The Microdeformation Fabric of Amphibole-Rich Peridotite in the Southern Mariana Trench and Its Influence on Seismic Anisotropy
Abstract
:1. Introduction
2. Geological Setting and Sample Collection
3. Materials and Methods
3.1. EBSD Data Acquisition and Processing
3.2. Calculation of Seismic Properties
3.3. Microstructure of Dislocation
4. Results
4.1. Microstructure
4.2. CPOs of Minerals
4.3. Seismic Anisotropy
4.4. Dislocation Microstructure of Olivine
5. Discussion
5.1. Olivine Slip Systems and Deformation Mechanism
5.2. Influence of Melt Percolation or Melt/Rock Interaction on Deformation
5.3. Influence of Amphibole CPO on Seismic Anisotropy
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mainprice, D.; Barruol, G.; Ismaïl, W.B. The seismic anisotropy of the Earth’s mantle: From single crystal to polycrystal. In Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic Scale to the Global Scale; American Geophysical Union: Washington, DC, USA, 2000; Volume 117, pp. 237–264. [Google Scholar]
- Birch, F. The velocity of compressional waves in rocks to 10 kilobars: 1. J. Geophys. Res. 1960, 65, 1083–1102. [Google Scholar] [CrossRef]
- Verma, R.K. Elasticity of some high-density crystals. J. Geophys. Res. 1960, 65, 757–766. [Google Scholar] [CrossRef]
- Abramson, E.H.; Brown, J.M.; Slutsky, L.J.; Zaug, J. The elastic constants of San Carlos olivine to 17 GPa. J. Geophys. Res. Solid Earth 1997, 102, 12253–12263. [Google Scholar] [CrossRef]
- Park, J.; Levin, V. Seismic anisotropy: Tracing plate dynamics in the mantle. Science 2002, 296, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Karato, S.; Jung, H.; Katayama, I.; Skemer, P. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annu. Rev. Earth Planet. Sci. 2008, 36, 59–95. [Google Scholar] [CrossRef]
- Long, M.D.; Silver, P.G. The subduction zone flow field from seismic anisotropy: A global view. Science 2008, 319, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Mainprice, D.; Hielscher, R.; Schaeben, H. Calculating anisotropic physical properties from texture data using the MTEX open-source package. Geol. Soc. Lond. Spec. Publ. 2011, 360, 175–192. [Google Scholar] [CrossRef]
- Kohlstedt, D.L.; Goetze, C.; Durham, W.B.; Vander Sande, J. New technique for decorating dislocations in olivine. Science 1976, 191, 1045–1046. [Google Scholar] [CrossRef]
- Jung, H.; Karato, S. Water-induced fabric transitions in olivine. Science 2001, 293, 1460–1463. [Google Scholar] [CrossRef]
- Jung, H.; Katayama, I.; Jiang, Z.; Hiraga, T.; Karato, S. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 2006, 421, 1–22. [Google Scholar] [CrossRef]
- Hansen, L.N.; Zhao, Y.H.; Zimmerman, M.E.; Kohlstedt, D.L. Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy. Earth Planet. Sci. Lett. 2014, 387, 157–168. [Google Scholar] [CrossRef]
- Qi, C.; Hansen, L.N.; Wallis, D.; Holtzman, B.K.; Kohlstedt, D.L. Crystallographic preferred orientation of olivine in sheared partially molten rocks: The source of the “a-c switch”. Geochem. Geophys. Geosyst. 2018, 19, 316–336. [Google Scholar] [CrossRef]
