Mantle Sources and Geochemical Evolution of the Picture Gorge Basalt, Columbia River Basalt Group
Abstract
:1. Introduction
1.1. Geochemical Relationships between Main-Phase CRBG Formations
1.2. Petrogenetic Significance of Picture Gorge Basalt Stratigraphy
2. Methods
2.1. Major and Trace Element Concentrations
2.2. Radiogenic Isotope Analyses
2.3. Oxygen Isotope Analyses
2.4. MELTS Calculations
3. Results
3.1. PGB Composition
3.1.1. Major and Trace Element Compositions
3.1.2. Radiogenic and Oxygen Isotope Compositions
3.2. Distinguishing Basaltic Lavas and Dikes of the PGB
3.3. Parental Magmas and Implications for Mantle Sources
3.4. Fractionation Models to Account for PGB Geochemical Variability
3.5. Evaluating Crustal Contamination
4. Discussion
4.1. Evidence of a Contaminated Mantle?
4.2. PGB Magmas: Source Lithologies and Modification
4.3. Petrogenetic Relationships to Other CRBG Formations
4.4. Two Temporal Pulses of Magmatism
4.5. PGB Endmember Compositions: Trust but Verify
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camp, V.E.; Ross, M.E.; Duncan, R.A.; Jarboe, N.A.; Coe, R.S.; Hanan, B.B.; Johnson, J.A. The Steens Basalt: Earliest Lavas of the Columbia River Basalt Group. Spec. Pap. Geol. Soc. Am. 2013, 497, 87–116. [Google Scholar] [CrossRef]
- Swanson, D.A.; Wright, T.L.; Hooper, P.R.; Bentley, R.D. Revisions in Stratigraphic Nomenclature of the Columbia River Basalt Group; US Government Printing Office: Washington, DC, USA, 1979. [Google Scholar]
- Carlson, R.W. Isotopic Constraints on Columbia River Flood Basalt Genesis and the Nature of the Subcontinental Mantle. Geochim. Cosmochim. Acta 1984, 48, 2357–2372. [Google Scholar] [CrossRef]
- Brandon, A.D.; Hooper, P.R.; Goles, G.G.; St, R.; Lamberp, J. Contributions to Mineralogy and Petrology Evaluating Crustal Contamination in Continental Basalts: The Isotopic Composition of the Picture Gorge Basalt of the Columbia River Basalt Group. Contrib. Mineral. Petrol. 1993, 114, 452–464. [Google Scholar] [CrossRef]
- Wolff, J.A.; Ramos, F.C.; Hart, G.L.; Patterson, J.D.; Brandon, A.D. Columbia River Flood Basalts from a Centralized Crustal Magmatic System. Nat. Geosci. 2008, 1, 177–180. [Google Scholar] [CrossRef]
- Wolff, J.A.; Ramos, F.C. Source Materials for the Main Phase of the Columbia River Basalt Group: Geochemical Evidence and Implications for Magma Storage and Transport. Spec. Pap. Geol. Soc. Am. 2013, 497, 273–291. [Google Scholar] [CrossRef]
- Cahoon, E.B.; Streck, M.J.; Koppers, A.A.P.; Miggins, D.P. Reshuffling the Columbia River Basalt Chronology-Picture Gorge Basalt, the Earliest-and Longest-Erupting Formation. Geology 2020, 48, 348–352. [Google Scholar] [CrossRef]
- Moore, N.; Grunder, A.; Bohrson, W. The Three-Stage Petrochemical Evolution of the Steens Basalt (Southeast Oregon, USA) Compared to Large Igneous Provinces and Layered Mafic Intrusions. Geosphere 2018, 14, 2505–2532. [Google Scholar] [CrossRef]
- Schwartz, J.J.; Snoke, A.W.; Cordey, F.; Johnson, K.; Frost, C.D.; Barnes, C.G.; LaMaskin, T.A.; Wooden, J.L. Late Jurassic magmatism, metamorphism, and deformation in the Blue Mountains Province, northeast Oregon. Bulletin 2011, 123, 2083–2111. [Google Scholar] [CrossRef]
