Characteristics and Metallogenic Significance of Fe-Mn Carbonate Minerals in the Erdaokan Ag Deposit, Heilongjiang Province, Northeast China: Constraints from Sm-Nd Geochronology and Trace Elements
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Deposit Geology
3. Materials and Methods
4. Results
4.1. Microscopic Analysis of Fe-Mn Carbonate Minerals
4.2. Analysis of Major and Trace Elements
4.3. Dating Analysis of Fe-Mn Carbonate Minerals
5. Discussion
5.1. Analysis of Fluid Source in Erdaokan Deposit
5.2. Sm-Nd Isotopes and Metallogenic Age Indication
5.3. Metallogenic Model of Erdaokan Silver Deposit and Favorable Conditions for Ag Enrichment
6. Conclusions
- Fe-Mn carbonate is a pervasive mineral in the Erdaokan Ag deposit, primarily formed during the galenite–sphalerite–Fe–Mn carbonate stage. Through microscopic analysis and EPMA, pyrargyrite was found to coexist with Fe-Mn carbonate, while argentite is finely disseminated within Fe-Mn carbonates. Consequently, the presence of Fe-Mn carbonation has great potential as an indicator for prospecting regional Ag deposits, and provides a novel avenue for comprehending mineral deposit information.
- The Fe-Mn carbonates can be classified into manganese siderite and iron rhodochrosite, representing the two extremes of isomorphism. These Fe-Mn carbonates are primarily distributed in banded or nodular forms within the ore, often intersected by quartz veins. Microscopically, the Fe-Mn carbonates exhibit semi-idiomorphic rhomboid morphology, semi-idiomorphic rhomboid assemblage, rhomboid twinning, and residual structures resulting from quartz metasomatism. The concentrations of Fe and Mn show continuous variations, and display a similar distribution pattern to that of rare-earth trace elements.
- The Fe-Mn carbonates in the Erdaokan Ag deposit exhibit a similar distribution pattern of trace elements and REE, indicating a pronounced resemblance to the pyrite pattern observed in the deposit. Furthermore, these carbonates display a depletion of Zr, an enrichment of light rare-earth elements, a noticeable deficit of Eu, and an average Y/Ho value of 34.29. These findings suggest that the ore-forming materials originated from deep magma sources with involvement from upper-mantle materials.
- The Sm-Nd isotopic isochron age of the Fe-Mn carbonate monomineral has been determined to be 233.7 ± 1.2 Ma (MSWD = 1.5), indicating that the formation of the Erdaokan Ag deposit occurred during the Late Triassic Period in a magmatic hydrothermal environment characterized by moderate to low temperatures. This study further reinforces the significance of the Late Triassic Period as an additional metallogenic stage in the Duobaoshan Cu-Mo-Au mineralization concentrated area.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Wu, G.; Li, Y.; Zhu, M.T.; Zhong, W. Re-Os sulfide (chalcopyrite, pyrite and molybdenite) systematicand fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China. J. Asian Earth Sci. 2012, 49, 300–312. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Liu, J.M.; Chu, S.X.; Wang, Y.B.; Sun, Y.; Duan, X.X.; Zhou, L.L.; Qu, W.J. Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu-Mo-(Au) deposit, northeast China, and its geological significance. J. Asian Earth Sci. 2014, 79, 895–909. [Google Scholar] [CrossRef]
- Gao, R.Z.; Xue, C.J.; Lu, X.B.; Zhao, X.B.; Yang, Y.S.; Li, C.C. Genesis of the Zhengguang gold deposit in the Duobaoshan ore field, Heilongjiang Province, NE China: Constraints from geology, geochronology and S-Pb isotopic Compositions. Ore Geol. Rev. 2017, 84, 202–217. [Google Scholar] [CrossRef]
- Hao, Y.J.; Ren, Y.S.; Duan, M.X.; Tong, K.Y.; Chen, C.; Li, C. Re-Os Isotopic Dating of the Molybdenite from the Tongshan Porphyry Cu-Mo Deposit in Heilongjiang Province, NE China. Acta Geol. Sin. (Engl. Ed.) 2014, 88 (Suppl. S2), 522–523. [Google Scholar]
