Quantification of Feldspar and Quartz Nucleation Delay in a Hydrous Peraluminous Granitic Melt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methods
2.2. Analytical Methods
3. Results
3.1. Melting Experiments
3.2. Nucleation Delay Results
4. Discussion
4.1. The Presence of Mullite Instead of Sillimanite in the Experiments
4.2. Halos Surrounding Corundum
4.3. Calculation of Nucleation Delay Using Classical Nucleation Theory
4.4. Calculation of the Nucleation Delays for Quartz, Plagioclase, Mullite/Sillimanite, and Corundum
4.5. Comparison of Modeled Homogeneous Nucleation Delay and Experimental Measurements
4.6. The Minor Effect of Heterogeneous Nucleation
4.7. Why Are Water Concentrations at the Melt–Nucleus Interface Lower Than in the Bulk Melt?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirkpatrick, R.J. Kinetics of crystallization of igneous rocks. Rev. Mineral. 1981, 8, 321–397. [Google Scholar]
- Fokin, V.M.; Zanotto, E.D.; Yuritsyn, N.S.; Schmelzer, J.W. Homogeneous crystal nucleation in silicate glasses: A 40 years perspective. J. Non-Cryst. Solids 2006, 352, 2681–2714. [Google Scholar] [CrossRef]
- Kalikmanov, V.I. Nucleation Theory; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Nabelek, P.I.; Whittington, A.G.; Sirbescu, M.-L.C. The role of H2O in rapid emplacement and crystallization of granite pegmatites: Resolving the paradox of large crystals in highly undercooled melts. Contrib. Mineral. Petrol. 2010, 160, 313–325. [Google Scholar] [CrossRef]
- Rusiecka, M.K.; Bilodeau, M.; Baker, D.R. Quantification of nucleation delay in magmatic systems: Experimental and theoretical approach. Contrib. Mineral. Petrol. 2020, 175, 47. [Google Scholar] [CrossRef]
- Bowen, N.L. The melting phenomena of the plagioclase feldspars. Am. J. Sci. 1913, 35, 577–599. [Google Scholar] [CrossRef]
- London, D. An experimental crystallization of the Macusani obsidian in a thermal gradient with applications to lithium-rich granitic pegmatites. Am. Mineral. 2023, 108, 2105–2120. [Google Scholar] [CrossRef]
- Fenn, P.M. The nucleation and growth of alkali feldspars from hydrous melts. Can. Min. 1977, 15, 135–161. [Google Scholar]
- Maaløe, S.; Wyllie, P.J. Water content of a granite magma deduced from the sequence of crystallization determined experimentally with water-undersaturated conditions. Contrib. Mineral. Petrol. 1975, 52, 175–191. [Google Scholar] [CrossRef]
- Whitney, J.A. The Effects of Pressure, Temperature, and XH2O on Phase Assemblage in Four Synthetic Rock Compositions. J. Geol. 1975, 83, 1–31. [Google Scholar] [CrossRef]
- London, D.; Morgan, G.B.; Hervig, R.L. Vapor-undersaturated experiments with Macusani Glass+H2O at 200 MPA, and the internal differentiation of granitic pegmatites. Contrib. Mineral. Petrol. 1989, 102, 1–17. [Google Scholar] [CrossRef]
- Couch, S. The kinetics of degassing-induced crystallization at Soufriere Hills volcano, Montserrat. J. Petrol. 2003, 44, 1477–1502. [Google Scholar] [CrossRef]