- Carlson, R.W.; Lu, G.W.; Macdock, J.D. Columbia River Volcanism: The Question of Mantle Heterogeneity or Crustal Contamination. Geochim. Cosmochim. Acta 1981, 45, 2483–2499. [Google Scholar] [CrossRef]
- Geist, D.; Richards, M. Origin of the Columbia Plateau and Snake River Plain: Deflection of the Yellowstone Plume. Geology 1993, 21, 789–792. [Google Scholar] [CrossRef]
- Hales, T.C.; Abt, D.L.; Humphreys, E.D.; Roering, J.J. A Lithospheric Instability Origin for Columbia River Flood Basalts and Wallowa Mountains Uplift in Northeast Oregon. Nature 2005, 438, 842–845. [Google Scholar] [CrossRef] [PubMed]
- Camp, V.E.; Hanan, B.B. A Plume-Triggered Delamination Origin for the Columbia River Basalt Group. Geosphere 2008, 4, 480–495. [Google Scholar] [CrossRef]
- Camp, V.E. Plume-Modified Mantle Flow in the Northern Basin and Range and Southern Cascadia Back-Arc Region since ca. 12 Ma. Geology 2019, 47, 695–699. [Google Scholar] [CrossRef]
- Moore, N.E.; Grunder, A.L.; Bohrson, W.A.; Carlson, R.W.; Bindeman, I.N. Changing Mantle Sources and the Effects of Crustal Passage on the Steens Basalt, SE Oregon: Chemical and Isotopic Constraints. Geochem. Geophys. Geosystems 2020, 21, e2020GC008910. [Google Scholar] [CrossRef]
- Richards, M.A.; Duncan, R.A.; Courtillot, V.E. Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails. Science 1989, 246, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Pierce, K.L.; Morgan, L.A.; Morgan, A. The Track of the Yellowstone Hot Spot: Volcanism, Faulting, and Uplift; Geological Society of America Memoir: Boulder, CO, USA, 1992; Volume 179. [Google Scholar]
- Carlson, R.W.; Hart, W.K. Crustal Genesis on the Oregon Plateau (Pacific). J. Geophys. Res. 1987, 92, 6191–6206. [Google Scholar] [CrossRef]
- Long, M.D.; Till, C.B.; Druken, K.A.; Carlson, R.W.; Wagner, L.S.; Fouch, M.J.; James, D.E.; Grove, T.L.; Schmerr, N.; Kincaid, C. Mantle Dynamics beneath the Pacific Northwest and the Generation of Voluminous Back-Arc Volcanism. Geochem. Geophys. Geosystems 2012, 13, 2012GC004189. [Google Scholar] [CrossRef]
- Liu, L.; Stegman, D.R. Origin of Columbia River Flood Basalt Controlled by Propagating Rupture of the Farallon Slab. Nature 2012, 482, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Hoopers, P.R.; Hawkesworth, C.J.; Hooper, P.R.; Hawkesworth, C.J. Isotopic and Geochemical Constraints on the Origin and Evolution of the Columbia River Basalt. J. Petrol. 1993, 34, 1203–1246. [Google Scholar] [CrossRef]
- Mcdougall, I. Geochemistry and Origin of Basalt of the Columbia River Group, Oregon and Washington. Geol. Soc. Am. Bull. 1976, 87, 777–792. [Google Scholar] [CrossRef]
- Bailey, M.M. Evidence for Magma Recharge and Assimilation in the Picture Gorge Basalt Subgroup, Columbia River Basalt Group. Geol. Soc. Am. Spec. Pap. 1989, 239, 343–355. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Osawa, M.; Goles, G. Trace Element Abundances in Columbia River Basalts. In Proceedings of the Columbia River Basalt Symposium, Cheney, WA, USA, 21–23 March 1969; Eastern Washington State College Press: Cheney, WA, USA, 1970; pp. 173–175. [Google Scholar]