- Ismaıl, W.B.; Mainprice, D. An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 1998, 296, 145–157. [Google Scholar] [CrossRef]
- Kneller, E.A.; van Keken, P.E.; Karato, S.; Park, J. B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models. Earth Planet. Sci. Lett. 2005, 237, 781–797. [Google Scholar] [CrossRef]
- Kneller, E.A.; van Keken, P.E.; Katayama, I.; Karato, S. Stress, strain, and B-type olivine fabric in the fore-arc mantle: Sensitivity tests using high-resolution steady-state subduction zone models. J. Geophys. Res. Solid Earth 2007, 112, 1–17. [Google Scholar] [CrossRef]
- Katayama, I.; Karato, S. Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones. Phys. Earth Planet. Inter. 2006, 157, 33–45. [Google Scholar] [CrossRef]
- Ohuchi, T.; Kawazoe, T.; Nishihara, Y.; Irifune, T. Change of olivine a-axis alignment induced by water: Origin of seismic anisotropy in subduction zones. Earth Planet. Sci. Lett. 2012, 317, 111–119. [Google Scholar] [CrossRef]
- Harigane, Y.; Michibayashi, K.; Morishita, T.; Tani, K.; Dick, H.J.B.; Ishizuka, O. The earliest mantle fabrics formed during subduction zone infancy. Earth Planet. Sci. Lett. 2013, 377, 106–113. [Google Scholar] [CrossRef]
- Nagaya, T.; Wallis, S.R.; Kobayashi, H.; Michibayashi, K.; Mizukami, T.; Seto, Y.; Miyake, A.; Matsumoto, M. Dehydration breakdown of antigorite and the formation of B-type olivine CPO. Earth Planet. Sci. Lett. 2014, 387, 67–76. [Google Scholar] [CrossRef]
- Michibayashi, K.; Mainprice, D.; Fujii, A.; Uehara, S.; Shinkai, Y.; Kondo, Y.; Ohara, Y.; Ishii, T.; Fryer, P.; Bloomer, S.H.; et al. Natural olivine crystal-fabrics in the western Pacific convergence region: A new method to identify fabric type. Earth Planet. Sci. Lett. 2016, 443, 70–80. [Google Scholar] [CrossRef]
- Précigout, J.; Almqvist, B.S.G. The Ronda peridotite (Spain): A natural template for seismic anisotropy in subduction wedges. Geophys. Res. Lett. 2014, 41, 8752–8758. [Google Scholar] [CrossRef]
- Cao, Y.; Jung, H.; Song, S.; Park, M.; Jung, S.; Lee, J. Plastic deformation and seismic properties in fore-arc mantles: A petrofabric analysis of the Yushigou Harzburgites, North Qilian Suture Zone, NW China. J. Petrol. 2015, 56, 1897–1944. [Google Scholar] [CrossRef]
- Cao, Y.; Jung, H.; Song, S. Olivine fabrics and tectonic evolution of fore-arc mantles: A natural perspective from the Songshugou dunite and harzburgite in the Qinling orogenic belt, central China. Geochem. Geophys. Geosyst. 2017, 18, 907–934. [Google Scholar] [CrossRef]
- Ji, S.C.; Zhao, X.O.; Francis, D. Calibration of shear-wave splitting in the subcontinental upper-mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian cordillera and Alaska. Tectonophysics 1994, 239, 1–27. [Google Scholar] [CrossRef]
- Michibayashi, K.; Tasaka, M.; Ohara, Y.; Ishii, T.; Okamoto, A.; Fryer, P. Variable microstructure of peridotite samples from the southern Mariana Trench: Evidence of a complex tectonic evolution. Tectonophysics 2007, 444, 111–118. [Google Scholar] [CrossRef]
