Copper, Zinc, and Lead Recovery from Jarosite Pb–Ag Tailings Waste (Part 2)
Abstract
:1. Introduction
2. Materials and Methods
Analytical Determinations
3. Results and Discussion
3.1. Chemical and Mineralogical Analysis of Jarosite
3.2. Roasting and Leaching of Jarosite Pb–Ag Deposits
3.3. Treatment of Sulfate Solution
3.4. Cementation of Cu from the Solution after the Precipitation of Fe
3.4.1. Granulometric Analysis of Cement Copper
3.4.2. SEM-EDS Analysis of Cement Copper
3.5. Precipitation of ZnCO3 from the Solution after the Cementation of Cu
3.5.1. Granulometric Analysis of ZnCO3
3.5.2. SEM-EDS Analysis of ZnCO3
3.6. Characterization of the Solution after the Precipitation of ZnCO3
3.7. Chloride Leaching of the Solid Residue with NaCl
3.7.1. Granulometric Analysis of PbCO3
3.7.2. SEM-EDS Analysis of PbCO3
3.8. Processing of PbCO3
Electrolytic Refining of the Pb Anode
3.9. TCLP and LP Test of Solid Residue after Pb and Ag Leaching
3.10. Treatment of the Solution After PbCO3 Precipitation
3.11. Proposal for a Technological Scheme for the Treatment of Jarosite Pb–Ag Tailings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koppelaar, R.H.E.M.; Koppelaar, H. The Ore Grade and Depth Influence on Copper Energy Inputs. Biophys. Econ. Resour. Qual. 2016, 1, 11. [Google Scholar] [CrossRef]
- González-Ibarra, A.A.; Nava-Alonso, F.; Fuentes-Aceituno, J.C.; Uribe-Salas, A. Hydrothermal decomposition of industrial jarosite in alkaline media: The rate determining step of the process kinetics. J. Min. Metall. Sect. B-Metall. 2016, 52, 135–142. [Google Scholar] [CrossRef]
- Konieczny, A.; Pawlos, W.; Malgorzata, K. Evaluation of organic carbon separation from copper ore by pre-flotation. Physicochem. Probl. Miner. Process. 2013, 49, 189–201. [Google Scholar]
- Nayak, A.; Jena, M.S. Mineralogical characterization for selection of possible beneficiation route for low grade lead-zinc ore of Rampura Agucha, India. Trans. Indian Inst. Met. 2020, 73, 775–784. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, W.; Sun, G.; Xiao, S.; Lin, H. Oxygen-functionalized defect engineering of carbon additives enable lead-carbon batteries with high cycling stability. J. Energy Storage 2021, 43, 103205. [Google Scholar] [CrossRef]
- Erdem, M.; Yurten, M. Kinetics of Pb and Zn leaching from zinc plant residue by sodium hydroxide. J. Min. Metall. Sect. B Metall. 2015, 51, 89–95. [Google Scholar] [CrossRef]
- Turan, M.D.; Altundogan, H.S.; Tümen, F. Recovery of zinc and lead from zinc plant residue. Hydrometallurgy 2004, 75, 169–176. [Google Scholar] [CrossRef]
- Nayak, A.; Jena, M.S.; Mandre, N.R. Beneficiation of Lead-Zinc ores—A review. Min. Proc. Ext. Met. Rev. 2022, 43, 564–583. [Google Scholar] [CrossRef]
- Rahman, M.L.; Sarjadi, M.S.; Guerin, S.; Sarkar, S.M. Poly(amidoxime) Resins for Efficient and Eco-friendly Metal Extraction. ACS Appl. Polym. Mater. 2022, 4, 2216–2232. [Google Scholar] [CrossRef]
