Deciphering the Importance of Mineralogical Changes in the Neoproterozoic Epeiric Seas through the Sedimentary Succession of Tandilia System: A Brief Review
Abstract
:1. Introduction
2. Geological Framework
3. Methodology
4. Results
4.1. Depositional Sedimentary Sequences
4.1.1. Sequence I—Villa Mónica Formation (<1160 to >720? Ma)
4.1.2. Sequence II—Colombo Formation (<720 Ma >600 Ma)
4.1.3. Sequence III—Cerro Largo Formation (<600 Ma)
4.1.4. Sequence IV—Olavarría Formation (> 590 <600 Ma)
4.1.5. Sequence V—Loma Negra Formation (~590–580 Ma)
4.1.6. Sequence VI—Avellaneda Formation (~570 Ma)
4.1.7. Sequence VII—Alicia Formation (> 560 < 570 Ma)
4.1.8. Sequence VIII (ex-La Providencia sequence)—Cerro Negro Formation (~560–530 Ma)
4.2. Mineralogical Attributes
4.2.1. Detrital Components
4.2.2. Bio-induced Components
5. Discussions
5.1. Detrital Components: Origin and Evolution
5.1.1. Compositional Variations during Rodinia Breakup—Sequence I
5.1.2. Compositional Variations during Gondwana Configuration (Sequences II, III, IV)
5.1.3. Compositional Variations in SW-Gondwana (Sequences VII and VIII)
5.2. Icehouse/Greenhouse Influence in the Composition
5.3. Phosphorus Strategy in MISS-Forming Cyanobacteria
5.4. Bio-induced Precipitation of Carbonates
5.4.1. Cap-Dolostone—Subsequence Ib
5.4.2. Preglacial Carbonate Ramp—Sequence V
5.4.3. Supporting Shuram Bio-Induced Carbonates (Sequence VI)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rieu, R.; Allen, P.A.; Plotze, M.; Pettke, T. Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession, Mirbat area, south Oman: Implications for paleoweathering conditions. Precambrian Res. 2007, 154, 248–265. [Google Scholar] [CrossRef]
- Gómez-Peral, L.E.; Raigemborn, M.S.; Poiré, D.G. Petrología y evolución diagenética de las facies silicoclásticas del Grupo Sierras Bayas, Sistema de Tandilia, Argentina. Lat. Am. J. Sedimentol. Basin Anal. (LAJSBA) 2011, 18, 3–41. [Google Scholar]
- Gómez-Peral, L.E.; Arrouy, M.J.; Raigemborn, M.S.; Ferreyra, C.; Penzo, V.; Sial, A.; Poiré, D.G. Two karstic events delimiting drastic changes in the Neoporterozoic Tandilia Basin history, Argentina: Paleogeographic implicance. Int. J. Earth Sci. 2023, 112, 1503–1525. [Google Scholar] [CrossRef]
- Arrouy, M.J.; Poiré, D.G.; Gómez-Peral, L.E.; Canalicchio, J.M. Sedimentología y estratigrafía del Grupo La Providencia (Nom. Nov.): Cubierta Neoproterozoica, Sistema de Tandilia, Argentina. Lat. Am. J. Sedimentol. Basin Anal. 2015, 22, 171–189. [Google Scholar]
- Gómez-Peral, L.E.; Poiré, D.G.; Strauss, H.; Zimmermann, U. Chemostratigraphy and diagenetic constraints on Neoproterozoic carbonate successions from the Sierras Bayas Group, Tandilia System, Argentina. Chem. Geol. 2007, 237, 127–146. [Google Scholar] [CrossRef]
- Gómez-Peral, L.E.; Arrouy, M.J.; Richiano, S.; Cereceda, A.; Alé, S.A.; Poiré, D.G. Unravelling hidden glacial effects in the Cryogenian marine depositional settings of the Tandilia Basin, Argentina. Prec. Res. 2021, 361, 106261. [Google Scholar] [CrossRef]
- Scivetti, N.; Arrouy, M.J.; Marcos, P.; Warren, L.V.; Gómez-Peral, L.E.; Bilmes, A.; Penzo, V.; Poiré, D.G. Tectono-stratigraphic reconstruction of the Neoproterozico Tandilia system: An approach from subsidence analysis. PRECAM-D-23-00311 Precambrian Res. 2024, in press. [Google Scholar]
- Cingolani, C. The Tandilia System of Argentina as a southern extension of the Río de la Plata craton: An overview. Int. J. Earth Sci. 2011, 100, 221–242. [Google Scholar] [CrossRef]
- Dalla Salda, L.H.; de Barrio, R.E.; Echeveste, H.J.; Fernández, R.R. El basamento de las Sierras de Tandilia. In Geología y Recursos minerales de la Provincia de Buenos Aires, Proceedings of the 16 Congreso Geológico Argentino, La Plata, Argentina, 20–23 September 2005; de Barrio, R.E., Etcheverry, R.Q., Caballé, M.F., Llambías, E.J., Eds.; Asociación Geologica Argentina: La Plata, Argentina; Volume 3, pp. 31–50.