- Hao, Y.J.; Ren, Y.S.; Duan, M.X.; Zhao, H.L.; Tong, K.Y.; Sun, Z.M. Tectonic setting of Triassic magmatic and metallogenic event in the Duobaoshan mineralization area of Heilongjiang Province, NE China. Geol. J. 2017, 52, 67–91. [Google Scholar] [CrossRef]
- Bao, X.B.; Yin, G.L.; Yu, X.Z. Geological characteristics of Erdaokancun Silver Polymetallic Deposit, Nenjiang County, Heilongjiang Province and its prospecting indicators. Gold 2019, 7, 20–23, (In Chinese with English abstract). [Google Scholar]
- Xu, W.X.; Li, C.L.; Bao, X.B.; Yuan, M.W. Geological characteristics and genesis analysis of the first Triassic silver deposit discovered in Northeast of Da Hinggan Mountains. Miner. Resour. Geol. 2019, 33, 434–441, (In Chinese with English abstract). [Google Scholar]
- Chu, S.X.; Zeng, Q.D.; Liu, J.M.; Wang, Y.B. Early–Middle Jurassic magmatism and skarn-porphyry mineralization in NE China: Geochronological and geochemical constraints from the Sankuanggou skarn Fe-Cu-(Mo) deposit, and tectonic implications. J. Geochem. Explor. 2019, 200, 84–103. [Google Scholar] [CrossRef]
- Wang, L.; Qin, K.Z.; Cao, M.J.; Danišík, M.; Evans, N.J.; Li, G.M.; Song, G.X.; Pang, X.Y. Thermal history of an Early Paleozoic epithermal deposit: Constraints from 40Ar/39Ar and (U-Th)/He thermochronology at Zhengguang, eastern Central Asian Orogenic Belt. Ore Geol. Rev. 2020, 126, 103791. [Google Scholar] [CrossRef]
- Li, C.L.; Li, L.; Yuan, M.W.; Alam, M.; Li, S.R.; Santosh, M.; Deng, C.Z.; Liu, H.; Xu, G.Z. Study on pyrite thermoelectricity, ore-forming fluiAll authors have been informed and agreed.ds and H-O-Rb-Sr isotopes of the Yongxin gold deposit, Central Asian Orogenic Belt: Implications for ore genesis and exploration. Ore Geol. Rev. 2020, 121, 103568. [Google Scholar] [CrossRef]
- Gao, S.; Xu, H.; Zang, Y.Q.; Yang, L.J.; Yang, B.; Wang, T. Late Mesozoic magmatism and metallogeny in NE China: The Sandaowanzi-Beidagou example. Int. Geol. Rev. 2017, 59, 1413–1438. [Google Scholar] [CrossRef]
- Gao, S.; Xu, H.; Zang, Y.Q.; Wang, T. Mineralogy, ore-forming fluids and geochronology of the Shangmachang and Beidagou gold deposits, Heilongjiang province, NE China. J. Geochem. Explor. 2018, 188, 137–155. [Google Scholar] [CrossRef]
- Yuan, M.W.; Li, L.; Li, S.R. Mineralogy, fluid inclusions and S-Pb-H-O isotopes of the Erdaokan Ag-Pb-Zn deposit, Duobaoshan metallogenic belt, NE China: Implications for ore genesis. Ore Geol. Rev. 2019, 113, 103074. [Google Scholar] [CrossRef]
- Yuan, M.W.; Li, L.; Li, S.R.; Santosh, M.; Li, C.L.; Alam, M.; Hou, Z.Q. Bitumen Sm-Nd, pyrite Rb-Sr and zircon U-Pb isotopes constrain timing of ore formation and hydrocarbon deposition in the Erdaokan Ag-Pb-Zn deposit, NE China. Ore Geol. Rev. 2021, 134, 104161. [Google Scholar] [CrossRef]
- Yuan, M.W.; Li, L.; Li, C.L.; Li, S.R.; Santosh, M.; Alam, M.; Hou, Z.Q. The genesis of bitumen and its relationship with mineralization in the Erdaokan Ag-Pb-Zn deposit from the Great Xing’an Range, northeastern China. Ore Geol. Rev. 2021, 139, 104464. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, M.J.; Zhao, S.R.; Ding, Z.J.; He, M.C. Stable isotopes and halogen geochemistry of the Huayuan carbonate-hosted Pb-Zn ore district, South China: Implications for the salt source of ore-forming fluids. Acta Geol. Sin. (Engl. Ed.) 2022, 96, 506–516. [Google Scholar] [CrossRef]
- Xiong, S.F.; Gong, Y.J.; Yao, S.Z.; Shen, C.B.; Ge, X.; Jiang, S.Y. Nature and evolution of the ore-forming fluids from Nanmushu carbonate-hosted Zn-Pb deposit in the Mayuan district, Shaanxi Province, Southwest China. Geofluids 2017, 2017, 2410504. [Google Scholar] [CrossRef]