- Michibayashi, K.; Oohara, T.; Satsukawa, T.; Ishimaru, S.; Arai, S.; Okrugin, V.M. Rock seismic anisotropy of the low-velocity zone beneath the volcanic front in the mantle wedge. Geophys. Res. Lett. 2009, 36, L12305. [Google Scholar] [CrossRef]
- Michibayashi, K.; Abe, N.; Okamoto, A.; Satsukawa, T.; Michikura, K. Seismic anisotropy in the uppermost mantle, back-arc region of the northeast Japan arc: Petrophysical analyses of Ichinomegata peridotite xenoliths. Geophys. Res. Lett. 2006, 33, L10312. [Google Scholar] [CrossRef]
- Falus, G.; Tommasi, A.; Ingrin, J.; Szabo, C. Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths. Earth Planet. Sci. Lett. 2008, 272, 50–64. [Google Scholar] [CrossRef]
- Jung, H.; Mo, W.; Choi, S.H. Deformation microstructures of olivine in peridotite from Spitsbergen, Svalbard and implications for seismic anisotropy. J. Metamorph. Geol. 2009, 27, 707–720. [Google Scholar] [CrossRef]
- Soustelle, V.; Tommasi, A. Seismic properties of the supra-subduction mantle: Constraints from peridotite xenoliths from the Avacha volcano, southern Kamchatka. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef]
- Soustelle, V.; Tommasi, A.; Demouchy, S.; Ionov, D.A. Deformation and fluid–rock interaction in the supra-subduction mantle: Microstructures and water contents in peridotite xenoliths from the Avacha volcano, Kamchatka. J. Petrol. 2010, 51, 363–394. [Google Scholar] [CrossRef]
- Soustelle, V.; Tommasi, A.; Demouchy, S.; Franz, L. Melt–rock interactions, deformation, hydration and seismic properties in the sub-arc lithospheric mantle inferred from xenoliths from seamounts near Lihir, Papua New Guinea. Tectonophysics 2013, 608, 330–345. [Google Scholar] [CrossRef]
- Morales, L.F.G.; Tommasi, A. Composition, textures, seismic and thermal anisotropies of xenoliths from a thin and hot lithospheric mantle (Summit Lake, southern Canadian Cordillera). Tectonophysics 2011, 507, 1–15. [Google Scholar] [CrossRef]
- Satsukawa, T.; Michibayashi, K. Flow in the uppermost mantle during back-arc spreading revealed by Ichinomegata peridotite xenoliths, NE Japan. Lithos 2014, 189, 89–104. [Google Scholar] [CrossRef]
- Reynard, B. Serpentine in active subduction zones. Lithos 2013, 178, 171–185. [Google Scholar] [CrossRef]
- Guillot, S.; Schwartz, S.; Reynard, B.; Agard, P.; Prigent, C. Tectonic significance of serpentinites. Tectonophysics 2015, 646, 1–19. [Google Scholar] [CrossRef]
- Mookherjee, M.; Mainprice, D. Unusually large shear wave anisotropy for chlorite in subduction zone settings. Geophys. Res. Lett. 2014, 41, 1506–1513. [Google Scholar] [CrossRef]
- Kim, D.; Jung, H. Deformation microstructures of olivine and chlorite in chlorite peridotites from Almklovdalen in the Western Gneiss Region, southwest Norway, and implications for seismic anisotropy. Int. Geol. Rev. 2015, 57, 650–668. [Google Scholar] [CrossRef]
- Kim, J.; Jung, H. New Crystal Preferred Orientation of Amphibole Experimentally Found in Simple Shear. Geophys. Res. Lett. 2019, 46, 12996–13005. [Google Scholar] [CrossRef]
