Removal of Thiophenol from Water Using Sepiolite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SEM Photographs
2.3. UV Spectroscopy
2.4. IR Spectroscopy
2.5. DFT Calculations of Atomic Charge
2.6. Experimental Studies of the Adsorption Process
3. Results
3.1. Characteristics of Sepiolite
3.2. Detection of Thiophenol in Aqueous Solution by UV Spectroscopy
3.3. The Influence of pH, Ionic Strength and Contact Time on the Adsorption Process of Thiophenol on Sepiolite
3.4. The APT Atomic Charges
3.5. Adsorption Isotherms
3.6. Infrared Spectroscopy
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Gendy, N.S.; Speight, J.G. Handbook of Refinery Desulfurization, Chapter 2 Feedstocks; CRC Press: Boca Raton, FL, USA, 2015; p. 57. [Google Scholar]
- Katasonova, O.N.; Savonina, E.Y.; Maryutina, T.A. Extraction Methods for Removing Sulfur and Its Compounds from Crude Oil and Petroleum Products. Russ. J. Appl. Chem. 2021, 94, 411–436. [Google Scholar] [CrossRef]
- Shi, Q.; Wu, J. Review on Sulfur Compounds in Petroleum and Its Products: State-of-the-Art and Perspectives. Energy Fuels 2021, 35, 14445–14461. [Google Scholar] [CrossRef]
- Alzarqani, A.K.; Alduhaidahawi, F.J. The risks of increment of concentrations of sulfurcompounds in Iraqi crude oil, gasoline and kerosene. Int. J. Health Sci. 2002, 6, 283–293. [Google Scholar]
- Kondyli, A.; Schrader, W. Study of Crude Oil Fouling from Sulfur-Containing Compounds Using High-Resolution Mass Spectrometry. Energy Fuels 2021, 35, 13022–13029. [Google Scholar] [CrossRef]
- Kadhum, A.T.; Albayati, T.M. Desulfurization techniques process and future challenges for commercial of crude oil products: Review. AIP Conf. Proc. 2022, 2443, 030039. [Google Scholar] [CrossRef]
- Javadli, R.; de Klerk, A. Desulfurization of heavy oil. Appl. Petrochem. Res. 2012, 1, 3–19. [Google Scholar] [CrossRef]
- Saha, B.; Vedachalam, S.; Dalai, A.K. Review on recent advances in adsorptive desulfurization. Fuel Process. Technol. 2021, 214, 106685. [Google Scholar] [CrossRef]
- Li, J.; Kimb, H.R.; Leeb, H.-M.; Yu, H.C.; Jeon, E.; Lee, S.; Kimb, D.-H. Rapid biodegradation of polyphenylene sulfide plastic beads by Pseudomonas sp. Sci. Total Environ. 2020, 720, 137616. [Google Scholar] [CrossRef]
- Yan, D.-W.; Li, X.-D.; Chen, X.-L.; Cai, S.-J.; Yan, Y.-G.; Ren, H.-H. Breaking the hydrophilic limitation of polyphenylene sulfide through the introduction of bulky polar monomers. Polymer 2024, 291, 126598. [Google Scholar] [CrossRef]
- Chen, G.; Mohanty, A.K.; Misra, M. Progress in research and applications of Polyphenylene Sulfide blends and composites with carbons. Compos. Part B Eng. 2021, 209, 108553. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Xu, Y.; Wei, Y.; Meng, D.; Wang, B.; Zhang, Z. Monitoring thiophenols in both environmental water samples and bio-samples: A method based on a fluorescent probe with broad pH adaptation. Ecotoxicol. Environ. Saf. 2022, 233, 113340. [Google Scholar] [CrossRef]