- Xu, Y.W.; Mao, G.Z.; Geng, H.Y.; He, T.L.; Xu, Q.L.; Meng, Y.K.; Cao, M.P.; Yang, F.J.; An, P.R.; Song, L.G.; et al. Ore-forming materials and fluids and ore-controlling factors of the Liaoshang gold deposit in Jiaodong Peninsula, NE China. Ore Geol. Rev. 2023, 154, 105330. [Google Scholar] [CrossRef]
- Myint, A.Z.; Wagner, T.; Fusswinkel, T. Calcite trace element geochemistry of Au deposits in the Singu-Tabeikkyin Gold District, Myanmar: Implications for the sources of ore-forming fluids. Ore Geol. Rev. 2022, 145, 104892. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Distribution of yttrium and rare–earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence form Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Chen, X.; Chen, Y.Q.; Jiang, Y.H.; Dai, B.Z.; Ni, P. Geochemistry and genetic model for the giant magnesite deposits in the eastern Liaoning Province, China. Acta Petrol. Sin. 2004, 20, 765–772. [Google Scholar]
- Planavsky, N.; Bekker, A.; Rouxel, O.J.; Kamber, B.; Hofmann, A.; Knudsen, A.; Lyons, T.W. Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochim. Cosmochim. Acta 2010, 74, 6387–6405. [Google Scholar] [CrossRef]
- Presley, B.J.; Kaplan, I.R. Changes in dissolved sulfate, calcium and carbonate from interstitial water of near-shore sediments. Geochim. Cosmochim. Acta 1968, 32, 1037–1048. [Google Scholar] [CrossRef]
- Chen, F.G.; Pufahl, K.P.; Wang, Q.F.; Matheson, E.J.; Shabaga, B.M.; Zhang, Q.Z.; Zeng, Y.S.; Le, X.W.; Ruan, D.; Zhao, Y.T. A new model for the genesis of Carboniferous Mn Ores, Longtou deposit, South China Block. Econ. Geol. 2022, 117, 107–125. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, X.H.; Zhang, L.C.; Ying, J.F.; Zhang, Y.T.; Wu, F.Y.; Zhu, R.X. Late Mesozoic volcanism in the Great Xing’an Range (NE China): Timing and implications for the dynamic setting of NE Asia. Earth Planet. Sci. Lett. 2006, 251, 179–198. [Google Scholar] [CrossRef]
- Fan, W.M.; Guo, F.; Wang, Y.J.; Lin, G. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. J. Volcanol. Geotherm. Res. 2003, 121, 115–135. [Google Scholar] [CrossRef]
- Wu, H.Y.; Zhang, L.C.; Wan, B.; Chen, Z.G.; Xiang, P.; Pirajno, F.; Du, A.D.; Qu, W.J. Re-Os 40Ar/39Ar ages of the Jiguanshan porphyry Mo deposit, Xilamulun metallogenic belt, NE China, constraints on mineralization events. Miner. Depos. 2011, 46, 171–185. [Google Scholar] [CrossRef]
- Deng, C.Z.; Li, C.L.; Rong, Y.M.; Chen, D.; Zhou, T.; Wang, X.Y.; Chen, H.Y.; Lehmann, B.; Yin, R.S. Different metal sources in the evolution of an epithermal ore system: Evidence from mercury isotopes associated with the Erdaokan epithermal Ag-Pb-Zn deposit, NE China. Gondwana Res. 2021, 95, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; GAO, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, F.Y.; Yang, J.H.; Chew, D.M.; Xie, L.W.; Chu, Z.Y.; Zhang, Y.B.; Huang, C. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology. Chem. Geol. 2014, 385, 35–55. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, F.Y.; Li, Q.L.; Rojas-Agramonte, Y.; Yang, J.H.; Li, Y.; Ma, Q.; Xie, L.W.; Huang, C.; Fan, H.R.; et al. In situ U–Th–Pb dating and Sr-Nd isotope analysis of bastnäsite by LA-(MC)-ICP-MS. Geostand. Geoanal. Res. 2019, 43, 543–565. [Google Scholar] [CrossRef]
- Dong, J.; Yuan, M.W.; Li, C.L. Geochemical characteristics of hydrothermal rhodochrosite in Erdaokan Ag-Pb-Zn deposit Duobaoshan metallogenic belt, Heilongjiang province and its indications. J. Jilin Univ. Earth Sci. Ed. 2022, 52, 855–865, (In Chinese with English abstract). [Google Scholar]
- Faure, G. Principle of Isotope Geology; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1986. [Google Scholar]
- Peter, S.M. Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology 1989, 17, 704–706. [Google Scholar]