- Hammer, J.E. Crystal nucleation in hydrous rhyolite: Experimental data applied to classical theory. Am. Mineral. 2004, 89, 1673–1679. [Google Scholar] [CrossRef]
- Maneta, V.; Baker, D.R. Exploring the effect of lithium on pegmatitic textures: An experimental study. Am. Mineral. 2014, 99, 1383–1403. [Google Scholar] [CrossRef]
- London, D.; Morgan, G.B. Experimental crystallization of the Macusani Obsidian, with applications to lithium-rich granitic pegmatites. J. Petrol. 2017, 58, 1005–1030. [Google Scholar] [CrossRef]
- Sirbescu, M.-L.C.; Schmidt, C.; Veksler, I.V.; Whittington, A.G.; Wilke, M. Experimental crystallization of undercooled felsic liquids: Generation of pegmatitic texture. J. Petrol. 2017, 58, 539–568. [Google Scholar] [CrossRef]
- Arzilli, F.; Stabile, P.; Fabbrizio, A.; Landi, P.; Scaillet, B.; Paris, E.; Carroll, M.R. Crystallization kinetics of alkali feldspar in peralkaline rhyolitic melts: Implications for Pantelleria volcano. Front. Earth Sci. 2020, 8, 177. [Google Scholar] [CrossRef]
- Rusiecka, M.K.; Baker, D.R. Growth and textural evolution during crystallization of quartz and feldspar in hydrous, rhyolitic melt. Contrib. Mineral. Petrol. 2021, 176, 48. [Google Scholar] [CrossRef]
- Swanson, S.E. Relation of nucleation and crystal-growth rate to the development of granitic textures. Am. Mineral. 1977, 62, 966–978. [Google Scholar]
- Evensen, J.M. The Geochemical Budget of Beryllium in Silicic Melts and Superliquidus, Subliquidus and Starting State Effects on the Kinetics. Ph.D. Thesis, University of Oklahoma, Norman, OK, USA, 2001. [Google Scholar]
- Devineau, K.; Champallier, R.; Pichavant, M. Dynamic crystallization of a haplogranitic melt: Application to pegmatites. J. Petrol. 2020, 61, egaa054. [Google Scholar] [CrossRef]
- Naney, M.T.; Swanson, S.E. The effect of Fe and Mg on crystallization in granitic systems. Am. Mineral. 1980, 65, 639–653. [Google Scholar]
- Černý, P. Rare-element Granitic Pegmatites. Part I: Anatomy and Internal Evolution of Pegmatitic Deposits. Geosci. Can. 1991, 18, 49–67. [Google Scholar]
- London, D. Granitic pegmatites: An assessment of current concepts and directions for the future. Lithos 2005, 80, 281–303. [Google Scholar] [CrossRef]
- Rusiecka, M.K.; Martel, C. Nucleation delay in water-saturated rhyolite during decompression in shallow volcanic systems and its implications for ascent dynamics. Bull. Volcan. 2022, 84, 61. [Google Scholar] [CrossRef]
- Simmons, W.; Falster, A.; Webber, K.; Roda-Robles, E.; Boudreaux, A.P.; Grassi, L.R.; Freeman, G. Bulk Composition of Mt. Mica Pegmatite, Maine, USA: Implications for the Origin of an LCT Type Pegmatite by Anatexis. Can. Min. 2016, 54, 1053–1070. [Google Scholar] [CrossRef]
- Hudon, P.; Baker, D.R.; Toft, P.B. A high-temperature assembly for 1.91-cm (34 in.) piston-cylinder apparatus. Am. Mineral. 1994, 79, 145–147. [Google Scholar]