- Zin, R.M.; Coquelet, C.; Valtz, A.; Mutalib, M.I.A.; Sabil, K.M.A. New Thermodynamic Correlation for Apparent Henry’s Law Constants, Infinite Dilution Activity Coefficient and Solubility of Mercaptans in Pure Water. J. Nat. Gas Eng. 2017, 2, 148–170. [Google Scholar]
- Hell, T.P.; Lindsay, R.C. Toxicological properties of thio- and alkylphenols causing flavor tainting in fish from the upper Wisconsin River. J. Environ. Sci. Health Part B 1989, 24, 349–360. [Google Scholar] [CrossRef]
- Serjeant, E.P.; Dempsey, B. Ionisation Constants of Organic Acids in Aqueous Solution. International Union of Pure and Applied Chemistry (IUPAC); IUPAC Chemical Data Series No. 23; Pergamon Press, Inc.: New York, NY, USA, 1979; p. 165. [Google Scholar]
- Yan, H.; Yue, Y.; Yin, C.; Zhang, Y.; Chao, J.; Huo, F. A water-soluble fluorescent probe for the detection of thiophenols in water samples and in cells imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 117905. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, Y.; Ma, X.; Chen, S.; Xu, M. A dicyanoisophorone-based highly sensitive and selective near-infrared fluorescent probe for sensing thiophenol in water samples and living cells. Environ. Pollut. 2020, 265, 114958. [Google Scholar] [CrossRef]
- Choi, M.G.; Cho, M.J.; Ryu, H.; Hong, J.; Chang, S.-K. Fluorescence signaling of thiophenol by hydrolysis of dinitrobenzenesulfonamide of 2-(2-aminophenyl)benzothiazole. Dye. Pigment. 2017, 143, 123–128. [Google Scholar] [CrossRef]
- Guo, S.-H.; Leng, T.-H.; Wang, K.; Wang, C.-Y.; Shen, Y.-J.; Zhu, W.-H. A colorimetric and turn-on NIR fluorescent probe based on xanthene system for sensitive detection of thiophenol and its application in bioimaging. Talanta 2018, 185, 359–364. [Google Scholar] [CrossRef]
- Khan, N.; Tabasi, Z.A.; Liu, J.; Zhang, B.H.; Zhao, Y. Recent Advances in Functional Materials for Wastewater Treatment: From Materials to Technological Innovations. J. Mar. Sci. Eng. 2022, 10, 534. [Google Scholar] [CrossRef]
- Ewis, D.; Ba-Abbad, M.; Benamor, A.; El-Naas, M. Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review. Appl. Clay Sci. 2022, 229, 106686. [Google Scholar] [CrossRef]
- Yu, F.; Bai, X.; Liang, M.; Ma, J. Recent progress on metal-organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase. Chem. Eng. J. 2021, 405, 126960. [Google Scholar] [CrossRef]
- Lazaratou, C.V.; Vayenas, D.V.; Papoulis, D. The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review. Appl. Clay Sci. 2020, 185, 105377. [Google Scholar] [CrossRef]
- Li, T.; Cai, G.; Wang, C.; Liang, K.; Ma, S.; Luo, W. Quantifying clay mineral sources in marine sediments by using end-member mixing analysis. Geo-Mar. Lett. 2021, 41, 6. [Google Scholar] [CrossRef]
- Chaerun, S.K.; Tazaki, K. How kaolinite plays an essential role in remediating oil-polluted seawater. Clay Miner. 2005, 40, 481–491. [Google Scholar] [CrossRef]
- Nagy, B.; Bradley, W.F. The structural scheme of sepiolite. Am. Mineral. 1955, 40, 885–892. [Google Scholar] [CrossRef]
- Available online: https://www.handbookofmineralogy.org/pdfs/sepiolite.pdf (accessed on 27 April 2024).