- Kelley, K.D.; Leach, D.L.; Johnson, C.A.; Clark, J.L.; Fayek, M.; Slack, J.F.; Anderson, V.M.; Ayuso, R.A.; Ridley, W.I. Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: Implications for ore formation. Econ. Geol. 2004, 99, 1509–1532. [Google Scholar] [CrossRef]
- Kang, N.; Schmidt, M.W.; Poli, S.; Franzolin, E.; Connolly, J.A.D. Melting of siderite to 20 GPa and thermodynamic properties of FeCO3-melt. Chem. Geol. 2015, 400, 34–43. [Google Scholar] [CrossRef]
- Wall, F.; Le Bas, M.J.; Srivastave, R.K. Calcite and carbocernaite exsolution and cotectic textures in a Sr, REE–rich carbonatite dyke from Rajasthan, India. Mineral. Mag. 1993, 57, 495–513. [Google Scholar] [CrossRef]
- Gamyanin, G.N.; Vikent’eva, O.V.; Prokof’ev, V.Y.; Bortnikov, N.S. Arkachan: A new Gold–Bismuth–Siderite–Sulfide type of deposits in the West Verkhoyansky Tin District, Yakutia. Geol. Ore Depos. 2015, 57, 465–495. [Google Scholar] [CrossRef]
- Postma, D. Formation of siderite and vivianite and the pore-water composition of a recent bog sediment in Denmark. Chem. Geol. 1981, 31, 225–244. [Google Scholar] [CrossRef]
- Bolhar, R.; Kamber, B.S.; Moorbath, S.; Fedo, C.N.; Whitehouse, M.J. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. 2004, 222, 43–60. [Google Scholar] [CrossRef]
- Chesley, J.T.; Halliday, A.N.; Scrivener, R.C. Samarium–neodymium direct dating of fluorite mineralization. Science 1991, 252, 949–995. [Google Scholar] [CrossRef]
- Chesley, J.T.; Halliday, A.N.; Kyser, T.K.; Spry, P.G. Direct dating of Mississippi Valley-type mineralizations: Use of Sm-Nd in fluorite. Econ. Geol. 1994, 89, 1192–1199. [Google Scholar] [CrossRef]
- Jiang, S.Y.; John, F.S.; Martin, R.P. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia. Geology 2000, 28, 751–754. [Google Scholar] [CrossRef]
- Peng, J.T.; Hu, R.Z.; Burnard, P.G. Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): The potential of calcite as a geochronometer. Chem. Geol. 2003, 200, 129–136. [Google Scholar] [CrossRef]
- Oberthür, T.; Melcher, F.; Henjes, K.F.; Gerdes, A.; Stein, H.; Zimmerman, A.E.; Ghorfi, M. Hercynian age of the cobalt-nickel-arsenide–(gold) ores, Bou Azzer, Anti-Atlas, Morocco: Re-Os, Sm-Nd, and U-Pb age determinations. Econ. Geol. 2009, 104, 1065–1079. [Google Scholar] [CrossRef]
- Su, W.; Hu, R.; Xia, B.; Xia, Y.; Liu, Y. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China. Chem. Geol. 2009, 258, 269–274. [Google Scholar] [CrossRef]
- Henjes, K.F.; Prochaska, W.; Niedermayr, A.; Sullivan, N.; Baxter, E. Sm-Nd dating of hydrothermal carbonate formation: An example from the Breitenau magnesite deposit (Styria, Austria). Chem. Geol. 2014, 387, 184–201. [Google Scholar] [CrossRef]
- Krupenin, M.T.; Kuznetsov, A.B.; Chervyakovskaya, M.V.; Gulyaeva, T.Y.; Konstantinova, G.V. The Source of Ore Fluids and Sm-Nd Age of Siderite from the Largest Bakal Deposit, Southern Urals. Geol. Ore Depos. 2021, 63, 324–340. [Google Scholar] [CrossRef]
- Zeng, H.; Zhao, Y.Y.; Fu, J.J.; Li, Y. Features of sulfide and plumbum isotopes of the copper deposits in Duobaoshan deposit cluster in Heilongjiang Province, China. Acta Geol. Sin. (Engl. Ed.) 2014, 88, 643–644. [Google Scholar] [CrossRef]
- Hu, X.L.; Yao, S.Z.; Ding, Z.J.; He, M.C. Early Paleozoic magmatism and metallogeny in Northeast China: A record from the Tongshan porphyry Cu deposit. Miner. Depos. 2016, 52, 85–103. [Google Scholar] [CrossRef]
- Hao, Y.J.; Ren, Y.S.; Duan, M.X.; Tong, K.Y.; Chen, C.; Yang, Q.; Li, C. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China. J. Asian Earth Sci. 2015, 97, 442–458. [Google Scholar] [CrossRef]
- Deng, K.; Li, Q.; Chen, Y.J.; Zhang, C.; Zhu, X.F.; Xu, Q.W. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Jurassic granodiorite from the Sankuanggou intrusion, Heilongjiang Province, Northeastern China: Petrogenesis and geodynamic implications. Lithos 2018, 296, 113–128. [Google Scholar] [CrossRef]