- Cao, Y.; Jung, H.; Song, S.G. Petro-fabrics and seismic properties of blueschist and eclogite in the North Qilian suture zone, NW China: Implications for the low-velocity upper layer in subducting slab, trench-parallel seismic anisotropy, and eclogite detectability in the subduction zone. J. Geophys. Res. Solid Earth 2013, 118, 3037–3058. [Google Scholar]
- Ko, B.; Jung, H. Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nat. Commun. 2015, 6, 6586. [Google Scholar] [CrossRef] [PubMed]
- Siegesmund, S.; Takeshita, T.; Kern, H. Anisotropy of Vp and Vs in an amphibolite of the deeper crust and its relationship to the mineralogical, microstructural and textural characteristics of the rock. Tectonophysics 1989, 157, 25–38. [Google Scholar] [CrossRef]
- Weiss, T.; Siegesmund, S.; Rabbel, W.; Bohlen, T.; Pohl, M. Seismic velocities and anisotropy of the lower continental crust: A review. Pure Appl. Geophys. 1999, 156, 97–122. [Google Scholar] [CrossRef]
- Ji, S.; Shao, T.; Michibayashi, K.; Long, C.; Wang, Q.; Kondo, Y.; Zhao, W.; Wang, H.; Salisbury, M.H. A new calibration of seismic velocities, anisotropy, fabrics, and elastic moduli of amphibole-rich rocks. J. Geophys. Res. Solid Earth 2013, 118, 4699–4728. [Google Scholar] [CrossRef]
- Brown, J.M.; Abramson, E.H. Elasticity of calcium and calcium-sodium amphiboles. Phys. Earth Planet. Inter. 2016, 261, 161–171. [Google Scholar] [CrossRef]
- Almqvist, B.S.G.; Mainprice, D. Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure. Rev. Geophys. 2017, 55, 367–433. [Google Scholar] [CrossRef]
- Faccenda, M.; Capitanio, F.A. Seismic anisotropy around subduction zones: Insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations. Geochem. Geophys. Geosyst. 2013, 14, 243–262. [Google Scholar] [CrossRef]
- Pozgay, S.H.; Wiens, D.A.; Conder, J.A.; Shiobara, H.; Sugioka, H. Complex mantle flow in the Mariana subduction system: Evidence from shear wave splitting. Geophys. J. Int. 2007, 170, 371–386. [Google Scholar] [CrossRef]
- Oya, S.; Michibayashi, K.; Ohara, Y.; Martinez, F.; Kourim, F.; Lee, H.Y.; Nimura, K. Peridotites with back-arc basin affinity exposed at the southwestern tip of the Mariana forearc. Prog. Earth Planet. Sci. 2022, 9, 18. [Google Scholar] [CrossRef]
- Stern, R.J.; Fouch, M.J.; Klemperer, S.L. An overview of the Izu-Bonin-Mariana subduction factory. Geophys. Monogr. Am. Geophys. Union 2003, 138, 175–222. [Google Scholar]
- Stern, R.J.; Gerya, T. Subduction initiation in nature and models: A review. Tectonophysics 2018, 746, 173–198. [Google Scholar] [CrossRef]
- Reagan, M.K.; Heaton, D.E.; Schmitz, M.D.; Pearce, J.A.; Shervais, J.W.; Koppers, A.A. Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth Planet. Sci. Lett. 2019, 506, 520–529. [Google Scholar] [CrossRef]
- Ishizuka, O.; Kenichiro, T.; Reagan, M.K.; Kanayama, K.; Umino, S.; Harigane, Y.; Sakamoto, I.; Miyajima, Y.; Yuasa, M.; Dunkley, D.J. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth Planet. Sci. Lett. 2011, 306, 229–240. [Google Scholar] [CrossRef]