- Rapela, C.W.; Fanning, C.M.; Casquet, C.; Pankhurst, R.J.; Spalletti, L.; Poiré, D.; Baldo, E.G. The Rio de la Plata craton and the adjoining Pan-African/brasiliano terranes: Their origins and incorporation into south-west Gondwana. Gondwana Res. 2011, 20, 673–690. [Google Scholar] [CrossRef]
- Oyhantçabal, P.; Cingolani, C.A.; Wemmer, K.; Siegesmund, S. The Río de la Plata Craton of Argentina and Uruguay. In Geology of Southwest Gondwana; Siegesmund, S., Basei, M.A.S., Oyhantçabal, P., Oriolo, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 89–102. [Google Scholar]
- Afonso, J.W.L.; Franceschinis, P.; Rapalini, A.E.; Arrouy, M.J.; Gómez-Peral, L.E.; Poiré, D.; Caetano-Filho, S.; Trindade, R.I.F. Paleomagnetism of the Ediacaran Avellaneda Formation (Argentina), Part II: Magnetic and chemical stratigraphy constraints on the onset of the Shuram carbon excursion. Precambrian Res. 2023, 389, 107015. [Google Scholar] [CrossRef]
- Chenyi, T.; Charles, W.; Diamond, E.E.; Stüejen, M.C.; Wen Pan, T.W.L. Dynamic evolution of marine productivity, redox, and biogeochemical cycling track local and global controls on Cryogenian Sea level change. Geochim. Cosmochim. Acta 2023, 365, 114–135. [Google Scholar] [CrossRef]
- Stern Robert, J.; Miller Nathan, R. Neoproterozoic Glaciation—Snowball Earth Hypothesis. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias Scott, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 5, pp. 546–556. [Google Scholar]
- Nesbitt, H.W.; Young, G.M.; McLennan, S.M.; Keays, R.R. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J. Geol. 1996, 104, 525–542. [Google Scholar] [CrossRef]
- Gómez-Peral, L.E.; Sial, A.N.; Arrouy, M.J.; Richiano, S.; Ferreira, V.P.; Kaufman, A.J.; Poiré, D.G. Paleoclimatic and paleoenvironmental evolution of the Early Neoproterozoic basal dolomitic platform, Río de La Plata Craton, Argentina: Insights from the δ13C chemostratigraphy. Sed. Geol. 2017, 353, 139–157. [Google Scholar] [CrossRef]
- Gómez-Peral, L.E.; Kaufman, A.J.; Arrouy, M.J.; Richiano, S.; Sial, A.N.; Póiré, D.G.; Ferreira, V.P. Preglacial palaeoenvironmental evolution of the Ediacaran 800 Loma Negra Formation, far southwestern Gondwana, Argentina. Prec. Res. 2018, 801, 120–137. [Google Scholar] [CrossRef]
- Arrouy, M.J.; Gómez-Peral, L.E.; Penzo, V.; Ferreyra, C.; Poiré, D.G. Fossil bubble structure related to microbial activity coeval with the middle Ediacaran Oceanic Oxygenation Event in the Tandilia System. Spec. Vol. Lat. Am. J. Sedimentol. Basin Anal. 2021, 28, 101–120. [Google Scholar]
- Gómez Peral, L.E. Petrología y Diagénesis de las Unidades Sedimentarias Precámbricas de Olavarría, Provincia de Buenos Aires. Ph.D. Thesis, Universidad Nacional de La Plata, la Plata, Argentina, 2008. [Google Scholar]
- Marchese, H.G.; Di Paola, E. Miogeosinclinal Tandil. Rev. Asoc. Geológica Argent. 1975, 30, 161–179. [Google Scholar]
- Cingolani, C.A.; Hartmann, L.A.; Santos, J.O.S.; McNaughton, N.J. U–Pb SHIMP dating of zircons from the Buenos Aires Complex of the Tandilia Belt, Rio de La Plata Craton, Argentina. Actas XV Congr. Geológico Argent. 2002, 1, 149–154. [Google Scholar]
- Hartmann, L.A.; Santos, J.O.S.; Bossi, J.; Campal, N.; Schipilov, A.; McNaughton, N.J. Zircon and titanite U-Pb SHRIMP geochronology of Neoproterozoic felsic magmatism on the eastern border of the Rio de la Plata Craton, Uruguay. J. South Am. Earth Sci. 2002, 15, 229–236. [Google Scholar] [CrossRef]