- Yu, R.T.; Li, B.L.; Sun, F.Y.; Li, Z.H.; Li, H.W.; Shi, Y.F. Geochronology, geochemistry and Hf isotopes of andesites in the Sandaowanzi gold deposit (Great Xing’an Range, NE China): Implications for petrogenesis, tectonic setting, and mineralization. Acta Geochim. 2021, 40, 251–270. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.J.; Ripley, E.M.; Wang, J.P. Geochronological and He-Ar-S isotopic constraints on the origin of the Sandaowanzi gold-telluride deposit, northeastern China. Lithos 2015, 212, 338–352. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Sun, J.G.; Li, G.H.; Xu, W.X.; Lu, C.L.; Guo, Y.; Liu, J.; Zhang, X. Zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotopic constraints on the timing and origin of the Early Cretaceous igneous rocks in the Yongxin gold deposit in the Lesser Xing’an Range, NE China. Geol. J. 2020, 55, 2684–2703. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, K.Z.; Song, G.X.; Li, G.M. Switch of geodynamic setting from the Paleo-Asian Ocean to the Mongol-Okhotsk Ocean: Evidence from granitoids in the Duobaoshan ore field, Heilongjiang Province, Northeast China. Lithos 2019, 336, 202–220. [Google Scholar] [CrossRef]
- Li, C.L.; Deng, C.Z.; Li, S.R.; Yuan, M.W.; Yang, Y.J. Geochronology and genesis of the newly discovered Mengdehe orogenic-type Au deposit in the Xing’an-Mongolia orogenic Belt, NE China. Ore Geol. Rev. 2021, 133, 104083. [Google Scholar] [CrossRef]
- Zhai, D.G.; Williams–Jones, A.E.; Liu, J.; David, S.; Voudouris, P.C.; Tombros, S.; Li, K.; Li, P.; Sun, H. The genesis of the giant Shuangjianzishan epithermal Ag-Pb-Zn deposit, Inner Mongolia, Northeastern China. Econ. Geol. 2020, 115, 101–128. [Google Scholar] [CrossRef]
- Xu, L.Q.; Liu, C.; Deng, J.F.; Li, N.; Dai, M.; Bai, L.B. Geochemical characteristics and ziron U-Pb SHRIMP age of igneous rocks in Erentaolegai silver deposit, Inner Mongolia. Acta Petrol. Sin. 2014, 30, 3203–3212, (In Chinese with English abstract). [Google Scholar]
- Niu, S.D.; Li, S.R.; Huizenga, J.M.; Santosh, M.; Zhang, D.H.; Li, Z.D.; Tang, L. 40Ar/39Ar geochronology fluid inclusions and ore-grade distribution of the Jiawula Ag-Pb-Zn deposit NE China: Implications for deposit genesis and exploration. Geol. J. 2019, 55, 1115–1127. [Google Scholar] [CrossRef]
- Li, T.G.; Wu, G.; Liu, J.; Wang, G.R.; Hu, Y.Q.; Zhang, Y.F.; Luo, D.F.; Mao, Z.H.; Xu, B. Geochronology fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China. Lithos 2016, 261, 340–355. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.L.; Wang, F.; Pei, F.P.; Tang, J.; Zhao, S. Triassic volcanism along the eastern margin of the Xing’an Massig, NE China: Constraints on the spatial-emporal extent of the Mongol-khotsk tectonic regime. Gondwana Res. 2017, 48, 205–223. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.L.; Tang, J.; Pei, F.P.; Wang, F.; Sun, C.Y. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing’an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-khotsk tectonic regime. Lithos 2018, 304, 57–73. [Google Scholar] [CrossRef]
- Zhou, J.B.; Cao, J.L.; Wilde, S.A.; Zhao, G.C.; Zhang, J.J.; Wang, B. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics 2014, 33, 2444–2466. [Google Scholar] [CrossRef]
- Aouizerat, A.; Xiao, W.J.; Schulmann, K.; Jerabek, P.; Monie, P.; Zhou, J.B.; Zhang, J.J.; Ao, S.J.; Li, R.; Li, Y.C. Structures, Strain Analyses, and 40Ar/39Ar Ages of Blueschist-Bearing Heilongjiang Complex (NE China): Implications for the Mesozoic Tectonic Evolution of NE China. Geol. J. 2018, 160, 1–30. [Google Scholar] [CrossRef]
- Ptáček, P.; Bartoníčková, E.; Ṧvec, J. The kinetics and mechanism of thermal decomposition of SrCO3 polymorphs. Ceram. Int. 2015, 41, 115–126. [Google Scholar] [CrossRef]
