alteration of Rhyolite and Andesite at 325 °C and 300 Bar: Implications for a Potential Role of Volcanic Glass in the Fluid Composition in the Okinawa Trough. Minerals 2024, 14, 259. https://doi.org/10.3390/min14030259
Saitoh M, Shibuya T, Saito T, Torimoto J, Ueda H, Sato T, Suzuki K. Experimental Hydrothermal Alteration of Rhyolite and Andesite at 325 °C and 300 Bar: Implications for a Potential Role of Volcanic Glass in the Fluid Composition in the Okinawa Trough. Minerals. 2024; 14(3):259. https://doi.org/10.3390/min14030259
Chicago/Turabian StyleSaitoh, Masafumi, Takazo Shibuya, Takuya Saito, Junji Torimoto, Hisahiro Ueda, Tomoki Sato, and Katsuhiko Suzuki. 2024. "Experimental Hydrothermal Alteration of Rhyolite and Andesite at 325 °C and 300 Bar: Implications for a Potential Role of Volcanic Glass in the Fluid Composition in the Okinawa Trough" Minerals 14, no. 3: 259. https://doi.org/10.3390/min14030259
APA StyleSaitoh, M., Shibuya, T., Saito, T., Torimoto, J., Ueda, H., Sato, T., & Suzuki, K. (2024). Experimental Hydrothermal Alteration of Rhyolite and Andesite at 325 °C and 300 Bar: Implications for a Potential Role of Volcanic Glass in the Fluid Composition in the Okinawa Trough. Minerals, 14(3), 259. https://doi.org/10.3390/min14030259