- Brauner, K.; Preisinger, A. Struktur und Entstehung des Sepioliths. Tschermaks Mineral. Petrogr. Mitteilungen 1956, 6, 120–140. [Google Scholar] [CrossRef]
- Brindley, G.W. X-ray and electron diffraction data for sepiolite. Am. Mineral. 1959, 44, 495–500. [Google Scholar]
- Post, J.E.; Bish, D.L.; Heaney, P.J. Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite. Am. Mineral. 2007, 92, 91–97. [Google Scholar] [CrossRef]
- Giustetto, R.; Levy, D.; Wahyudi, O.; Ricchiardi, G.; Vitillo, J.G. Crystal structure refinement of a sepiolite/indigo Maya Blue pigment using molecular mod-elling and synchrotron diffraction. Eur. J. Mineral. 2011, 23, 449–466. [Google Scholar] [CrossRef]
- Suarez, M.; Garcia-Romero, E. Variability of the surface properties of sepiolite. Appl. Clay Sci. 2012, 67–68, 72–82. [Google Scholar] [CrossRef]
- Nishimura, Y.; Hori, Y.; Takahashi, H. Structural change and adsorption character of sepiolite by heat treatment. J. Gay Sci. Soc. Jpn. 1972, 12, 102–108. [Google Scholar]
- Shuali, O.; Nir, S.; Rytwo, G. Adsorption of surfactants, dyes and cationic herbicideson sepiolite and palygorskite: Modifications, applications and modelling, Ch 15. In Developments in Palygorskite-Sepiolite Research, A New Look at These Materials; Galan, E., Singer, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Rytwo, G.; Nir, S.; Margulies, L.; Casal, B.; Merino, J.; Ruiz-Hitzky, E.; Serratosa, J.M. Adsorption of Monovalent Organic Cations on Sepiolite: Experimental Results and Model Calculations. Clays Clay Miner. 1998, 46, 340–348. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Wu, Z.; Gao, Y.; Li, X. Adsorption properties and mechanism of sepiolite modified by anionic and cationic surfactants on oxytetracycline from aqueous solutions. Sci. Total Environ. 2020, 708, 134409. [Google Scholar] [CrossRef]
- Largo, F.; Haounati, R.; Ouachtak, H.; Hafid, N.; Jada, A.; Addi, A.A. Design of organically modified sepiolite and its use as adsorbent for hazardous Malachite Green dye removal from water. Water Air Soil Pollut. 2023, 234, 183. [Google Scholar] [CrossRef]
- Gao, S.; Wang, D.; Huang, Z.; Su, C.; Chen, M.; Lin, X. Recyclable NiO/sepiolite as adsorbent to remove organic dye and its regeneration. Sci. Rep. 2022, 12, 2895. [Google Scholar] [CrossRef]
- Yu, J.; He, W.; Liu, B. Adsorption of Acid Orange II with Two Step Modified Sepiolite: Optimization, Adsorption Performance, Kinetics, Thermodynamics and Regeneration. Int. J. Environ. Res. Public Health 2020, 17, 1732. [Google Scholar] [CrossRef]
- De Wild, P.J. Method for Desulphurisation of Natural Gas. Patent US20060058565A1, 16 March 2006. [Google Scholar]
- Zadaka-Amir, D.; Bleiman, N.; Mishael, Y.G. Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater. 2013, 169, 153–159. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, L.; Hursthouse, A.; Song, N.; Ren, B. Sepiolite-Based Adsorbents for the Removal of Potentially Toxic Elements from Water: A Strategic Review for the Case of Environmental Contamination in Hunan, China. Int. J. Environ. Res. Public Health 2018, 15, 1653. [Google Scholar] [CrossRef]
- Guney, Y.; Cetin, B.; Aydilek, A.H.; Tanyu, B.F.; Koparal, S. Utilization of sepiolite materials as a bottom liner material in solid waste landfills. Waste Manag. 2014, 34, 112–124. [Google Scholar] [CrossRef]
- Guney, Y.; Koparal, S.; Aydilek, A.H. Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills. J. Geotech. Geoenviron. Eng. 2008, 134, 1166–1180. [Google Scholar] [CrossRef]