- Sunder, G.S.S.; Rohanifar, A.; Alipourasiabi, N.; Lawrence, J.G.; Kirchhoff, J.R. Synthesis and Characterization of Poly(pyrrole-1-carboxylic acid) for Preconcentration and Determination of Rare Earth Elements and Heavy Metals in Water Matrices. ACS Appl. Mater. Interfaces 2021, 13, 34782–34792. [Google Scholar] [CrossRef]
- Chu, F.X.; Liu, C.; Wu, H.; Liu, X. Advances in Chelating Resins for Adsorption of Heavy Metal Ions. Ind. Eng. Chem. Res. 2022, 61, 11309–11328. [Google Scholar] [CrossRef]
- Chen, T.; Li, H.; Wang, H.; Zou, X.; Liu, H.; Chen, D.; Zhou, Y. Removal of Pb(II) from Aqueous Solutions by Periclase/Calcite Nanocomposites. Water. Air Soil Pollut. 2019, 230, 299–314. [Google Scholar] [CrossRef]
- Lalmi, A.; Bouhidel, K.-E.; Sahraoui, B.; Anfif, C.E.H. Removal of lead from polluted waters using ion exchange resin with Ca(NO3)2 for elution. Hydrometallurgy 2018, 178, 287–293. [Google Scholar] [CrossRef]
- Wang, N.; Bora, M.; Song, H.; Tao, K.; Wu, J.; Hu, L.; Liao, J.; Lin, S.; Triantafyllou, M.S.; Li, X. Hyaluronic Acid Methacrylate Hydrogel-Modified Electrochemical Device for Adsorptive Removal of Lead(II). Biosensors 2022, 12, 714. [Google Scholar] [CrossRef]
- Ren, H.; Li, B.; Neckenig, M.; Wu, D.; Li, Y.; Ma, Y.; Li, X.; Zhang, N. Efficient lead ion removal from water by a novel chitosan gel-based sorbent modified with glutamic acid ionic liquid. Carbohydr. Polym. 2019, 207, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.K.; Das, S.C. Recovery of lead from zinc plant waste. Trans. Indian Inst. Met. 1986, 39, 604–608. [Google Scholar]
- Vinals, J.; Nunez, C.; Carassco, J. Leaching of gold, silver and lead from plumbojarosite-containing hematite tailings in HCl-CaCl2 media. Hydrometallurgy 1991, 26, 179–199. [Google Scholar] [CrossRef]
- Kunda, W.; Veltman, H. Decomposition of jarosite. Metall. Trans. 1979, 10, 439–446. [Google Scholar] [CrossRef]
- Božić, D.; Conić, V.; Dragulović, S.; Avramović, L.; Jonović, R.; Bugarin, M. Laboratorijska istraživanja luženja Cu, Zn i In iz otpadnog taloga jarozita. Ecologica 2021, 28, 481–486. [Google Scholar] [CrossRef]
- Abidli, A.; Huang, Y.; Rejeb, Z.B.; Zaoui, A.; Park, C.B. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere 2022, 292, 133102. [Google Scholar]
- Xolo, L.; Boyce, P.M.; Makelane, H.; Faleni, N.; Tshentu, Z.R. Status of Recovery of Strategic Metals from Spent Secondary Products. Minerals 2021, 11, 673. [Google Scholar] [CrossRef]
- Dutrizac, J.E.; Dinardo, O. The co-precipitation of copper and zinc with lead jarosite. Hydrometallurgy 1983, 11, 61–78. [Google Scholar] [CrossRef]
- Cruells, M.; Roca, A.; Patiño, F.; Salinas, E.; Rivera, I. Cyanidation kinetics of argentian jarosite in alkaline media. Hydrometallurgy 2000, 55, 153–163. [Google Scholar] [CrossRef]
- Patiño, F.; Reyes, I.A.; Flores, M.U.; Pandiyan, T.; Roca, A.; Reyes, M.; Hernández, J. Kinetic modeling and experimental design of the sodium arsenojarosite decomposition in alkaline media: Implications. Hydrometallurgy 2013, 137, 115–125. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A. Uptake and release of arsenic and antimony in alunite-jarosite and beudantite group minerals. Am. Min. 2012, 334, 9–24. [Google Scholar] [CrossRef]