- Nathan, S.; Fruchter, J.S. Geochemical and Paleomagnetic Stratigraphy of the Picture Gorge and Yakima Basalts (Columbia River Group) in Central Oregon. Geol. Soc. Am. Bull. 1974, 85, 63–76. [Google Scholar] [CrossRef]
- Watkins, N.D.; Baksi, A.K. Magnetostratigraphy and Oroclinal Folding of the Columbia River, Steens, and Owyhee Basal ts in Oregon, Washington, and Idaho. Am. J. Sci. 1974, 274, 148–189. [Google Scholar] [CrossRef]
- Goles, G.G. Miocene Basalts of the Blue Mountains Province in Oregon. I: Compositional Types and Their Geological Settings. J. Petrol. 1986, 27, 495–520. [Google Scholar] [CrossRef]
- NORTH AMERICAN STRATIGRAPHIC CODE. North American Commission on Stratigraphic Nomenclature. AAPG Bull. 2005, 89, 1547–1591. [Google Scholar] [CrossRef]
- Kasbohm, J.; Schoene, B. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum. Sci. Adv. 2018, 4, eaat8223. [Google Scholar] [CrossRef]
- Mahood, G.A.; Benson, T.R. Using 40Ar/39Ar ages of intercalated silicic tuffs to date flood basalts: Precise ages for Steens Basalt Member of the Columbia River Basalt Group. Earth Planet. Sci. Lett. 2017, 459, 340–351. [Google Scholar] [CrossRef]
- Kuiper, K.F.; Deino, A.; Hilgen, F.J.; Krijgsman, W.; Renne, P.R.; Wijbrans, J.R. Synchronizing rock clocks of Earth history. Science 2008, 320, 500–504. [Google Scholar] [CrossRef]
- Johnson, D.; Hooper, P.; Conrey, R. XRF Method XRF Analysis of Rocks and Minerals for Major and Trace Elements on a Single Low Dilution Li-Tetraborate Fused Bead. Adv. X-ray Anal. 1999, 41, 843–867. [Google Scholar]
- Carlson, R.W.; Czamanske, G.; Fedorenko, V.; Ilupin, I. A Comparison of Siberian Meimechites and Kimberlites: Implications for the Source of High-Mg Alkalic Magmas and Flood Basalts. Geochem. Geophys. Geosyst. 2006, 7, 2006GC001342. [Google Scholar] [CrossRef]
- Patchett, P.J.; Tatsumoto, M. Hafnium Isotope Variations in Oceanic Basalts. Geophys. Res. Lett. 1980, 7, 1077–1080. [Google Scholar] [CrossRef]
- Garçon, M.; Boyet, M.; Carlson, R.W.; Horan, M.F.; Auclair, D.; Mock, T.D. Factors Influencing the Precision and Accuracy of Nd Isotope Measurements by Thermal Ionization Mass Spectrometry. Chem. Geol. 2018, 476, 493–514. [Google Scholar] [CrossRef]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A Neodymium Isotopic Reference in Consistency with LaJolla Neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Todt, W.; Cliff, R.A.; Hanser, A.; Hofmann, A.W. Evaluation of a 202Pb–205Pb Double Spike for High—Precision Lead Isotope Analysis. In Geophysical Monograph Series; Blackwell Publishing Ltd.: Oxford, UK, 1996; Volume 95, pp. 429–437. ISBN 9781118664230. [Google Scholar]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth Planet Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Bindeman, I. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Rev. Miner. Geochem. 2008, 69, 445–478. [Google Scholar] [CrossRef]
- Loewen, M.W.; Bindeman, I.N. Oxygen Isotope and Trace Element Evidence for Three-Stage Petrogenesis of the Youngest Episode (260–279 Ka) of Yellowstone Rhyolitic Volcanism. Contrib. Mineral. Petrol. 2015, 170, 39. [Google Scholar] [CrossRef]
- Gualda, G.A.R.; Ghiorso, M.S.; Lemons, R.V.; Carley, T.L. Rhyolite-MELTS: A Modified Calibration of MELTS Optimized for Silica-Rich, Fluid-Bearing Magmatic Systems. J. Petrol. 2012, 53, 875–890. [Google Scholar] [CrossRef]