- Poiré, D.G. Estratigrafía del Precámbrico sedimentario de Olavarría, Sierras Bayas, Provincia de Buenos Aires, Argentina. XII Congr. Geológico Argent. II Congr. Explor. Hidrocarb. Actas 1993, II, 1–11. [Google Scholar]
- Poiré, D.G. Mineralogía y Sedimentología de la Formación Sierras Bayas en el Núcleo Septentrional de las Sierras Homónimas, Partido de Olavarría, Provincia de Buenos Aires. Ph.D. Thesis, Universidad Nacional de La Plata, La Plata, Argentina, 1987; 271p. [Google Scholar]
- Poiré, D.G.; Gaucher, C. Lithostratigraphy. Neoproterozoic Cambrian evolution of the Río de la Plata Palaeocontinent. In Neoproterozoic-Cambrian Tectonics, Global Change, and Evolution: A Focus on Southwestern Gondwana; Gaucher, C., Sial, A.N., Halverson, G.P., Frimmel, H.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 16, pp. 87–101. [Google Scholar]
- Andreis, R.R.; Zalba, P.E.; Iñiguez Rodriguez, A.M.; Morosi, M. Estratigrafía y evolución paleoambiental de la sucesión superior de la Formación Cerro Largo, Sierras Bayas (Buenos Aires, Argentina). VI Reun. Argent. De Sedimentol. Actas 1996, 293–298. [Google Scholar]
- Poiré, D.G.; Spalletti, L.A. La cubierta sedimentaria precámbrica/paleozoica inferior del Sistema de Tandilia. Relat. Del XVI Congr. Geológico Argent. 2005, 51–68. [Google Scholar]
- Borrello, A.V. Trazas, Restos Tubiformes y Cuerpos Fósiles Problemáticos de la Formación la Tinta Sierras Septentrionales-Provincia de Buenos Aires. 1966. Available online: https://cir.nii.ac.jp/crid/1130000794941784704 (accessed on 25 February 2024).
- Iñiguez, A.M.; del Valle, A.; Poiré, D.G.; Spalletti, L.A.; Zalba, P.E. Cuenca precámbrica-paleozoica inferior de Tandilia, Provincia de Buenos Aires. En, G. Chebli y L.A. Spalletti (Eds.), Cuencas Sedimentarias Argentinas. Ser. Correlación Geológica 1989, 6, 245–263. [Google Scholar]
- Dickson, J.A.D. Carbonate identification and genesis as revealed by staining. J. Sediment. Petrol. 1966, 36, 491–505. [Google Scholar]
- Brown, G.; Brindley, G.W. X-ray diffraction procedures for clay mineral identification. In Crystal Structures of Clay Minerals and Their X-ray Identification; Brindley, G.W., Brown, G., Eds.; Mineralogical Society: London, UK, 1980; pp. 305–359. [Google Scholar]
- Biscaye, P.E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull. 1965, 76, 803–832. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: Oxford, UK, 1989; p. 332. [Google Scholar]
- Rapalini, A.E.; Trindade, R.I.; Poiré, D.G. The La Tinta pole revisited: Paleomagnetism of the Neoproterozoic Sierras Bayas Group (Argentina) and its implications for Gondwana and Rodinia. Precambrian Res. 2013, 224, 51–70. [Google Scholar] [CrossRef]
- Gómez-Peral, L.E.; Kaufman, A.J.; Poiré, D.G. Paleoenvironmental implications of two phosphogenic events in Neoproterozoic sedimentary successions of the Tandilia System, Argentina. Precambrian Res. 2014, 252, 88–106. [Google Scholar] [CrossRef]
- Frakes, L.A.; Francis, J.E. A guide to Phanerozoic cold polar climates from high-latitude ice rifting in the Cretaceous. Nature 1988, 333, 547–549. [Google Scholar] [CrossRef]
- Bennett, M.R.; Doyle, P.; Mather, A.E. Dropstones: Their origin and significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996, 121, 331–339. [Google Scholar] [CrossRef]