- Abramoff, M.D.; Magalhaes, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH image to imagej: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Behrens, H.; Roux, J.; Neuville, D.R.; Siemann, M. Quantification of dissolved H2O in silicate glasses using confocal microRaman spectroscopy. Chem. Geol. 2006, 229, 96–112. [Google Scholar] [CrossRef]
- Fortin, M.-A.; Riddle, J.; Desjardins-Langlais, Y.; Baker, D.R. The effect of water on the sulfur concentration at sulfide saturation (SCSS) in natural melts. Geochim. Cosmochim. Acta 2015, 160, 100–116. [Google Scholar] [CrossRef]
- Holdaway, M.J. Stability of andalusite and the aluminum silicate phase diagram. Am. J. Sci. 1971, 271, 97–131. [Google Scholar] [CrossRef]
- Holtz, F.; Johannes, W.; Pichavant, M. Effect of excess aluminium on phase relations in the system Qz-Ab-Or: Experimental investigation at 2 Kbar and reduced H2O-activity. Eur. J. Mineral. 1992, 4, 137–152. [Google Scholar] [CrossRef]
- Holtz, F.; Johannes, W.; Pichavant, M. Peraluminous granites: The effect of alumina on melt composition and coexisting minerals. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 409–416. [Google Scholar] [CrossRef]
- Johannes, W.; Holtz, F. Melting of plagioclase in granite and related systems: Composition of coexisting phases and kinetic observations. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 417–422. [Google Scholar] [CrossRef]
- Johannes, W.; Koepke, J.; Behrens, H. Partial melting reactions of plagioclases and plagioclase-bearing systems. In Feldspars and Their Reactions; Parsons, I., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 161–194. [Google Scholar]
- Wardle, R.; Brindley, G.W. The crystal structures of pyrophyllite, 1Tc, and of its dehydroxylate. Am. Mineral. 1972, 57, 732–750. [Google Scholar]
- Arbiol, C.; Layne, G.D. Raman spectroscopy coupled with reflectance spectroscopy as a tool for the characterization of key hydrothermal alteration minerals in epithermal Au–Ag systems: Utility and implications for mineral exploration. Appl. Spectrosc. 2021, 75, 1475–1496. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.R.; Freda, A. Eutectic crystallization in the undercooled orthoclase-quartz-H2O system: Experiments and simulations. Eur. J. Mineral. 2001, 13, 453–466. [Google Scholar] [CrossRef]
- Lofgren, G. An experimental study of plagioclase crystal morphology; isothermal crystallization. Am. J. Sci. 1974, 274, 243–273. [Google Scholar] [CrossRef]
- Anderson, A.L. Genesis of the Silver Hill Tin Deposits. J. Geol. 1928, 36, 646–664. [Google Scholar] [CrossRef]
- Clarke, D.; Dorais, M.; Barbarin, B.; Barker, D.; Cesare, B.; Clarke, G.; El Baghdadi, M.; Erdmann, S.; Förster, H.-J.; Gaeta, M.; et al. Occurrence and origin of andalusite in peraluminous felsic igneous rocks. J. Petrol. 2005, 46, 441–472. [Google Scholar] [CrossRef]
- Villaseca, C.; Pérez-Soba, C.; Merino, E.; Orejana, D.; López-García, J.A.; Billstrom, K. Contrasted crustal sources for peraluminous granites of the segmented Montes de Toledo batholith (Iberian variscan belt). J. Geosci. 2012, 53, 263–280. [Google Scholar] [CrossRef]