- Khan, S.; Ajmal, S.; Hussain, T.; Ur Rahman, M. Clay-based materials for enhanced water treatment: Adsorption mechanisms, challenges, and future directions. J. Umm Al-Qura Univ. Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Bandura, L.; Woszuk, A.; Kołodyńska, D.; Franus, W. Application of Mineral Sorbents for Removal of Petroleum Substances: A Review. Minerals 2017, 7, 37. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Z.-W.; Zhao, D.-X.; Yang, Z.-Z. Atomic charges in molecules defined by molecular real space partition into atomic subspace. Phys. Chem. Chem. Phys. 2023, 25, 9020–9030. [Google Scholar] [CrossRef]
- Foresman, J.B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian Inc.: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Cioslowski, J. A new population analysis based on atomic polar tensors. J. Am. Chem. Soc. 1989, 111, 8333–8336. [Google Scholar] [CrossRef]
- Milani, A.; Castiglioni, C. Atomic charges from atomic polar tensors: A comparison of methods. J. Mol. Struct. THEOCHEM 2010, 955, 158–164. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Yebra-Rodriguez, A.; Martin-Ramos, J.; Del Rey, F.; Viseras, C.; Lopez-Galindo, A. Effect of acid treatment on the structure of sepiolite. Clay Miner. 2003, 38, 353–360. [Google Scholar] [CrossRef]
- Pouly, F.; Touraud, E.; Buisson, J.-F.; Thomas, O. An alternative method for the measurement of mineral sulphide in wastewater. Talanta 1999, 50, 737–742. [Google Scholar] [CrossRef]
- Roig, B.; Chalmin, E.; Touraud, E.; Thomas, O. Spectroscopic study of dissolved organic sulfur (DOS): A case study of mercaptans. Talanta 2002, 56, 585–590. [Google Scholar] [CrossRef]
- Borisovera, M.; Davisb, J.A. Chapter 2—Adsorption of Inorganic and Organic Solutes by Clay Minerals. In Natural and Engineered Clay Barriers; Tournassat, C., Steefel, C.I., Bourg, I.C., Bergaya, F., Eds.; Book Series: Developments in Clay, Science; Elsevier: Amsterdam, The Netherlands, 2015; Volume 6, pp. 33–70. [Google Scholar]
- Jan, Y.-L.; Tsai, S.-C.; Wei, Y.-Y.; Tung, N.-C.; Wei, C.-C.; Hsu, C.-N. Coupled mechanics, hydraulics and sorption properties of mixtures to evaluate buffer/backfill materials. Phys. Chem. Earth 2007, 32, 789–794. [Google Scholar] [CrossRef]
- Vinsova, H.; Konirova, R.; Koudelkova, M.; Jedinakova-Krizova, V. Sorption of technetium and rhenium on natural sorbents under aerobic conditions. J. Radioanal. Nucl. Chem. 2004, 261, 407–413. [Google Scholar] [CrossRef]
- Goldberg, S. Competitive adsorption of arsenate and arsenite on oxides and clays. Soil Sci. Soc. Am. J. 2002, 66, 413–421. [Google Scholar] [CrossRef]
- Alkan, M.; Demirbaş, Ö.; Dogan, M. Electrokinetic properties of sepiolite suspensions in different electrolyte media. J. Colloid Interface Sci. 2005, 281, 240–248. [Google Scholar] [CrossRef]
- Alkan, M.; Demirbaş, Ö.; Çelikçapa, S.; Doğan, M. Sorption of acid red 57 from aqueous solution onto sepiolite. J. Hazard. Mater. 2004, 116, 135–145. [Google Scholar] [CrossRef]
- Majdan, M.; Sabah, E.; Bujacka, M. Właściwości adsorpcyjne sepiolitu (Adsorption properties of sepiolie). Przemysł Chem. 2008, 87, 1022–1028. [Google Scholar]
- Alkan, M.; Demirbaş, Ö.; Dogan, M. Removal of acid yellow 49 from aqueous solution by adsorption. Fresenius Environ. Bull. 2004, 13, 1112–1121. [Google Scholar]
- Lambert, J.-F. Organic pollutant adsorption on clay minerals, Developments in Clay Science. Surf. Interface Chem. Clay Miner. 2018, 9, 195–253. [Google Scholar]