- Gualda, G.A.R.; Ghiorso, M.S. MELTS-Excel: A Microsoft Excel-Based MELTS Interface for Research and Teaching of Magma Properties and Evolution. Geochem. Geophys. Geosyst. 2015, 16, 315–324. [Google Scholar] [CrossRef]
- Houston, R.A.; McClaughry, J.D.; Duda, C.J.M.; Ferns, M.L. Geologic Map of the Harney 7.5’ Quadrangle, Harney County, Oregon. 2017. [Google Scholar]
- Brandon, A.D.; Gordon, G.G. Assessing Subcontinental Lithospheric Mantle Sources for Basalts: Neogene Volcanism in the Pacific Northwest, USA as a Test Case. Contrib. Miner. Pet. 1995, 121, 364–379. [Google Scholar] [CrossRef]
- Hooper, P.R. Petrology and chemistry of the Rock Creek flow, Columbia River basalt, Idaho. Geological Society of America Bulletin 1974, 85, 15–26. [Google Scholar] [CrossRef]
- Fruchter, J.S.; Baldwin, S.F. Correlations between Dikes of the Monument Swarm, Central Oregon, and Picture Gorge Basalt Flows. Geol. Soc. Am. Bull. 1975, 86, 514–516. [Google Scholar] [CrossRef]
- Gaschnig, R.M.; Macho, A.S.; Fayon, A.; Schmitz, M.; Ware, B.D.; Vervoort, J.D.; Kelso, P.; LaMaskin, T.A.; Kahn, M.J.; Tikoff, B. Intrusive and depositional constraints on the Cretaceous tectonic history of the southern Blue Mountains, eastern Oregon. Lithosphere 2017, 9, 265–282. [Google Scholar] [CrossRef]
- Standhaft, D. Textural and Compositional Analysis of Early Miocene Dacite Lavas in Malheur National Forest, Eastern Oregon: Testing Models of Granodiorite Remobilization to Yield Dacite Magmas. Masters Thesis, Portland State University, Portland, OR, USA, University of Greifswald, Greifswald, Germany, 2018. [Google Scholar]
- Dickinson, W.R. Mesozoic Forearc Basin in Central Oregon. Geology 1979, 7, 166–170. [Google Scholar] [CrossRef]
- Elliot, T. Tracers of the Slab. In Inside the Subduction Factory; Geophysical Monograph-American Geophysical Union: Washington, DC, USA, 2004. [Google Scholar] [CrossRef]
- Nelson, D.O. Implications of oxygen-isotope data and trace-element modeling for a large-scale mixing model for the Columbia River Basalt. Geology 1983, 11, 248–251. [Google Scholar] [CrossRef]
- Hooper, P.R.; Swanson, D.A. The Columbia River Basalt Group and Associated Volcanic Rocks of the Blue Mountains Province; US Geological Survey Professional Paper; US Geological Survey: Reston, VA, USA, 1990; Volume 1437, pp. 63–99. [Google Scholar]
- Bindeman, I.N.; Greber, N.D.; Melnik, O.E.; Artyomova, A.S.; Utkin, I.S.; Karlstrom, L.; Colón, D.P. Pervasive Hydrothermal Events Associated with Large Igneous Provinces Documented by the Columbia River Basaltic Province. Sci. Rep. 2020, 10, 10206. [Google Scholar] [CrossRef] [PubMed]
- James, D.E. The Combined Use of Oxygen and Radiogenic Isotopes as Indicators of Crustal Contamination. Annu Rev Earth Planet Sci. 1981, 9, 311–344. [Google Scholar] [CrossRef]
- Lamaskin, T.A.; Dorsey, R.J.; Vervoort, J.D. Tectonic Controls on Mudrock Geochemistry, Mesozoic Rocks of Eastern Oregon and Western Idaho, U.S.A.: Implications for Cordilleran Tectonics. J. Sediment. Res. 2008, 78, 765–783. [Google Scholar] [CrossRef]