- Poiré, D.G. Stromatolites of the Sierras Bayas Group, Upper Proterozoic of Olavarría, Sierras Septentrionales, Argentina. Stromatolite Newsl. 1989, 11, 58–61. [Google Scholar]
- Cloud, P.; Dardenne, M. Proterozoic age of the Bambuí Group in Brazil. Geol. Soc. Am. Bull. 1973, 84, 1673–1676. [Google Scholar] [CrossRef]
- Semikhatov, M.A. General problems of Proterozoic stratigraphy in the URSS. Soviet Scientific Reviews. Geol. Sect. 1991, 1, 1–192. [Google Scholar]
- Grey, K.; Hill, A.C.; Calver, C. Biostratigraphy and stratigraphic subdivision of Cryogenian successions of Australia in a global context. In The Geological Record of Neoproterozoic Glaciations; Arnoud, E., Halverson, G.P., Shields-Zhou, G., Eds.; Geological Society London Memoirs: London, UK, 2011; Volume 36, pp. 113–134. [Google Scholar]
- Hoffman, P.F.; Halverson, G.P.; Domacke, E.W.; Maloof, A.C.; Swanson-Hysell, N.L.; Cox, G.M. Cryogenian glaciations on the southern tropical paleomargin of Laurentia (NE Svalbard and East Greenland), and a primary origin for the upper Russøya (Islay) carbon isotope excursion. Precambrian Res. 2012, 206–207, 137–158. [Google Scholar] [CrossRef]
- Alvarenga, C.J.S.; Santos, R.V.; Vieira, L.C.; Lima, B.A.F.; Mancini, L.H. Meso-Neoproterozoic isotope stratigraphy on carbonates platforms in the Brasilia Belt of Brazil. Precambrian Res. 2014, 251, 164–180. [Google Scholar] [CrossRef]
- Gaucher, C.; Poiré, D.G.; Gómez Peral, L.; Chiglino, L. Litoestratigrafía, bioestratigrafía y correlaciones de las sucesiones sedimentarias del Neoproterozoico-Cambrico del Cratón del Río de La Plata (Uruguay y Argentina). Lat. Am. J. Sedimentol. Basin Anal. LAJSBA 2005, 12, 145–160. [Google Scholar]
- Barrio, C.A.; Poiré, D.G.; Iñiguez Rodríguez, A.M. El contacto entre la Formación Loma Negra (Grupo Sierras Bayas) y la Formación Cerro Negro: Un ejemplo de Paleokarst, Olavarría, provincia de Buenos Aires. Rev. De La Asoc. Geológica Argent. 1991, 46, 69–76. [Google Scholar]
- Gómez-Peral, L.E.; Arrouy, M.J.; Poiré, D.G.; Cavarozzi, C.E. Redox-sensitive element distribution in the Neoproterozoic Loma Negra Formation in Argentina, in the Clymene Ocean context. Prec. Res. 2019, 332, 105384. [Google Scholar] [CrossRef]
- Franceschinis, P.R.; Afonso, J.W.; Arrouy, M.J.; Gómez-Peral, L.E.; Poiré, D.; Trindade, R.I.F.; Rapalini, A.E. Paleomagnetism of the Ediacaran Avellaneda Formation (Argentina), part I: Paleogeography of the Río de la Plata craton at the dawn of Gondwana. Precam. Res. 2022, 383, 106909. [Google Scholar] [CrossRef]
- Poiré, D.G.; Gaucher, C.; Germs, G. La superficie “Barker” y su importancia regional, Neoproterozoico del Cratón del Río de La Plata. VI Jorn. Geológicas Y Geofísicas Bonaer. Actas 2007, 36. [Google Scholar]
- Cukjati, A.; Franceschinis, P.R.; Arrouy, M.J.; Gómez-Peral, L.E.; Poiré, D.G.; Trindade, R.I.F.; Rapalini, A.E. The Ediacaran apparent polar wander path of the Río de la Plata craton revisited: Paleogeographic implications. Pre. Res. 2023, 397, 107205. [Google Scholar] [CrossRef]
- Gómez-Peral, L.; Arrouy, M.J.; Penzo, V.; Ferreyra, C.; Poiré, D.G.; Sial, A.N. Tying the C-isotope Excursions of the Neoproterozoic Successions of Tandilia System: Phantom Glaciations? Available online: https://ri.conicet.gov.ar/handle/11336/228478 (accessed on 24 February 2024).