- D‘Amico, C.; Rottura, A.; Maccarrone, E.; Puglisi, G. Peraluminous granitic suite of Calabria-Peloritani arc (Southern Italy). Soc. Ital. Mineral. Petrol. 1981, 38, 35–52. [Google Scholar]
- Putnis, A. Introduction to Mineral Sciences; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Billinge, S.J. How do your crystals grow? Nat. Phys. 2009, 5, 13–14. [Google Scholar] [CrossRef]
- Agrell, S.O.; Smith, J.V. Cell dimensions, solid solution, polymorphism, and identification of mullite and sillimanite. J. Am. Ceramic Soc. 1960, 43, 69–76. [Google Scholar] [CrossRef]
- Hemley, J.J.; Montoya, J.W.; Marinenko, J.W.; Luce, R.W. Equilibria in the system Al2O3-SiO2-H2O and some general implications for alteration/mineralization processes. Econ. Geol. 1980, 75, 210–228. [Google Scholar] [CrossRef]
- Naney, M.T. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am. J. Sci. 1983, 283, 993–1033. [Google Scholar] [CrossRef]
- René, M.; Holtz, F.; Luo, C.; Beermann, O.; Stelling, J. Biotite stability in peraluminous granitic melts: Compositional dependence and application to the generation of two-mica granites in the South Bohemian batholith (Bohemian Massif, Czech Republic). Lithos 2008, 102, 538–553. [Google Scholar] [CrossRef]
- De Yoreo, J.J.; Vekilov, P.G. Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 2003, 54, 57–93. [Google Scholar] [CrossRef]
- Mazzotti, M.; Vetter, T.; Ochsenbein, D.R.; Maggioni, G.M.; Lindenberg, C. Nucleation. In Polymorphism in the Pharmaceutical Industry: Solid Form and Drug Development; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 261–283. [Google Scholar] [CrossRef]
- Turnbull, D.; Fisher, J.C. Rate of nucleation in condensed systems. J. Chem. Phys. 1949, 17, 71–73. [Google Scholar] [CrossRef]
- Schmelzer, J.W.P. Crystal nucleation and growth in glass-forming melts: Experiment and theory. J. Non-Cryst. Solids 2008, 354, 269–278. [Google Scholar] [CrossRef]
- Collins, F.C. Time lag in spontaneous nucleation due to non-steady state effects. Zeit. Elektrochem. 1955, 59, 404–409. [Google Scholar] [CrossRef]
- Kashchiev, D. Solution of the non-steady state problem in nucleation kinetics. Surf. Sci. 1969, 14, 209–220. [Google Scholar] [CrossRef]
- Gutzov, I.; Schmelzer, J.W.P. The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Schmelzer, J. Nucleation Theory and Applications; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Baker, D.R.; Rusiecka, M.K.; Bilodeau, M.; Kwon, S.Y. Nucleation delay in the anorthite-diopside binary system: Models and experiments. J. Non-Cryst. Solids 2020, 546, 120255. [Google Scholar] [CrossRef]
- Gránásy, L. Diffuse interface approach to vapour condensation. Europhys. Lett. 1993, 24, 121–126. [Google Scholar] [CrossRef]
- Gualda, G.A.R.; Ghiorso, M.S.; Lemons, R.V.; Carley, T.L. Rhyolite-MELTS: A Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic Systems. J. Petrol. 2012, 53, 875–890. [Google Scholar] [CrossRef]