- Supak, J.R.; Swoboda, A.R.; Dixon, J.B. Adsorption of Aldicarb by Clays and Soil Organo-Clay Complexes. Soil Sci. Soc. Am. J. 1977, 42, 244–248. [Google Scholar] [CrossRef]
- Alkan, M.; Tekin, G.; Namli, H. FTIR and zeta potential measurements of sepiolite treated with some organosilanes. Microporous Mesoporous Mater. 2005, 84, 75–83. [Google Scholar] [CrossRef]
- Shahbeig, H.; Bagheri, N.; Ghorbanian, S.A.; Hallajisani, A.; Poorkarimi, S. A new adsorption isotherm model of aqueous solutions on granular activated carbon. World J. Model. Simul. 2013, 9, 243–254. [Google Scholar]
- Redlich, O.; Peterson, D.L. A useful adsorption isotherm. J. Phys. Chem. 1959, 63, 1024–1026. [Google Scholar] [CrossRef]
- Brdar, M.; Sciban, M.; Takaci, A.; Dosenovic, T. Comparison of two and three parameters adsorption isotherm for Cr(VI) onto Kraft lignin. Chem. Eng. J. 2012, 183, 108–111. [Google Scholar] [CrossRef]
- Wałczyk, A.; Michalik, A.; Napruszewska, B.D.; Joanna, K.C.; Karcz, R.; Duraczyńska, D.; Socha, R.; Olejniczak, Z.; Gaweł, A.; Agnieszka, K.; et al. New insight into the phase transformation of sepiolite upon alkali activation: Impact on composition, structure, texture, and catalytic/sorptive properties. Appl. Clay Sci. 2020, 195, 105740. [Google Scholar] [CrossRef]
- Madejová, J.; Gates, W.P.; Petit, S. Chapter 5—IR Spectra of Clay Minerals. In Infrared and Raman Spectroscopies of Clay Minerals; Gates, W.P., Kloprogge, J.T., Madejová, J., Bergaya, F., Eds.; Book Series: Developments in Clay, Science; Elsevier: Amsterdam, The Netherlands, 2017; Volume 8, pp. 107–149. [Google Scholar]
- Hine, J.; Mookerjee, P.K. The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions. J. Org. Chem. 1975, 40, 292–298. [Google Scholar] [CrossRef]
- Giresse, C.; Tetsassi, F.; Liégeois, V. Analyzing the Vibrational Signatures of Thiophenol Adsorbed on Small Gold Clusters by DFT Calculations. ChemPhysChem 2013, 14, 1633–1645. [Google Scholar]
Atom Number | APT Atomic Charges | ||
---|---|---|---|
Thiophenol | Thiophenolate | Sodium Thiophenolate | |
C1 | 0.4184 | 0.5967 | 0.5844 |
C2 | −0.2027 | −0.2761 | −0.2684 |
C3 | 0.0394 | 0.1171 | 0.1087 |
C4 | −0.1388 | −0.2831 | −0.2598 |
C5 | 0.0456 | 0.1165 | 0.1032 |
C6 | −0.1906 | −0.2753 | −0.2654 |
H(C2) | 0.0523 | 0.0335 | 0.0376 |
H(C3) | 0.0381 | 0.0119 | 0.0154 |
H(C4) | 0.0451 | 0.02616 | 0.0287 |
H(C5) | 0.0395 | 0.0119 | 0.0149 |
H(C6) | 0.0596 | 0.0335 | 0.0265 |
S | −0.2560 | −1.1129 | −1.1188 |
H(S)/Na | 0.0501/― | ―/― | ―/0.9930 |
Solvent | Isotherm Model | Nonlinear Equation | Constants | Quality of Fitting | ||
---|---|---|---|---|---|---|
KL/KF | QL/(1/n) | chi2 | RMSE | |||
Distilled water | Langmuir | Plot versus | 0.741 | 0.512 | 0.065 | 0.032 |
0.01 M NaCl | 2.855 | 0.343 | 0.077 | 0.040 | ||
0.1 M NaCl | 2.802 | 0.326 | 0.038 | 0.029 | ||
Distilled water | Freundlich | Plot versus | 0.242 | 0.316 | 0.021 | 0.022 |
0.01 M NaCl | 0.248 | 0.192 | 0.069 | 0.038 | ||
0.1 M NaCl | 0.243 | 0.153 | 0.020 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chruszcz-Lipska, K. Removal of Thiophenol from Water Using Sepiolite. Minerals 2024, 14, 743. https://doi.org/10.3390/min14080743
Chruszcz-Lipska K. Removal of Thiophenol from Water Using Sepiolite. Minerals. 2024; 14(8):743. https://doi.org/10.3390/min14080743
Chicago/Turabian StyleChruszcz-Lipska, Katarzyna. 2024. "Removal of Thiophenol from Water Using Sepiolite" Minerals 14, no. 8: 743. https://doi.org/10.3390/min14080743