- Arrouy, M.J.; Gómez-Peral, L.E. Exposing the inside of the fine-grained siliciclastic tidal shelf deposits of the Alicia Formation, Tandilia Basin, during the Ediacaran anoxia in the Clymene Ocean. South Am. Earth Sci. J. 2021, 106, 102945. [Google Scholar] [CrossRef]
- Iñiguez, A.M.; Zalba, P.E. Nuevo nivel de arcilitas en la zona de Cerro Negro, Partido de Olavarría, Provincia de Buenos Aires. An. Del LEMIT Ser. 1974, 2, 95–100. [Google Scholar]
- Arrouy, M.J.; Warren, L.V.; Quaglio, F.; Poiré, D.G.; Simões, M.G.; Rosa, M.B.; Peral, L.E.G. Ediacaran discs from South America: Probable soft-bodied macrofossils unlock the 1 paleogeography of the Clymene Ocean. Sci. Rep. (Nat.) 2016, 6, 30590. [Google Scholar] [CrossRef]
- Waggoner, B. The Ediacaran biotas in space and time. Integr. Comp. Biol. 2003, 43, 104–113. [Google Scholar] [CrossRef]
- Cracknell, K.; García-Bellido, D.C.; Gehling, J.G.; Ankor, M.J.; Darroch, S.A.; Rahman, I.A. Pentaradial eukaryote suggests expansion of suspension feeding in White Sea-aged Ediacaran communities. Sci. Rep. 2021, 11, 4121. [Google Scholar] [CrossRef]
- Xiao, S.; Lafamme, M. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol. Evol. 2009, 24, 31–40. [Google Scholar] [CrossRef]
- Gaucher, C.; Poiré, D.G. Palaeoclimatic events. Dev. Precambrian Geol. 2009, 16, 123–130. [Google Scholar]
- Arrouy, M.J.; Gaucher, C.; Poiré, D.G.; Xiao, S.; Gómez Peral, L.E.; Warren, L.; Bykova, N.; Quaglio, F. A new record of late Ediacaran acritarchs from La Providencia Group (Tandilia System, Argentina) and its biostratigraphical significance. J. S. Am. Earth Sci. 2019, 92, 283–293. [Google Scholar] [CrossRef]
- Mountjoy, E.W.; Amthor, J.E. Has burial dolomitization come of age? Some answers from the Western Canada Sedimentary Basin. Spec. Publ. Int. Assoc. Sedimentol. 1994, 21, 203–229. [Google Scholar]
- Srinivasan, K.; Walter, K.R.; Goldberg, S.A. Determining fluid source and possible pathways during burial dolomitization of Marville limestone (Cambrian), Southern Appalachians, USA. Sedimentology 1994, 41, 293–308. [Google Scholar] [CrossRef]
- Wright, J.; Schrader, H.; Holser, W.T. Paleoredox variations in ancient oceans recorded by rare-earth elements in fossil apatite. Geochim. Et Cosmochim. Acta 1987, 51, 631–644. [Google Scholar] [CrossRef]
- Zimmermann, U.; Poiré, D.G.; Gomez-Peral, L.E. Neoproterozoic to Lower Palaezoic successions of Tandilia System in Argentina: Implication for the palaeotectonic framework of southwest Gondwana. Int. J. Earth Sci. 2010, 100, 489–510. [Google Scholar] [CrossRef]
- Gaucher, C.; Finney, S.C.; Poiré, D.G.; Valencia, V.A.; Grove, M.; Blanco, G.; Pamoukaghlian, K.; Gómez-Peral, L.E. Detrital zircon ages of Neoproterozoic sedimentary successions in Uruguay and Argentina: Insights into the geological evolution of the Río de la Plata Craton. Precambrian Res. 2008, 167, 150–170. [Google Scholar] [CrossRef]
- Warren, L.V.; Penzo, V.; Arrouy, M.J.; Gómez-Peral, L.E.; Cerri, R.I.; Caxito, F.; Riccomini, C.; Simões, M.G.; Assine, M.; Lana, C.; et al. The hidden passive margins from the birth of SW Gondwana. Braz. J. Geol. 2024, 54, e20230063. [Google Scholar] [CrossRef]
- Limarino, C.; Net, L.; Gutiérrez, P.; Barreda, V.; Caselli, A.; Ballent, S. Definición litoestratigráfica de la Formación Ciénaga del Río Huaco (Cretácico Superior), Precordillera central, San Juan, Argentina. Rev. De La Asoc. Geológica Argent. 2000, 55, 83–99. [Google Scholar]
- Rapela, C.W.; Pankhurst, R.J.; Casquet, C.; Fanning, C.M.; Baldo, E.G.; González-Casado, J.M.; Galindo, C.; Dahlquist, J. The Río de la Plata Craton and the assembly of SW Gondwana. Earth Sci. Rev. 2007, 83, 49–82. [Google Scholar] [CrossRef]