- Reagan, M.K.; McClelland, W.C.; Girard, G.; Goff, K.R.; Peate, D.W.; Ohara, Y.; Stern, R.J. The geology of the southern Mariana fore-arc crust: Implications for the scale of Eocene volcanism in the western Pacific. Earth Planet. Sci. Lett. 2013, 380, 41–51. [Google Scholar] [CrossRef]
- Hickey-Vargas, R.; Yogodzinski, G.M.; Ishizuka, O.; McCarthy, A.; Bizimis, M.; Kusano, Y.; Savov, I.P.; Arculus, R. Origin of depleted basalts during subduction initiation and early development of the Izu-Bonin-Mariana island arc: Evidence from IODP expedition 351 site U1438, Amami-Sankaku basin. Geochim. Cosmochim. Acta 2018, 229, 85–111. [Google Scholar] [CrossRef]
- Ishizuka, O.; Hickey-Vargas, R.; Arculus, R.J.; Yogodzinski, G.M.; Savov, I.P.; Kusano, Y.; McCarthy, A.; Brandl, P.A.; Sudo, M. Age of Izu–Bonin–Mariana arc basement. Earth Planet. Sci. Lett. 2018, 481, 80–90. [Google Scholar] [CrossRef]
- Bloomer, S.H. Distribution and origin of igneous rocks from the landward slopes of the Mariana trench: Implications for its structure and evolution. J. Geophys. Res. 1983, 88, 7411–7428. [Google Scholar] [CrossRef]
- Bloomer, S.H.; Hawkins, J.W. Petrology and geochemistry of boninite series volcanic rocks from the Mariana Trench. Contrib. Miner. Petrol. 1987, 97, 361–377. [Google Scholar] [CrossRef]
- Ishii, T. Dredged samples from the Ogasawara forearc seamount or ‘Ogasawara Paleoland’—‘Forearc ophiolite’. In Formation of Active Ocean Margins; Nasu, N., Ko-bayashi, K., Uyeda, S., Kushiro, I., Kagami, H., Eds.; Terra: Tokyo, Japan, 1985; pp. 307–342. [Google Scholar]
- Hickey, R.L.; Frey, F.A. Geochemical characteristics of boninite series volcanics: Implications for their source. Geochim. Cosmochim. Acta 1982, 45, 2099–2115. [Google Scholar] [CrossRef]
- Pearce, J.A.; Van Der Laan, S.R.; Arculus, R.J.; Murton, B.J.; Ishii, T.; Peate, D.W.; Parkinson, I.J. Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction. In Proceedings of the Ocean Drilling Program; Fryer, P., Pearce, J.A., Stokking, I.J., Ali, J.R., Arculus, R., Ballotti, D., Burke, M.M., Ciampo, Q., Haggerty, J.A., Haston, R.B., Eds.; Ocean Drilling Program: College Station, TX, USA, 1992; pp. 623–659. [Google Scholar]
- Stern, R.J.; Bloomer, S.H. Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California. Geol. Soc. Am. Bull. 1992, 104, 1621–1636. [Google Scholar] [CrossRef]
- Bachmann, F.; Hielscher, R.; Schaeben, H. Texture analysis with MTEX—Free and open source software toolbox. Solid State Phenom. 2010, 160, 63–68. [Google Scholar] [CrossRef]
- Bachmann, F.; Hielscher, R.; Schaeben, H. Grain detection from 2d and 3d EBSD data—Specification of the MTEX algorithm. Ultramicroscopy 2011, 111, 1720–1733. [Google Scholar] [CrossRef] [PubMed]
- Bunge, H. Texture Analysis in Material Science: Mathematical Models; Butterworths: London, UK, 1982. [Google Scholar]
- Skemer, P.; Katayama, I.; Jiang, Z.; Karato, S.-I. The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics 2005, 411, 157–167. [Google Scholar] [CrossRef]
- Crampin, S. Suggestions for a consistent terminology for seismic anisotropy 1. Geophys. Prospect. 1989, 37, 753–770. [Google Scholar] [CrossRef]