- Flores, V.H.; Patiño, F.; Roca, A.; Flores, M.U.; Reyes, I.A.; Reyes, M.; Islas, H. Alkaline Decomposition of Solid Solution of Ammonium-Sodium Jarosite with Arsenic. Metals 2022, 12, 584. [Google Scholar] [CrossRef]
- Frost, R.L.; Weier, M.L.; Martens, W. Thermal decomposition of jarosites of potassium, sodium and lead. J. Therm. Anal. Calorim. 2005, 82, 115–118. [Google Scholar] [CrossRef]
- Conić, V.; Božić, D.; Dragulović, S.; Avramović, L.J.; Jonović, R.; Bugarin, M. Research on acid leaching of Cu, Zn and in from Jarosite waste. In Proceedings of the XIV International Mineral Processing and Recycling Conference, Belgrade, Serbia, 12–14 May 2021. [Google Scholar]
- Janošević, M.; Conić, V.; Božić, D.; Avramović, L.; Jovanović, I.; Kamberović, Ž.; Marjanović, S. Indium Recovery from Jarosite Pb–Ag TailingsWaste (Part 1). Minerals 2023, 13, 540. [Google Scholar] [CrossRef]
- Conić, V.T.; Pešovski, B.D.; Cvetkovski, V.B.; Stanojević-Šimšić, Z.S.; Dragulović, S.S.; Simonović, D.B.; Dimitrijević, S.B. Lead sulphate leaching by sodium chloride solution. Chem. Ind. 2013, 67, 485–494. [Google Scholar] [CrossRef]
Element | Cu % | Zn % | Fe % | Ag % | Pb % | In % | S % | N2 % | H2 % | C % |
---|---|---|---|---|---|---|---|---|---|---|
Content | 0.7 | 5.39 | 30.61 | 0.034 | 5.68 | 0.0343 | 9.61 | 1.315 | 1.670 | 0.126 |
Roasting Time 4 h | Leaching with H2O (Solid–Liquid = 1:5), t = 1 h and pH after Leaching | Recovery | |||||
---|---|---|---|---|---|---|---|
Sample Mass (g) | Roasting Temperature (°C) | pH | Cu % | Zn % | Fe % | ||
1. | 100 | 530 | 2.25 | 91.07 | 91.97 | 9.60 |
Spectrum 61 | |||
---|---|---|---|
Element | Line Type | Weight % | Weight % Sigma |
Cu | K series | 100.00 | 0.00 |
Total | 100.00 |
Spectrum 3 | |||
---|---|---|---|
Element | Line Type | Weight % | Weight % Sigma |
C | K series | 15.73 | 0.67 |
O | K series | 29.15 | 0.28 |
S | K series | 0.07 | 0.03 |
Cl | K series | 0.02 | 0.02 |
Ca | K series | 2.92 | 0.04 |
Mn | K series | 5.37 | 0.07 |
Fe | K series | 0.05 | 0.03 |
Cu | K series | 0.51 | 0.05 |
Zn | K series | 44.66 | 0.39 |
Cd | L series | 1.52 | 0.06 |
Total | 100.00 |
Parameter | Unit of Measure | Test Result | Emission Limit Value |
---|---|---|---|
pH | 8.0 | 6.5–9.5 | |
Chemical consumption of oxygen | mg/L | 7.34 | 1000 |
Biochemical consumption of oxygen | mg/L | 24 | 500 |
Total inorganic nitrogen N (NH3-N, NO3-N, NO2-N) | mg/L | 1.15 | 120 |
Total nitrogen, N | mg/L | 1.472 | 150 |
Ammonia, NH4-N | mg/L | 0.37 | 100 |
Precipitable substances after 10 min | mg/L | <0.2 | 150 |
Phosphorus, P | mg/L | <0.03 | 20 |
Extract with organic solvents | mg/L | <0.05 | 50 |
Mineral oils | mg/L | <0.05 | 30 |
Total salts | mg/L | 142 | 5000 |
Phenols | mg/L | <0.1 | 50 |