- Merdith, A.S.; Collins, A.S.; Williams, S.E.; Pisarevsky, S.; Foden, J.D.; Archibald, D.B.; Blades, M.L.; Alessio, B.L.; Armistead, S.; Plavsa, D.; et al. A full-plate global reconstruction of the Neoproterozoic. Gondwana Res. 2017, 50, 84–134. [Google Scholar] [CrossRef]
- Chakraborty, N. Snowball Earth: A Critical Review on Neoproterozoic Glaciation. J. Geointerface 2022, 1, 50–56. [Google Scholar]
- Hoffman, P.F.; Kaufman, A.J.; Halverson, G.P.; Schrag, D.P. A Neoproterozoic snowball Earth. Science 1998, 281, 1342–1346. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.A.; Leather, J.; Brasier, M.D. The Neoproterozoic Fiq glaciation and its aftermath, Huqf supergroup of Oman. Basin Res. 2004, 16, 507–534. [Google Scholar] [CrossRef]
- Allen, P.A.; Etienne, J.L. Sedimentary challenge to Snowball Earth. Nat. Geosci. 2008, 1, 817–825. [Google Scholar] [CrossRef]
- Lang, X.; Chena, J.; Cuid, H.; Manf, L.; Huangh, K.-J.; Fu, Y.; Zhoua, C.; Shen, B. Cyclic cold climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China. Precambrian Res. 2018, 310, 243–255. [Google Scholar] [CrossRef]
- Poiré, D.G.; Gómez-Peral, L.E.; Arrouy, M.J. Glaciations in South America. In Geology of Southwest Gondwana; Siegesmund, S., Basei, M.A.S., Oyhantçabal, P., Oriolo, S., Eds.; Special Publication of Springer-Nature: Berlin/Heidelberg, Germany, 2018; pp. 527–541. [Google Scholar]
- Are, F.; Reimuntz, E.; Grigoriev, M.; Hubberten, H.W.; Rachold, V. The Influence of Cryogenic Processes on the Erosional Arctic Shoreface. J. Coast. Res. 2008, 24, 110–121. [Google Scholar] [CrossRef]
- Curtis, G.M.; Osborne, P.D.; Horner-Devine, A.R. Seasonal patterns of coarse sediment transport on a mixed sand and gravel beach due to vessel wakes, wind waves and tidal currents. Mar. Geol. 2009, 259, 73–85. [Google Scholar] [CrossRef]
- Masselink, G.; Russell, P.; Blenkinsopp, C.; Turner, I. Swash zone sediment transport, step dynamics and morphological response on a gravel beach. Mar. Geol. 2010, 274, 50–68. [Google Scholar] [CrossRef]
- Brocks, J.J.; Jarrett, A.J.M.; Sirantoine, E.; Hallmann, C.; Hoshino, Y.; Liyanage, T. The rise of algae in Cryogenian oceans and the emergence of animals. Research Letter. Nature 2017, 548, 578–581. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.M.; Schidlowski, M.; Siebert, F.; Brasier, M.D. Geochemical changes across the Proterozoic–Cambrian transition in the Durmala phosphorite mine section, Mussoorie Hills, Garhwal Himalaya, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 132, 183–194. [Google Scholar] [CrossRef]
- Caird, R.A.; Pufahl, P.K.; Hiatt, E.E.; Abram, M.B.; Rocha, A.J.D.; Kyser, T.K. Ediacaran stromatolites and intertidal phosphorite of the Salitre Formation, Brazil: Phosphogenesis during the Neoproterozoic Oxygenation Event. Sediment. Geol. 2017, 350, 55–71. [Google Scholar] [CrossRef]
- Cowan, E.A. Meltwater and tidal currents: Controls on circulation in a small glacial fjord. Estuarine. Coast. Shelf Sci. 1992, 34, 381–392. [Google Scholar] [CrossRef]
- Buatois, L.A.; Netto, R.G.; Gabriela Mángano, M.; Carmona, N.B. Global deglaciation and the re-appear ance of microbial mat ground-dominated ecosystems in the late Paleozoic of Gondwana. Geobiology 2013, 11, 307–317. [Google Scholar] [CrossRef]
- Riedgwell, A.; Kennedy, M.J.; Caldeira, K. Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science 2003, 302, 859–862. [Google Scholar] [CrossRef]
- Shields, G.A.; Deynoux, M.; Culver, S.J.; Brasier, M.D.; Affaton, P.; Vandamme, D. Neoproterozoic glaciomarine and cap dolostone facies of the southwestern Taoudéni Basin (Walidiala Valley, Senegal/Guinea, NW Africa). C.R. Geosci. 2007, 339, 186–199. [Google Scholar] [CrossRef]
- Azmy, K.; Sylvester, P.; de Oliveira, T.F. Oceanic redox conditions in the Late Mesoproterozoic recorded in the upper Vazante Group carbonates of São Francisco Basin, Brazil: Evidence from stable isotopes and REEs. Precambrian Res. 2009, 168, 259–270. [Google Scholar] [CrossRef]