- Silver, P.G.; Chan, W.W. Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res. Solid Earth 1991, 96, 16429–16454. [Google Scholar] [CrossRef]
- Holtzman, B.K.; Kohlstedt, D.L.; Zimmerman, M.E.; Heidelbach, F.; Hiraga, T.; Hustoft, J. Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science 2003, 301, 1227–1230. [Google Scholar] [CrossRef]
- Chatzaras, V.; Kruckenberg, S.C.; Cohen, S.M.; Medaris, L.G., Jr.; Withers, A.C.; Bagley, B. Axial-type olivine crystallographic preferred orientations: The effect of strain geometry on mantle texture. J. Geophys. Res. Solid Earth 2016, 121, 4895–4922. [Google Scholar] [CrossRef]
- Tommasi, A.; Godard, M.; Coromina, G.; Dautria, J.M.; Barsczus, H. Seismic anisotropy and compositionally induced velocity anomalies in the lithosphere above mantle plumes: A petrological and microstructural study of mantle xenoliths from French Polynesia. Earth Planet. Sci. Lett. 2004, 227, 539–556. [Google Scholar] [CrossRef]
- De Kloe, R. Deformation Mechanisms and Melt Nano-Structures in Experimentally Deformed Olivine-Orthopyroxene Rocks with Low Melt Fractions. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2001. [Google Scholar]
- Durham, W.B.; Goetze, C.; Blake, B. Plastic flow of oriented single crystals of olivine: 2. Observations and interpretations of the dislocation structures. J. Geophys. Res. 1977, 82, 5755–5770. [Google Scholar] [CrossRef]
- Goetze, C.; Kohlstedt, D.L. Laboratory study of dislocation climb and diffusion in olivine. J. Geophys. Res. 1973, 78, 5961–5971. [Google Scholar] [CrossRef]
- Tielke, J.; Mecklenburgh, J.; Mariani, E.; Wheeler, J. The influence of water on the strength of olivine dislocation slip systems. J. Geophys. Res. Solid Earth 2019, 124, 6542–6559. [Google Scholar] [CrossRef]
- Nicolas, A.; Poirier, J.P. Crystalline Plasticity and Solid State Flow in Metamorphic Rocks; Wiley–Interscience: London, UK, 1976. [Google Scholar]
- Michibayashi, K.; Mainprice, D. The role of pre-existing mechanical anisotropy on shear zone development within oceanic mantle lithosphere: An example from the Oman ophiolite. J. Petrol. 2004, 45, 405–414. [Google Scholar] [CrossRef]
- Ave Lallemant, H. Mechanisms of preferred orientations of olivine in tectonite peridotite. Geology 1975, 3, 653. [Google Scholar] [CrossRef]
- Zhang, S.; Karato, S.-I. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 1995, 375, 774–777. [Google Scholar] [CrossRef]
- Zhang, S.; Karato, S.-I.; Fitzgerald, J.; Faul, U.H.; Zhou, Y. Simple shear deformation of olivine aggregates. Tectonophysics 2000, 316, 133–152. [Google Scholar] [CrossRef]
- Ohara, Y.; Ishii, T. Peridotites from the southern Mariana forearc: Heterogeneous fluid supply in mantle wedge. Isl. Arc 1998, 7, 541–558. [Google Scholar] [CrossRef]
- Iwamori, H. Transportation of H2O and melting in subduction zones. Earth Planet. Sci. Lett. 1998, 160, 65–80. [Google Scholar] [CrossRef]
- Jung, H.; Karato, S. Effects of water on dynamically recrystallized grain-size of olivine. J. Struct. Geol. 2001, 23, 1337–1344. [Google Scholar] [CrossRef]