- Robie, R.A.; Bethke, P.M.; Beardsley, K.M. Selected X-ray crystallographic data, molar volumes, and densities of minerals and related substances. USGS Bull. 1967, 1248, 1–87. [Google Scholar]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystall. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Baker, D.R. Chemical interdiffusion of dacite and rhyolite: Anhydrous measurements at 1 atm and 10 kbar, application of transition state theory, and diffusion in zoned magma chambers. Contrib. Mineral. Petrol. 1990, 104, 407–423. [Google Scholar] [CrossRef]
- Baker, D.R. Interdiffusion of hydrous dacitic and rhyolitic melts and the efficacy of rhyolite contamination by dacitic enclaves. Contrib. Mineral. Petrol. 1991, 106, 462–473. [Google Scholar] [CrossRef]
- Neuville, D.R.; Cormier, L.; Caurant, D.; Montagne, L. (Eds.) From Glass to Crystal: Nucleation, Growth and Phase Separation: From Research to Applications; EDP Sciences: Les Ulis, France, 2017. [Google Scholar]
- Rossman, G.R. Studies of OH in nominally anhydrous minerals. Phys. Chem. Min. 1996, 23, 299–304. [Google Scholar] [CrossRef]
Oxide | wt% (Simmons et al., 2016) | Glass Mean wt% (EDS Analyses) | Standard Deviation on EDS Analyses |
---|---|---|---|
SiO2 | 72.99 | 73.61 | 0.17 |
TiO2 | 0.07 | 0.00 | 0.00 |
Al2O3 | 17.55 | 17.41 | 0.22 |
FeOT * | 1.22 | 1.06 | 0.06 |
MnO | 0.04 | 0.26 | 0.02 |
MgO | 0.16 | 0.13 | 0.04 |
CaO | 0.48 | 0.50 | 0.02 |
Na2O | 5.42 | 5.03 | 0.11 |
K2O | 2.10 | 2.00 | 0.05 |
Expt. | Final T (°C) | Time (h) | Total H2O (wt%) | Phases | Total % Crystals |
---|---|---|---|---|---|
MB43 | 1070 | 96 | 4.3 | Gl * | 0 |
MB45 | 1040 | 96 | 3.7 | Gl,crystals (Mul?,Crn?) * | trace |
MB33 | 1015 | 96 | 3.8 | Gl,crystals (Mul?,Crn?) * | trace |
MB72 | 1000 | 110 | 4.2 | Gl,Mul,Crn | 20 |
MB131 | 950 | 94 | 4.3 | Gl,Mul,Crn,Qz (stable?) | |
MB129 | 900 | 115 | 4.3 | Gl,Mul,Crn,Qz,Pl | |
MB127 | 900 | 115 | 4.3 | Gl,Mul,Crn,Qz,Pl | |
MB74 | 850 | 115 | 3.6 | Gl,Mul,Crn,Qz,Pl | 80 |
Expt. | Final T (°C) | ∆T (°C) | Duration (h) | H2O (wt%) | Phases | Percent Crystallized |
---|---|---|---|---|---|---|
MB52 | 1000 | −55 | 6 | 3.3 | Gl | 0 |
MB53 | 1000 | −55 | 6 | 3.2 | Gl | 0 |
MB58 | 1000 | −55 | 44 | 3.3 | Gl,Mul,Crn,ox | 2 |
MB60 | 1000 | −55 | 44 | 3.2 | Gl,Mul,Crn,ox | 2 |
MB67 | 900 | −155 | 0.5 | 3.3 | Gl,Mul,Crn | 2 |
MB68 | 900 | −155 | 0.5 | 3.2 | Gl,Mul,Crn | 2 |
MB61 | 900 | −155 | 5 | 3.2 | Gl,Mul | 4 |
MB62 | 900 | −155 | 5 | 3.3 | Gl,Mul | 4 |
MB64 | 900 | −155 | 29 | 3.3 | Gl,Mul,Crn * | 2 |
MB69 | 900 | −155 | 211 | 3.3 | Gl,Mul,Crn | <1 |
MB70 | 900 | −155 | 211 | 3.3 | Gl,Mul,Crn | <1 |
MB105 | 850 | −205 | 5 | 3.3 | Gl,Mul,Crn,ox,dPrl | 3 |
MB106 | 850 | −205 | 5 | 3.3 | Gl,Mul,Crn,ox,dPrl | 2 |
MB80 | 850 | −205 | 115 | 3.3 | Gl,Mul,Crn,ox,dPrl,Qz | 3 |
MB81 | 850 | −205 | 115 | 3.3 | Gl,Mul,Crn,ox,dPrl,Qz | 2~1 |
MB114 | 800 | −255 | 0.3 | 3.3 | Gl,Crn,ox | 2 |
MB115 | 800 | −255 | 0.3 | 3.3 | Gl,Crn,ox,dPrl (only 1) | 2 |
MB118 | 800 | −255 | 4 | 3.3 | Gl,Mul,Crn,ox,dPrl | 4 |