- LaMaskin, T.; Vervoort, J.; Dorsey, R. Crustal Growth by Tectonic Accretion of Island Arc Terranes: Radioisotopic Provenance of Late Paleozoic–Mesozoic Rocks of the Blue Mountains, Western United States. Geol. Soc. Am. Abstr. Programs 2013, 45, 441. [Google Scholar]
- Soderberg, E.R.; Wolff, J.A. Mantle Source Lithologies for the Columbia River Flood Basalt Province. Contrib. Mineral. Petrol. 2023, 178, 11. [Google Scholar] [CrossRef]
- Takahashi, E.; Kushiro, I. Melting of a Dry Peridotite at High Pressures and Basalt Magma Genesis. Am. Mineral. 1983, 68, 859–879. [Google Scholar]
- Cahoon, E.B.; Streck, M.J.; Koppers, A.A. Picture Gorge Basalt: Internal stratigraphy, eruptive patterns, and its importance for understanding Columbia River Basalt Group magmatism. Geosphere 2023, 19, 406–430. [Google Scholar] [CrossRef]
- Streck, M.J.; Ferns, M.L.; McIntosh, W. Large, Persistent Rhyolitic Magma Reservoirs above Columbia River Basalt Storage Sites: The Dinner Creek Tuff Eruptive Center, Eastern Oregon. Geosphere 2015, 11, 226–235. [Google Scholar] [CrossRef]
- Thayer, T.P.; Brown, E. Local Thickening of Basalts and Late Tertiary Silicic Volcanism in the Canyon City Quadrangle, Northeastern Oregon; U.S. Geological Survey: Reston, VA, USA, 1966; pp. C73–C78. [Google Scholar]
- McKenzie, D.A.N.; O’nions, R.K. Partial melt distributions from inversion of rare earth element concentrations. J. Petrol. 1991, 32, 1021–1091. [Google Scholar] [CrossRef]
- Hart, S.R.; Dunn, T. Experimental cpx/melt partitioning of 24 trace elements. Contrib. Mineral. Petrol. 1993, 113, 1–8. [Google Scholar] [CrossRef]
- Green, T.H. Experimental studies of trace-element partitioning applicable to igneous petrogenesis—Sedona 16 years later. Chem. Geol. 1994, 117, 1–36. [Google Scholar] [CrossRef]
- Hauri, E.H.; Wagner, T.P.; Grove, T.L. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem. Geol. 1994, 117, 149–166. [Google Scholar] [CrossRef]
- Dunn, T.; Senn, C. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study. Geochim. Cosmochim. Acta 1994, 58, 717–733. [Google Scholar] [CrossRef]
- Onuma, N.; Higuchi, H.; Wakita, H.; Nagasawa, H. Trace element partition between two pyroxenes and the host lava. Earth Planet. Sci. Lett. 1968, 5, 47–51. [Google Scholar] [CrossRef]
Sample Name | Mg# | 87Sr/86Sr | 143Nd/144Nd | Age (Ma) |
---|---|---|---|---|
high-MgO dike (HMD) Endmember | ||||
MMB D69A | 65.4 | 0.703400 | 0.512980 | no age data |
MMB D69B | 64.5 | 0.703066 | 0.513012 | |
MMB D70A * | 66.1 | 0.703400 | 0.512990 | |
MMB D70B | 64.1 | - | - | |
Rattlesnake Road (RR) Endmember | ||||
DM255B | 57.4 | 0.703757 | 0.512905 | 15.76 |
CAH15-007 | 64.4 | 0.703691 | 0.512889 | 16.22 |
CAH17-241A *^ | 59.6 | - | - | 15.5–16.16 |
CAH17-241B ^ | 59.5 | - | - | |
CAH17-242A ^ | 57.8 | 0.703565 | 0.512925 | |
MS-15-18ba ^ | 58.8 | - | - |
Sample Name | Dike or Lava | 87Sr/86Sr | 143Nd/144Nd | εNd | 176Hf/177Hf | εHf | 208Pb/204Pb | 207Pb/204Pb | 206Pb/204Pb | 208Pb/206Pb | 207Pb/206Pb | 204Pb/206Pb | δ18O | δ18O | Mg# | Age | Error |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GM (‰) | PL (‰) | (Ma) | (±2σ) | ||||||||||||||
DM255B | Lava | 0.703757 | 0.512905 | 5.4 | 0.283093 | 10.9 | 38.62 | 15.64 | 18.96 | 2.04 | 0.83 | 0.05 | 6.68 | - | 57.4 | 15.76 | 0.11 |