- Hoffman, P.F.; Schrag, D.P. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova 2002, 14, 129–155. [Google Scholar] [CrossRef]
- Hoffman, P.F.; Halverson, G.P.; Domack, E.W.; Husson, J.M.; Higgins, J.A.; Schrag, D.P. Are basal Ediacaran (635 Ma) post-glacial “cap dolostones” diachronous? Earth Planet. Sci. Lett. 2007, 258, 113–131. [Google Scholar] [CrossRef]
- Hood, A.v.S.; Wallace, M.W.; Drysdale, R.N. Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes. Geology 2011, 39, 871–874. [Google Scholar] [CrossRef]
- Warren, L.V.; Quaglio, F.; Riccomini, C.; Simões, M.G.; Poiré, D.G.; Strikis, N.M.; Anelli, L.E.; Strikis, P.C. The Puzzle Assembled: Ediacaran Guide Fossil Cloudina Reveals an Old Proto-Gondwana Seaway. Geology 2014, 42, 391–394. [Google Scholar] [CrossRef]
- Halverson, G.P.; Hoffman, P.F.; Schrag, D.P.; Maloof, A.C.; Rice, A.H.N. Toward a Neoproterozoic composite carbon-isotope record. Geol. Soc. Am. Bull. 2005, 117, 1181–1207. [Google Scholar] [CrossRef]
- MacDonald, F.A.; Schmitz, M.D.; Crowley, J.L.; Roots, C.F.; Jones, D.S.; Maloof, A.C.; Strauss, J.V.; Cohen, P.A.; Johnston, D.T.; Schrag, D.P. Calibrating the Cryogenian. Science 2010, 327, 1241–1243. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Kaufman, A.J.; Xiao, S.; Zhud, M.; Zhou, C.; Liu, X.-M. Redox architecture of an Ediacaran Ocean margin: Integrated chemostratigraphic (δ13C–δ34S–87Sr/86Sr–Ce/Ce*) correlation of the Doushantuo Formation, South China. Chem. Geol. 2015, 405, 48–62. [Google Scholar] [CrossRef]
- Lyons, T.W.; Reinhard, C.T.; Planavsky, N.J. The rise of oxygen in Earth/’s early ocean and atmosphere. Nature 2014, 506, 307–315. [Google Scholar] [CrossRef]
- Noffke, N.; Gerdes, G.; Klenke, T.; Krumbein, W.E. Microbially induced sedimentary structures—A new category within the classification of primary sedimentary structures. J. Sediment. Res. 2001, 71, 649–656. [Google Scholar] [CrossRef]
- Noffke, N.; Gerdes, G.; Klenke, T. Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth-Sci. Rev. 2003, 62, 163–176. [Google Scholar] [CrossRef]
- Noffke, N.; Christian, D.; Wacey, D.; Hazen, R.M. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48-billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 2013, 13, 1103–1124. [Google Scholar] [CrossRef] [PubMed]
- Bosak, T.; Liang, B.; Sim, M.S.; Petroff, A.P. Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl. Acad. Sci. USA 2009, 106, 10939–10943. [Google Scholar] [CrossRef] [PubMed]
- Bosak, T.; Bush, J.W.M.; Flynn, M.; Liang, B.; Ono, S.; Petroff, A.P.; Sim, M.S. Formation and stability of oxygen-rich bubbles that shape photosynthetic mats. Geobiology 2010, 8, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Homann, M.; Heubeck, C.; Airo, A.; Tice, M.M. Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa). Precambrian Res. 2015, 266, 47–64. [Google Scholar] [CrossRef]
- Sallstedt, T.; Bengtson, S.; Broman, C.; Crill, P.M.; Canfield, D.E. Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India. Geobiology 2018, 16, 139–159. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Planavsky, N.J.; Kendall, B.; Wang, X.; Shi, X.; Scott, C.; Anbar, A.D.; Lyons, T.W.; Jiang, G. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 2012, 489, 546–549. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Planavsky, N.J.; Jiang, G.; Kendall, B.; Owens, J.D.; Wang, X.; Shi, X.; Anbar, A.D.; Yons, T.W.L. Oceanic oxygenation events in the anoxic Ediacaran Ocean. Geobiology 2016, 14, 457–468. [Google Scholar] [CrossRef]
- van Smeerdijk Hood, A.; Wallace, M.W. Extreme Ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia. Precambrian Res. 2015, 261, 96–111. [Google Scholar] [CrossRef]