- Xie, J.J.; Chen, T.; Xing, B.B.; Liu, H.B.; Xie, Q.Q.; Li, H.W.; Wu, Y.C. The thermochemical activity of dolomite occurred in dolomite-palygorskite. Appl. Clay Sci. 2016, 119, 42–48. [Google Scholar] [CrossRef]
MnO | FeO | MgO | CaO | BaO | SrO | SiO2 | Al2O3 | ZnO | Total | MnCO3 | FeCO3 | MgCO3 | CaCO3 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spot1 | ZK284-1 | 25.70 | 28.43 | 1.11 | 2.88 | 0.05 | 0.14 | 1.43 | 0.11 | 0.07 | 59.91 | 42.90 | 47.45 | 1.85 | 4.81 |
Spot2 | ZK284-1 | 27.25 | 27.90 | 0.40 | 4.27 | 0.04 | 0.05 | 0.00 | 0.01 | 0.07 | 59.98 | 45.42 | 46.51 | 0.67 | 7.12 |
Spot3 | ZK284-1 | 37.05 | 19.30 | 0.55 | 2.01 | - | 0.10 | 0.05 | 0.04 | 0.01 | 59.11 | 62.69 | 32.66 | 0.93 | 3.40 |
Spot4 | ZK284-1 | 34.53 | 21.50 | 0.50 | 2.14 | 0.01 | 0.11 | 0.00 | - | - | 58.79 | 58.72 | 36.57 | 0.85 | 3.64 |
Spot5 | ZK284-1 | 23.57 | 32.10 | 0.57 | 2.52 | - | - | 0.02 | - | - | 58.77 | 40.10 | 54.61 | 0.98 | 4.28 |
Spot6 | ZK284-1 | 21.41 | 36.88 | 0.57 | 1.10 | 0.03 | 0.02 | - | - | - | 60.02 | 35.68 | 61.45 | 0.95 | 1.84 |
Spot7 | ZK284-1 | 11.14 | 40.39 | 4.73 | 2.65 | - | - | - | - | 0.04 | 58.95 | 18.90 | 68.52 | 8.03 | 4.49 |
Spot8 | ZK284-1 | 9.09 | 40.73 | 3.06 | 5.36 | - | - | - | 0.06 | - | 58.30 | 15.59 | 69.86 | 5.25 | 9.20 |
Spot9 | ZK284-2 | 58.36 | 0.80 | 0.04 | 0.52 | - | 0.01 | - | - | 0.11 | 59.84 | 97.53 | 1.34 | 0.06 | 0.87 |
Spot10 | ZK284-2 | 55.25 | 3.25 | 0.01 | 0.18 | 0.05 | - | - | - | 0.03 | 58.76 | 94.02 | 5.52 | 0.02 | 0.30 |
Spot11 | ZK284-2 | 51.42 | 4.99 | 0.28 | 2.42 | - | 0.10 | - | 0.02 | - | 59.24 | 86.81 | 8.43 | 0.47 | 4.08 |
Spot12 | ZK284-2 | 50.08 | 5.98 | 0.18 | 3.45 | - | 0.05 | - | 0.01 | - | 59.75 | 83.81 | 10.01 | 0.30 | 5.78 |
Spot13 | ZK284-2 | 48.44 | 5.88 | 0.13 | 5.37 | 0.02 | 0.04 | 0.05 | - | 0.08 | 60.00 | 80.74 | 9.80 | 0.22 | 8.94 |
Spot14 | ZK284-2 | 47.43 | 9.54 | 0.17 | 3.43 | 0.04 | 0.01 | 0.00 | - | 0.12 | 60.74 | 78.09 | 15.70 | 0.28 | 5.64 |
Spot15 | ZK284-4 | 46.72 | 9.75 | 0.08 | 3.48 | - | - | - | - | 0.15 | 60.18 | 77.64 | 16.20 | 0.13 | 5.79 |
Spot16 | ZK284-4 | 44.46 | 7.51 | 0.25 | 6.65 | - | - | 0.09 | - | 0.04 | 58.99 | 75.37 | 12.74 | 0.42 | 11.26 |
Spot17 | ZK284-4 | 43.21 | 11.55 | 0.32 | 3.59 | 0.04 | - | 0.05 | 0.05 | - | 58.79 | 73.49 | 19.64 | 0.55 | 6.10 |
Spot18 | ZK284-4 | 37.81 | 20.26 | 0.44 | 1.69 | - | - | 0.03 | - | 0.07 | 60.29 | 62.71 | 33.60 | 0.73 | 2.80 |
Spot19 | ZK284-4 | 32.14 | 24.64 | 0.24 | 1.43 | 0.10 | 0.03 | 0.06 | - | - | 58.65 | 54.80 | 42.02 | 0.42 | 2.44 |
Spot20 | ZK284-4 | 30.36 | 22.62 | 3.01 | 2.95 | - | 0.07 | 0.06 | 0.04 | - | 59.10 | 51.37 | 38.27 | 5.09 | 4.99 |
Spot21 | ZK284-4 | 21.48 | 34.09 | 1.71 | 2.10 | - | 0.04 | - | 0.00 | 0.18 | 59.60 | 36.03 | 57.20 | 2.88 | 3.52 |
Spot22 | ZK284-4 | 16.16 | 38.92 | 1.04 | 2.86 | 0.02 | - | 0.80 | 0.08 | 0.20 | 60.06 | 26.90 | 64.80 | 1.72 | 4.76 |
Spot23 | ZK284-4 | 15.91 | 40.28 | 1.42 | 2.10 | 0.02 | 0.03 | 0.54 | 0.06 | - | 60.36 | 26.36 | 66.74 | 2.35 | 3.49 |
Spot24 | ZK284-4 | 12.10 | 45.80 | 0.91 | 1.31 | 0.09 | - | 0.34 | 0.09 | - | 60.63 | 19.96 | 75.54 | 1.50 | 2.15 |
Spot25 | ZK284-5 | 5.30 | 48.60 | 1.52 | 4.18 | - | - | - | 0.02 | 0.13 | 59.74 | 8.87 | 81.35 | 2.54 | 7.00 |
Spot26 | ZK284-5 | 4.39 | 49.64 | 2.04 | 2.90 | 0.23 | - | 0.46 | 0.06 | - | 59.71 | 7.35 | 83.13 | 3.41 | 4.85 |
Spot27 | ZK284-5 | 3.46 | 53.85 | 1.79 | 0.49 | 0.05 | - | - | - | 0.13 | 59.77 | 5.79 | 90.10 | 2.99 | 0.83 |
Spot28 | ZK284-5 | 3.06 | 56.28 | 0.35 | 0.85 | 0.20 | - | 0.06 | 0.09 | 0.03 | 60.91 | 5.02 | 92.39 | 0.57 | 1.40 |
Spot29 | ZK284-5 | 1.73 | 53.47 | 0.71 | 1.69 | - | - | 0.06 | 0.04 | 0.49 | 58.19 | 2.97 | 91.90 | 1.22 | 2.90 |
Spot30 | ZK284-5 | 1.70 | 51.40 | 0.16 | 5.64 | 0.07 | - | 0.02 | 0.10 | 0.04 | 59.12 | 2.88 | 86.93 | 0.27 | 9.54 |