CAH16-179B | Lava | - | - | - | - | - | - | - | - | - | - | - | - | 5.92 | 53.5 | 16.02 | 0.08 |
MS-11-6 | Dike | 0.703461 | 0.512974 | 6.7 | - | - | 38.70 | 15.68 | 18.97 | 2.04 | 0.83 | 0.05 | 5.55 | 5.79 | 53.2 | 16.06 | 0.14 |
CAH16-163 | Lava | 0.703584 | 0.512940 | 6.1 | 0.283093 | 10.9 | - | - | - | - | - | - | 5.99 | 5.83 | 45.8 | 16.18 | 0.05 |
CAH15-007 | Lava | 0.703691 | 0.512889 | 5.1 | - | - | 38.52 | 15.60 | 18.89 | 2.04 | 0.83 | 0.05 | 6.12 | - | 64.4 | 16.22 | 0.06 |
MC-76-16 | Lava | - | 0.512957 | 6.4 | 0.283128 | 12.1 | - | - | - | - | - | - | - | 5.76 | 52.2 | 16.23 | 0.09 |
CAH16-148 | Lava | - | - | - | - | - | - | - | - | - | - | - | - | 5.54 | 49.8 | 16.62 | 0.07 |
CAH16-138 | Dike | - | 0.512971 | 6.7 | 0.283109 | 11.4 | 38.43 | 15.58 | 18.84 | 2.04 | 0.83 | 0.05 | 5.75 | 5.81 | 50.2 | 16.70 | 0.09 |
CAH16-065 | Lava | 0.704102 | 0.512861 | 4.5 | 0.283039 | 9.0 | 38.59 | 15.60 | 18.98 | 2.03 | 0.82 | 0.05 | - | - | 44.2 | 16.72 | 0.03 |
CAH15-023 | Dike | 0.703494 | 0.512964 | 6.5 | 0.283100 | 11.1 | 38.40 | 15.57 | 18.79 | 2.04 | 0.83 | 0.05 | 5.45 | - | 56.1 | 16.88 | 0.06 |
CAH16-174A | Lava | 0.703528 | 0.512964 | 6.5 | 0.283111 | 11.5 | 38.52 | 15.60 | 18.85 | 2.04 | 0.83 | 0.05 | 5.52 | - | 49.7 | 16.96 | 0.07 |
CAH17-200 | Lava | - | 0.512956 | 6.4 | 0.283126 | 12.1 | - | - | - | - | - | - | 5.75 | 5.72 | 52.6 | 17.02 | 0.03 |
CAH17-245 | Lava | 0.703573 | 0.512941 | 6.1 | 0.283097 | 11.0 | 38.49 | 15.58 | 18.87 | 2.04 | 0.83 | 0.05 | 5.78 | - | 47.3 | 17.14 | 0.04 |
CAH17-222A | Lava | 0.703412 | 0.512994 | 7.1 | 0.283126 | 12.1 | 38.52 | 15.61 | 18.86 | 2.04 | 0.83 | 0.05 | 5.28 | 5.32 | 52.1 | 17.23 | 0.04 |
CAH16-073A | Lava | 0.703969 | 0.512791 | 3.1 | - | - | 38.93 | 15.73 | 19.14 | 2.03 | 0.82 | 0.05 | - | - | 55.2 | - | - |
CAH16-171A | Lava | 0.703597 | 0.512930 | 5.9 | 0.283071 | 10.1 | 38.51 | 15.60 | 18.86 | 2.04 | 0.83 | 0.05 | - | - | 52.7 | - | - |
CAH16-195 | Dike | 0.703428 | 0.512972 | 6.7 | 0.283109 | 11.4 | 38.44 | 15.57 | 18.84 | 2.04 | 0.83 | 0.05 | - | - | 50.8 | - | - |
CAH17-242A | Lava | 0.703565 | 0.512925 | 5.8 | 0.283084 | 10.6 | - | - | - | - | - | - | - | - | 57.8 | - | - |
CAH16-140 | Dike | - | - | - | - | - | - | - | - | - | - | - | - | 5.9 | 55.6 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cahoon, E.B.; Streck, M.J.; Carlson, R.W.; Bindeman, I.N. Mantle Sources and Geochemical Evolution of the Picture Gorge Basalt, Columbia River Basalt Group. Minerals 2024, 14, 440. https://doi.org/10.3390/min14050440
Cahoon EB, Streck MJ, Carlson RW, Bindeman IN. Mantle Sources and Geochemical Evolution of the Picture Gorge Basalt, Columbia River Basalt Group. Minerals. 2024; 14(5):440. https://doi.org/10.3390/min14050440
Chicago/Turabian StyleCahoon, Emily B., Martin J. Streck, Richard W. Carlson, and Ilya N. Bindeman. 2024. "Mantle Sources and Geochemical Evolution of the Picture Gorge Basalt, Columbia River Basalt Group" Minerals 14, no. 5: 440. https://doi.org/10.3390/min14050440
APA StyleCahoon, E. B., Streck, M. J., Carlson, R. W., & Bindeman, I. N. (2024). Mantle Sources and Geochemical Evolution of the Picture Gorge Basalt, Columbia River Basalt Group. Minerals, 14(5), 440. https://doi.org/10.3390/min14050440