Unit | Sequence | Whole Rock (Relative Abundance %) | Clay Fraction (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Siliciclastic | Iron Oxide | Carbonate | Phosphate | |||||||||||
Qz | FK | Pg | Clay | Gt | Hm | Ca | D | FAp | I+IS | C+CS | K | Sm | ||
Villa Mónica | Subsequence Ia | 26–99 | tr–28 | 1–12 | tr–90 | nd | tr–8 | tr–23 | tr–5 | nd | 80–100 | 0–11 | 0–5 | nd |
Subsequence Ib | tr–40 | tr–2 | tr | 0–18 | 0–17 | nd | tr–38 | 36–97 | 0–20 | 0–90 | 0–10 | 0–5 | nd | |
Colombo | Sequence II | 55–100 | nd | nd | 5–49 | 0–28 | 0–32 | nd | nd | nd | 50–100 | nd | 0–30 | 0–50 |
Cerro Largo | Sequence III | 85–100 | tr | tr | 0–15 | 0–15 | nd | tr | nd | nd | 50–100 | 0–10 | 0–50 | 0–30 |
Olavarría | Sequence IV | 30–80 | tr | tr | 15–45 | tr | nd | nd | nd | nd | 75–100 | 0–25 | tr | nd |
Loma Negra | Sequence V | 0–30 | nd | nd | 0–3 | nd | nd | 75–100 | nd | nd | 0–50 | 0–50 | tr | nd |
Avellaneda | Sequence VI | 35–75 | tr–4 | tr–7 | 2–15 | nd | nd | 35–80 | nd | 0–60 | 0–90 | 0–30 | nd | nd |
Alicia | Sequence VII | 20–65 | nd | 5–14 | 25–53 | nd | nd | nd | nd | nd | 86–96 | 7–14 | nd | nd |
Cerro Negro | Sequence VIII | 60–72 | nd | 8–25 | 12–22 | nd | nd | tr | nd | nd | 80–95 | 8–20 | nd | nd |
Phosphate levels | 15–60 | nd | nd | 0–15 | 0–20 | 0–10 | 0–30 | 35-65 | 0-100 | 0–20 | 0–10 | nd |
Formation/ Section | Dominant Lithologies | Dominant Component Type | Origin |
---|---|---|---|
Lower Villa Mónica | Sandstone, conglomerate, wake | Epiclastic (RF, quartz, feldspars, micas, accessories) | Detrital |
Upper Villa Mónica | Dolostone, marls | Intrabasinal (dolomite) | Bioinduced dolomite (MISS)/detrital |
Phosphate level VM | Phosphate concretions | Intrabasinal (francolite: upwelling currents) | Apatite bio-volcanic-induced |
Colombo | Chert breccias, residual clays, diamictites | Epiclastic (rock fragments), silicification | Detrital/authigenic |
Cerro Largo | Heterolithic beds, coarse sandstones (gs) | Epiclastic (quartz, clays) and intrabasinal (glauconite) | Detrital Marine |
Loma Negra | limestone | intrabasinal | Bioinduced calcite (MISS) |
Avellaneda | Marl (shale) | Mixed epiclastic and intrabasinal d(calcite, quartz, clays, feldspars) | Detrital supply/bioinduced calcite (MISS) |
Alicia | Siltstone, claystone, mudstone | Epiclastic (quartz, micas, clays, feldspars) | Detrital |
Cerro Negro | Fine sandstone, Siltstone, claystone, mudstone | Epiclastic (quartz, micas, clays, feldspars) | Detrital |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Peral, L.E.; Arrouy, M.J.; Ferreyra, C.; Penzo, V.; Poiré, D.G. Deciphering the Importance of Mineralogical Changes in the Neoproterozoic Epeiric Seas through the Sedimentary Succession of Tandilia System: A Brief Review. Minerals 2024, 14, 529. https://doi.org/10.3390/min14060529
Gómez-Peral LE, Arrouy MJ, Ferreyra C, Penzo V, Poiré DG. Deciphering the Importance of Mineralogical Changes in the Neoproterozoic Epeiric Seas through the Sedimentary Succession of Tandilia System: A Brief Review. Minerals. 2024; 14(6):529. https://doi.org/10.3390/min14060529
Chicago/Turabian StyleGómez-Peral, Lucía E., María Julia Arrouy, Camila Ferreyra, Victoria Penzo, and Daniel G. Poiré. 2024. "Deciphering the Importance of Mineralogical Changes in the Neoproterozoic Epeiric Seas through the Sedimentary Succession of Tandilia System: A Brief Review" Minerals 14, no. 6: 529. https://doi.org/10.3390/min14060529
APA StyleGómez-Peral, L. E., Arrouy, M. J., Ferreyra, C., Penzo, V., & Poiré, D. G. (2024). Deciphering the Importance of Mineralogical Changes in the Neoproterozoic Epeiric Seas through the Sedimentary Succession of Tandilia System: A Brief Review. Minerals, 14(6), 529. https://doi.org/10.3390/min14060529