Spot1 | Spot2 | Spot3 | Spot4 | Spot5 | Spot6 | Spot7 | Spot8 | Spot9 | Spot10 | Spot11 | Spot12 | Spot13 | Spot14 | Spot15 | Spot16 | Spot17 | Spot18 | Spot19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZK284-1 | ZK284-1 | ZK284-2 | ZK284-2 | ZK284-2 | ZK284-2 | ZK284-2 | ZK284-2 | ZK284-4 | ZK284-4 | ZK284-4 | ZK284-4 | ZK284-4 | ZK284-4 | ZK284-4 | ZK284-5 | ZK284-5 | ZK284-5 | ZK284-5 | |
P | 45.13 | 21.54 | 32.90 | 15.86 | 18.60 | 30.53 | 15.22 | 24.73 | 22.75 | 32.03 | 24.23 | 30.08 | 24.04 | 28.66 | 40.70 | 43.85 | 37.80 | 19.29 | 46.14 |
K | 0.84 | 1.61 | 7.86 | 5.39 | 14.36 | 0.75 | 4.06 | 1.80 | 1.24 | 14.56 | 0.95 | 3.23 | 4.82 | 6.28 | 2.54 | 5.37 | 4.16 | 2.37 | 2.56 |
Ti | 0.07 | 0.07 | 0.77 | 0.33 | 0.24 | 0.45 | 1.14 | 0.13 | 0.07 | 0.13 | 0.42 | 0.39 | 0.58 | 0.12 | 0.72 | 0.30 | 8.95 | 0.03 | 2.72 |
Zn | 271.19 | 316.24 | 39.06 | 10.30 | 4.70 | 7.46 | 69.61 | 3.92 | 7.79 | 36.02 | 33.01 | 40.89 | 33.19 | 36.08 | 35.53 | 32.97 | 333.43 | 43.40 | 136.20 |
Rb | 0.01 | 0.01 | 0.06 | 0.02 | 0.15 | 0.03 | 0.02 | 0.02 | 0.02 | 0.05 | 0.01 | 0.01 | 0.02 | 0.02 | 0.08 | 0.09 | 0.02 | 0.02 | 0.03 |
Sr | 4.54 | 3.83 | 7.36 | 0.43 | 0.84 | 0.96 | 5.07 | 0.37 | 0.02 | 1.05 | 0.81 | 3.92 | 1.32 | 0.60 | 2.11 | 0.89 | 12.20 | 0.78 | 7.26 |
Y | 0.35 | 0.62 | 4.28 | 8.00 | 8.28 | 6.51 | 5.81 | 3.66 | 3.18 | 0.77 | 0.50 | 1.21 | 1.44 | 0.45 | 0.74 | 12.32 | 2.33 | 4.78 | 4.15 |
Zr | 0.03 | 0.10 | 0.12 | 0.07 | - | 0.11 | 0.07 | - | 0.02 | 0.09 | 0.07 | 0.13 | 0.05 | 0.08 | 0.08 | 0.11 | 0.04 | 0.07 | 0.05 |
Nb | - | - | - | - | - | - | - | 0.02 | 0.01 | 0.01 | - | 0.01 | 0.01 | - | - | 0.01 | 0.09 | - | 0.02 |
Ba | 3.34 | 2.33 | 0.82 | 0.10 | 0.33 | 0.30 | 1.14 | 0.05 | 0.02 | 0.34 | 0.03 | 1.51 | 0.39 | 0.01 | 0.06 | 0.40 | 1.75 | 0.09 | 2.16 |
La | 0.26 | 0.33 | 2.32 | 4.05 | 4.75 | 5.16 | 5.74 | 6.01 | 0.47 | 7.92 | 16.50 | 23.92 | 15.45 | 16.91 | 28.43 | 1.90 | 3.83 | 3.75 | 7.55 |
Ce | 0.31 | 0.51 | 3.71 | 9.42 | 8.71 | 8.46 | 9.92 | 9.78 | 0.85 | 9.62 | 20.60 | 29.20 | 25.10 | 21.47 | 30.74 | 4.84 | 8.06 | 10.02 | 15.89 |
Pr | 0.02 | 0.05 | 0.41 | 1.10 | 0.93 | 0.93 | 1.07 | 0.86 | 0.11 | 0.71 | 1.30 | 2.08 | 1.87 | 1.27 | 1.98 | 0.67 | 0.86 | 1.19 | 1.45 |
Nd | 0.11 | 0.14 | 2.38 | 5.62 | 4.71 | 3.22 | 3.44 | 3.49 | 0.55 | 2.10 | 3.89 | 5.18 | 5.07 | 3.48 | 4.91 | 3.75 | 3.67 | 4.98 | 5.35 |
Sm | 0.05 | 0.06 | 0.51 | 1.01 | 1.04 | 0.51 | 0.53 | 0.37 | 0.19 | 0.28 | 0.27 | 0.80 | 0.49 | 0.49 | 0.43 | 1.39 | 0.80 | 0.89 | 0.82 |
Eu | - | 0.01 | 0.04 | 0.10 | 0.02 | 0.06 | 0.05 | 0.09 | 0.03 | - | 0.03 | 0.03 | - | 0.04 | 0.06 | 0.07 | 0.04 | 0.09 | 0.11 |
Gd | 0.01 | 0.06 | 0.71 | 0.89 | 1.18 | 0.75 | 0.69 | 0.47 | 0.29 | 0.06 | 0.11 | 0.21 | 0.20 | 0.13 | 0.24 | 1.35 | 0.47 | 0.48 | 1.00 |
Tb | 0.01 | 0.01 | 0.10 | 0.13 | 0.13 | 0.10 | 0.12 | 0.06 | 0.06 | 0.01 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.26 | 0.08 | 0.12 | 0.17 |
Dy | 0.05 | 0.05 | 0.75 | 0.79 | 1.06 | 0.67 | 0.77 | 0.43 | 0.34 | 0.07 | 0.05 | 0.09 | 0.19 | 0.02 | 0.13 | 1.67 | 0.33 | 0.68 | 0.79 |
Ho | 0.01 | 0.02 | 0.16 | 0.20 | 0.20 | 0.17 | 0.19 | 0.13 | 0.07 | 0.02 | - | 0.03 | - | 0.02 | 0.03 | 0.38 | 0.09 | 0.21 | 0.15 |
Er | - | 0.06 | 0.37 | 0.47 | 0.49 | 0.43 | 0.38 | 0.32 | 0.16 | 0.03 | 0.02 | 0.04 | 0.13 | 0.06 | 0.04 | 1.27 | 0.33 | 0.62 | 0.41 |
Tm | - | 0.01 | 0.04 | 0.05 | 0.07 | 0.06 | 0.06 | 0.04 | 0.05 | - | - | 0.01 | 0.01 | - | 0.01 | 0.16 | 0.03 | 0.04 | 0.05 |
Yb | 0.04 | 0.02 | 0.28 | 0.30 | 0.28 | 0.43 | 0.34 | 0.30 | 0.07 | 0.08 | 0.01 | 0.05 | 0.02 | - | 0.03 | 1.00 | 0.26 | 0.51 | 0.40 |
Lu | - | - | 0.03 | 0.04 | 0.06 | 0.06 | 0.07 | 0.07 | 0.01 | - | - | - | - | 0.01 | 0.01 | 0.15 | 0.04 | 0.12 | 0.05 |
Hf | 0.01 | 0.01 | 0.01 | - | 0.01 | 0.01 | - | 0.01 | - | 0.02 | - | 0.02 | 0.02 | - | - | - | - | - | 0.02 |