- Hansen, L.N.; Zimmerman, M.E.; Kohlstedt, D.L. Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
- Hansen, L.N.; Zimmerman, M.E.; Kohlstedt, D.L. The influence of microstructure on deformation of olivine in the grain-boundary sliding regime. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Parkinson, I.J.; Pearce, J.A. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J. Petrol. 1998, 39, 1577–1618. [Google Scholar] [CrossRef]
- Chin, E.J.; Soustelle, V.; Liu, Y. An SPO-induced CPO in composite mantle xenoliths correlated with increasing melt-rock interaction. Geochim. Cosmochim. Acta 2020, 278, 199–218. [Google Scholar] [CrossRef]
- Cao, Y.; Song, S.; Su, L.; Jung, H.; Niu, Y. Highly refractory peridotites in Songshugou, Qinling orogen: Insights into partial melting and melt/fluid–rock reactions in forearc mantle. Lithos 2016, 252, 234–254. [Google Scholar] [CrossRef]
- Kang, H.; Jung, H. Lattice-preferred orientation of amphibole, chlorite, and olivine found in hydrated mantle peridotites from Bjørkedalen, southwestern Norway, and implications for seismic anisotropy. Tectonophysics 2019, 750, 137–152. [Google Scholar] [CrossRef]
- Barruol, G.; Kern, H. Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the Ivrea Zone—Experimental and calculated data. Phys. Earth Planet. Inter. 1996, 95, 175–194. [Google Scholar] [CrossRef]
- Berger, A.; Stünitz, H. Deformation mechanisms and reaction of hornblende: Examples from the Bergell tonalite (Central Alps). Tectonophysics 1996, 257, 149–174. [Google Scholar] [CrossRef]
- Cao, S.; Liu, J.; Leiss, B. Orientation-related deformation mechanisms of naturally deformed amphibole in amphibolite mylonites from the Diancang Shan, SW Yunnan, China. J. Struct. Geol. 2010, 32, 606–622. [Google Scholar] [CrossRef]
- Díaz Aspiroz, M.; Lloyd, G.E.; Fernández, C. Development of lattice preferred orientation in clinoamphiboles deformed under low-pressure metamorphic conditions. A SEM/EBSD study of metabasites from the Aracena metamorphic belt (SW Spain). J. Struct. Geol. 2007, 29, 629–645. [Google Scholar] [CrossRef]
- Tatham, D.J.; Lloyd, G.E.; Butler, R.W.H.; Casey, M. Amphibole and lower crustal seismic properties. Earth Planet. Sci. Lett. 2008, 267, 118–128. [Google Scholar] [CrossRef]
- Ji, S.; Shao, T.; Michibayashi, K.; Oya, S.; Satsukawa, T.; Wang, Q.; Zhao, W.; Salisbury, M.H. Magnitude and symmetry of seismic anisotropy in mica- and amphibole-bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau. J. Geophys. Res. Solid Earth 2015, 120, 6404–6430. [Google Scholar] [CrossRef]
- Lee, J.; Jung, H. Lattice-preferred orientation (LPO) of olivine and amphibole in amphibole peridotites and neighboring hornblendites from Gapyeong, South Korea and implications for seismic anisotropy. J. Geodyn. 2023, 157, 101977. [Google Scholar] [CrossRef]
Sample Number | Mineral Assemblage (vol%) | Microstructure | ||
---|---|---|---|---|
ol | amp | sp | ||
KH03-3-D8-003 | 93.43 | 5.81 | 0.76 | Coarse |
KH98-3-D3-SP9 | 91.81 | 8.08 | 0.10 | Coarse |
KH98-3-D3-SP7 | 90.66 | 9.07 | 0.28 | Coarse |