MB119 | 800 | −255 | 4 | 3.3 | Gl,Mul,Crn,ox,dPrl | 6 |
MB87 | 800 | −255 | 115 | 3.3 | Gl,Mul,Crn,ox,dPrl,Qz,Pl | 25 |
MB88 | 800 | −255 | 115 | 3.3 | Gl,Mul,Crn,ox,dPrl,Qz,Pl | 25 |
MB110 | 800 | −255 | 120 | 3.3 | Gl,Mul,Crn,ox,dPrl,Qz,Pl | 35 |
MB111 | 800 | −255 | 120 | 3.3 | Gl,Mul,Crn,ox,dPrl,Qz,Pl | 35 |
MB94 | 750 | −305 | 2 | 3.3 | Gl,Mul,Crn, | 5 |
MB95 | 750 | −305 | 2 | 3.3 | Gl,Mul | 5 |
MB89 | 750 | −305 | 5 | 3.3 | Gl,Mul | 2 |
MB90 | 750 | −305 | 5 | 3.3 | Gl,Mul | 2 |
MB91 | 750 | −305 | 28 | 3.3 | Gl,Mul,cr,ox,dPrl,Qz,UnkP | 15 |
MB92 | 750 | −305 | 28 | 3.3 | Gl,Mul,Crn,ox,dPrl,Qz,UnkP | 15 |
MB120 | 650 | −405 | 115 | 3.3 | Gl,Mul,Crn,ox,dPrl,Qz,Pl,UnkP | 34 |
MB123 | 650 | −405 | 115 | 3.3 | Gl,Mul,Crn,ox,dPrl,Qz,Pl,UnkP | 28 |
Oxide (wt %) | Mullite n = 7 1 | Corundum n = 10 | Quartz n = 12 | Feldspar 800 °C n = 4 | Feldspar 650 °C n = 1 | Glass n = 35 | Dehydroxylated Pyrophyllite (Halos) n = 5 | Unknown Phase Petalite? n = 5 |
---|---|---|---|---|---|---|---|---|
SiO2 | 28.46 (1.19) 2 | 2.38 (1.16) | 97.01 (1.54) | 66.95 (1.14) | 70.54 | 75.9 (0.8) | 68.65 (1.04) | 82.11 (0.55) |
Al2O3 | 68.58 (3.86) | 96.82 (1.63) | 2.40 (1.27) | 20.95 (0.64) | 16.07 | 16.5 (0.6) | 30.36 (2.19) | 16.18 (0.97) |
Fe2O3 | 2.80 (3.63) | 0.77 (0.80) | 0.13 (0.11) | 0 | 0 | 0.94 (0.21) | 0.80 (1.60) | 1.33 (0.29) |
CaO | 0.00 | 0.01 (0.03) | 0.04 (0.06) | 1.41 (0.24) | 0 | 0.52 (0.06) | 0.00 | 0 |
Na2O | 0.16 (0.28) | 0.01 (0.03) | 0.28 (0.22) | 9.86 (0.56) | 13.39 | 4.21 (0.40) | 0.38 (0.47) | 0.27 (0.41) |
K2O | 0.00 | 0.01 (0.02) | 0.13 (0.02) | 0.82 (0.30) | 0 | 1.98 (0.12) | 0.00 (0.00) | 0 |
Cations | ||||||||
Si | 2.039 | 0.040 | 0.976 | 2.934 | 3.093 | 3.928 | 4.010 | |
Al | 5.790 | 1.936 | 0.028 | 1.082 | 0.830 | 2.047 | 0.931 | |
Fe | 0.153 | 0.010 | 0.001 | 0.000 | 0.000 | 0.049 | ||
Ca | 0.000 | 0.000 | 0.000 | 0.066 | 0.000 | 0.034 | 0.000 | |
Na | 0.011 | 0.000 | 0.005 | 0.838 | 1.138 | 0 | 0.013 | |
K | 0.000 | 0.000 | 0.002 | 0.046 | 0.000 | 0.043 | 0.000 | |
Li (assumed) | 1 | 1.000 | ||||||
Sum cations | 7.994 | 1.987 | 1.013 | 4.967 | 5.061 | 6.052 | 6.004 | |
No. Oxygens | 13 | 3 | 2 | 8 | 8 | 11 | 10.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilodeau, M.; Baker, D.R. Quantification of Feldspar and Quartz Nucleation Delay in a Hydrous Peraluminous Granitic Melt. Minerals 2024, 14, 611. https://doi.org/10.3390/min14060611
Bilodeau M, Baker DR. Quantification of Feldspar and Quartz Nucleation Delay in a Hydrous Peraluminous Granitic Melt. Minerals. 2024; 14(6):611. https://doi.org/10.3390/min14060611
Chicago/Turabian StyleBilodeau, Maude, and Don R. Baker. 2024. "Quantification of Feldspar and Quartz Nucleation Delay in a Hydrous Peraluminous Granitic Melt" Minerals 14, no. 6: 611. https://doi.org/10.3390/min14060611
APA StyleBilodeau, M., & Baker, D. R. (2024). Quantification of Feldspar and Quartz Nucleation Delay in a Hydrous Peraluminous Granitic Melt. Minerals, 14(6), 611. https://doi.org/10.3390/min14060611