Ta | - | - | - | - | 0.39 | - | - | - | - | 0.01 | - | 0.01 | - | - | - | - | - | - | - |
Th | - | - | - | - | - | - | 0.01 | - | - | - | - | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.06 | - | 0.40 |
U | - | - | - | 0.01 | 0.01 | - | - | - | - | - | - | 0.01 | - | 0.01 | - | - | 0.15 | - | - |
Y/Ho | 38.93 | 39.24 | 27.51 | 40.58 | 40.84 | 39.55 | 31.31 | 28.13 | 44.20 | 48.19 | 201.88 | 42.73 | - | 29.96 | 21.63 | 32.45 | 27.09 | 23.28 | 27.28 |
ΣREE | 0.88 | 1.32 | 11.81 | 24.15 | 23.63 | 20.99 | 23.35 | 22.41 | 3.25 | 20.90 | 42.80 | 61.66 | 48.54 | 43.92 | 67.06 | 18.85 | 18.89 | 23.68 | 34.19 |
LREE | 0.75 | 1.11 | 9.37 | 21.29 | 20.15 | 18.34 | 20.74 | 20.59 | 2.20 | 20.64 | 42.58 | 61.20 | 47.97 | 43.66 | 66.55 | 12.61 | 17.26 | 20.92 | 31.18 |
HREE | 0.12 | 0.22 | 2.45 | 2.86 | 3.47 | 2.66 | 2.61 | 1.82 | 1.05 | 0.26 | 0.22 | 0.46 | 0.57 | 0.26 | 0.51 | 6.24 | 1.62 | 2.76 | 3.02 |
LREE:HREE | 6.06 | 5.14 | 3.83 | 7.45 | 5.80 | 6.90 | 7.94 | 11.31 | 2.10 | 78.60 | 194.47 | 132.23 | 84.77 | 171.44 | 131.20 | 2.02 | 10.63 | 7.58 | 10.34 |
δEu | 0.37 | 0.40 | 0.21 | 0.31 | 0.06 | 0.29 | 0.25 | 0.63 | 0.40 | - | 0.48 | 0.15 | - | 0.32 | 0.56 | 0.16 | 0.19 | 0.36 | 0.39 |
(La:Sm)N | 3.67 | 3.43 | 2.85 | 2.51 | 2.87 | 6.34 | 6.86 | 10.19 | 1.61 | 17.71 | 38.89 | 18.90 | 20.02 | 21.51 | 41.68 | 0.86 | 3.02 | 2.65 | 5.82 |
(La:Yb)N | 5.01 | 12.38 | 5.61 | 9.24 | 11.51 | 8.17 | 11.24 | 13.32 | 4.57 | 68.87 | 1112.90 | 317.34 | 552.57 | - | 755.28 | 1.28 | 9.97 | 4.98 | 12.86 |
(Sm:Nd)N | 1.25 | 1.36 | 0.66 | 0.56 | 0.68 | 0.49 | 0.47 | 0.33 | 1.04 | 0.41 | 0.21 | 0.47 | 0.30 | 0.44 | 0.27 | 1.14 | 0.67 | 0.55 | 0.47 |
(Gd:Yb)N | 0.31 | 2.49 | 2.07 | 2.43 | 3.42 | 1.42 | 1.61 | 1.24 | 3.33 | 0.61 | 9.10 | 3.37 | 8.63 | - | 7.76 | 1.10 | 1.48 | 0.76 | 2.04 |
Sm (ppm) | Nd (ppm) | Testing Error | 147Sm/144Nd | 143Nd/144Nd | ||
---|---|---|---|---|---|---|
Sample1 | ZK266-2 | 0.7815 | 0.9827 | 0.000009 | 0.4802 | 0.512988 |
Sample2 | ZK268-3 | 0.9604 | 0.8103 | 0.000008 | 0.7169 | 0.513346 |
Sample3 | ZK274-6 | 0.4683 | 0.7859 | 0.000007 | 0.3647 | 0.512805 |
Sample4 | ZK276-2 | 0.1327 | 0.9716 | 0.000009 | 0.0815 | 0.512374 |
Sample5 | ZK278-6 | 0.3624 | 0.8512 | 0.000006 | 0.2562 | 0.512641 |
Sample6 | ZK328-9 | 0.2115 | 0.9761 | 0.000007 | 0.1308 | 0.512452 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, C.; Wang, Z.; Gu, H.; Yang, W.; Yuan, M.; Fu, A.; Zheng, B.; Cheng, Z.; Liu, B. Characteristics and Metallogenic Significance of Fe-Mn Carbonate Minerals in the Erdaokan Ag Deposit, Heilongjiang Province, Northeast China: Constraints from Sm-Nd Geochronology and Trace Elements. Minerals 2024, 14, 655. https://doi.org/10.3390/min14070655
Yang Y, Li C, Wang Z, Gu H, Yang W, Yuan M, Fu A, Zheng B, Cheng Z, Liu B. Characteristics and Metallogenic Significance of Fe-Mn Carbonate Minerals in the Erdaokan Ag Deposit, Heilongjiang Province, Northeast China: Constraints from Sm-Nd Geochronology and Trace Elements. Minerals. 2024; 14(7):655. https://doi.org/10.3390/min14070655
Chicago/Turabian StyleYang, Yuanjiang, Chenglu Li, Zeyu Wang, Huajuan Gu, Wenpeng Yang, Maowen Yuan, Anzong Fu, Bo Zheng, Zhaoxun Cheng, and Baoshan Liu. 2024. "Characteristics and Metallogenic Significance of Fe-Mn Carbonate Minerals in the Erdaokan Ag Deposit, Heilongjiang Province, Northeast China: Constraints from Sm-Nd Geochronology and Trace Elements" Minerals 14, no. 7: 655. https://doi.org/10.3390/min14070655
APA StyleYang, Y., Li, C., Wang, Z., Gu, H., Yang, W., Yuan, M., Fu, A., Zheng, B., Cheng, Z., & Liu, B. (2024). Characteristics and Metallogenic Significance of Fe-Mn Carbonate Minerals in the Erdaokan Ag Deposit, Heilongjiang Province, Northeast China: Constraints from Sm-Nd Geochronology and Trace Elements. Minerals, 14(7), 655. https://doi.org/10.3390/min14070655