KH03-3-D8-002 | 90.63 | 9.06 | 0.31 | Coarse |
KH03-3-D8-156 | 58.14 | 41.34 | 0.52 | Porphyroclastic |
KH03-3-D8-122 | 98.59 | 0.00 | 1.41 | Porphyroclastic |
KH03-3-D8-136 | 92.18 | 7.00 | 0.82 | Porphyroclastic |
KH03-3-D8-124 | 91.18 | 8.68 | 0.15 | Porphyroclastic |
KH03-3-D8-011 | 81.24 | 17.47 | 1.29 | Porphyroclastic |
KH03-3-D8-101 | 84.14 | 15.17 | 0.69 | Fine |
KH03-3-D8-102 | 78.07 | 19.93 | 1.99 | Fine |
KH03-3-D8-120 | 93.99 | 0.26 | 5.74 | Fine |
Sample Number | Olivine | Amphibole | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J-Index | M-Index | AF | d (μm) | AR | SF | GOS | M2M (°) | J-index | M-index | d (μm) | AR | SF | GOS | M2M (°) | |
KH03-3-D8-003 | 1.92 | 0.07 | 53.04 | 168.57 | 1.75 | 1.27 | 1 | 1.56 | 1.42 | 0.02 | 73.31 | 1.71 | 1.21 | 1.46 | 1.72 |
KH98-3-D3-SP9 | 1.77 | 0.07 | 8.14 | 107.48 | 1.56 | 1.2 | 0.86 | 2.47 | 1.16 | 0.01 | 80.98 | 1.59 | 1.2 | 1.18 | 2.2 |
KH03-3-D8-011 | 1.29 | 0.03 | 16.08 | 102.4 | 2.55 | 1.29 | 0.83 | 1.46 | 2.51 | 0.07 | 67.25 | 2.02 | 1.23 | 1.04 | 2.27 |
KH98-3-D3-SP7 | 1.31 | 0.03 | 2.78 | 123.66 | 1.55 | 1.21 | 0.73 | 6.24 | 1.23 | 0.01 | 88.02 | 1.56 | 1.19 | 0.92 | 1.71 |
KH03-3-D8-002 | 3.66 | 0.14 | 43.81 | 154.03 | 1.63 | 1.21 | 1.09 | 2.93 | 1.81 | 0.03 | 43.49 | 1.78 | 1.24 | 1.25 | 3.23 |
KH03-3-D8-156 | 1.15 | 0.02 | 29.98 | 122.78 | 1.49 | 1.17 | 0.77 | 1.61 | 6.13 | 0.22 | 101.6 | 1.67 | 1.21 | 1.23 | 2.42 |
KH03-3-D8-122 | 2.21 | 0.1 | 34.69 | 127.96 | 1.59 | 1.2 | 0.91 | 3.01 | |||||||
KH03-3-D8-136 | 1.32 | 0.03 | 12.86 | 114.77 | 1.49 | 1.18 | 0.98 | 2.04 | 2.3 | 0.07 | 111.68 | 1.51 | 1.16 | 1.42 | 2.35 |
KH03-3-D8-124 | 1.3 | 0.03 | 29.11 | 157.4 | 1.51 | 1.18 | 0.75 | 1.07 | 3.54 | 0.13 | 89.77 | 1.53 | 1.16 | 0.71 | 1.12 |
KH03-3-D8-101 | 1.45 | 0.05 | 18.55 | 67.28 | 1.54 | 1.18 | 0.76 | 1.31 | 2.66 | 0.07 | 57.38 | 1.59 | 1.18 | 1.33 | 1.99 |
KH03-3-D8-102 | 1.26 | 0.02 | 11.73 | 120.64 | 1.48 | 1.18 | 0.86 | 1.48 | 2.21 | 0.06 | 108.39 | 1.5 | 1.16 | 1.22 | 2.76 |
KH03-3-D8-120 | 2.56 | 0.11 | 20.88 | 133.58 | 1.37 | 1.12 | 0.85 | 0.98 | |||||||
KH03-3-D8-104 | 1.75 | 0.06 | 28.36 | 77.63 | 1.5 | 1.13 | 0.71 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Jin, Z. The Microdeformation Fabric of Amphibole-Rich Peridotite in the Southern Mariana Trench and Its Influence on Seismic Anisotropy. Minerals 2024, 14, 577. https://doi.org/10.3390/min14060577
Li J, Jin Z. The Microdeformation Fabric of Amphibole-Rich Peridotite in the Southern Mariana Trench and Its Influence on Seismic Anisotropy. Minerals. 2024; 14(6):577. https://doi.org/10.3390/min14060577
Chicago/Turabian StyleLi, Jingbo, and Zhenmin Jin. 2024. "The Microdeformation Fabric of Amphibole-Rich Peridotite in the Southern Mariana Trench and Its Influence on Seismic Anisotropy" Minerals 14, no. 6: 577. https://doi.org/10.3390/min14060577
APA StyleLi, J., & Jin, Z. (2024). The Microdeformation Fabric of Amphibole-Rich Peridotite in the Southern Mariana Trench and Its Influence on Seismic Anisotropy. Minerals, 14(6), 577. https://doi.org/10.3390/min14060577