Sulfates, SO42− | mg/L | 83.7 | 400 |
Chlorides, Cl− | mg/L | 9.47 | 30 |
Fluorides, F− | mg/L | 1.30 | 50 |
Sulfides, S2− | mg/L | <0.005 | 5 |
Arsenic, As | mg/L | <0.02 | 0.2 |
Copper, Cu | mg/L | 0.009 | 2 |
Barium, Ba | mg/L | <0.009 | 0.5 |
Zinc, Zn | mg/L | 0.196 | 2 |
Iron, Fe | mg/L | <0.007 | 200 |
Chrome, Cr | mg/L | <0.005 | 1 |
Chrome, Cr6+ | mg/L | <0.005 | 0.5 |
Cadmium, Sd | mg/L | 0.045 | 0.1 |
Tin, Sn | mg/L | <0.05 | 2 |
Cobalt, Co | mg/L | 0.062 | 1 |
Manganese, Mn | mg/L | 0.006 | 5 |
Molybdenum, Mo | mg/L | <0.007 | 0.5 |
Nickel, Ni | mg/L | 0.037 | 1 |
Lead, Pb | mg/L | <0.02 | 0.2 |
Silver, Ag | mg/L | <0.005 | 0.2 |
Mercury, Hg | mg/L | <0.0005 | 0.05 |
Metal Recovery | Pb % | Ag % | Fe % | Cu % | Zn % |
96.05 | 87.50 | 0.02 | 6.22 | 7.51 |
Spectrum 37 | |||
---|---|---|---|
Element | Line Type | Weight % | Weight % Sigma |
C | K series | 21.32 | 0.39 |
O | K series | 4.45 | 0.12 |
Al | K series | 0.12 | 0.02 |
Cl | K series | 12.07 | 0.09 |
Cu | K series | 8.16 | 0.09 |
Zn | K series | 1.99 | 0.07 |
Pb | M series | 51.89 | 0.29 |
Total | 100.00 |
Parameter | Unit | Found Value | Reference Value for Inert Waste | Reference Value for Non-Hazardous Waste | Reference Value for Hazardous Waste |
---|---|---|---|---|---|
Antimony, Sb | mg/kg × dm | <0.11 | 0.06 | 0.7 | 5 |
Arsenic, As | mg/kg × dm | <0.2 | 0.5 | 2 | 25 |
Copper, Cu | mg/kg × dm | 0.07 | 2 | 50 | 100 |
Barium, Ba | mg/kg × dm | 0.13 | 20 | 100 | 300 |
Cadmium, Cd | mg/kg × dm | <0.08 | 0.04 | 1 | 5 |
Molybdenum, Mo | mg/kg × dm | <0.15 | 0.5 | 10 | 30 |
Nickel, Ni | mg/kg × dm | <0.07 | 0.4 | 10 | 40 |
Lead, Pb | mg/kg × dm | 0.20 | 0.5 | 10 | 50 |
Selenium, Se | mg/kg × dm | <0.33 | 0.1 | 0.5 | 7 |
Chrome, Cr | mg/kg × dm | <0.05 | 0.5 | 10 | 70 |
Zinc, Zn | mg/kg × dm | 0.6 | 4 | 50 | 200 |
Mercury, Hg | mg/kg × dm | <0.005 | 0.01 | 0.2 | 2 |
SO42− | mg/kg × dm | 900 | 1000 | 20,000 | 50,000 |
Cl− | mg/kg × dm | 120 | 800 | 15,000 | 25,000 |
F− | mg/kg × dm | <8 | 10 | 150 | 500 |
Parameter | Unit | Found Value | Reference Value for Non-Hazardous Waste |
---|---|---|---|
Antimony, Sb | mg/L | <0.011 | 15 |
Barium, Ba | mg/L | 0.09 | 100 |
Chrome, Cr | mg/L | <0.005 | 5 |
Molybdenum, Mo | mg/L | <0.007 | 350 |
Nickel, Ni | mg/L | <0.036 | 20 |
Selenium, Se | mg/L | <0.033 | 1 |
Zinc, Zn | mg/L | 1.72 | 250 |
Copper, Cu | mg/L | <0.005 | 25 |
Arsenic, As | mg/L | <0.020 | 5 |
Cadmium, Cd | mg/L | 0.72 | 1 |
Lead, Pb | mg/L | <0.020 | 5 |
Mercury, Hg | mg/L | <0.0005 | 0.2 |
Vanadium, V | mg/L | <0.008 | 24 |
Silver, Ag | mg/L | <0.005 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conić, V.; Janošević, M.; Božić, D.S.; Avramović, L.; Jovanović, I.; Bugarin, D.M.; Đorđievski, S. Copper, Zinc, and Lead Recovery from Jarosite Pb–Ag Tailings Waste (Part 2). Minerals 2024, 14, 791. https://doi.org/10.3390/min14080791
Conić V, Janošević M, Božić DS, Avramović L, Jovanović I, Bugarin DM, Đorđievski S. Copper, Zinc, and Lead Recovery from Jarosite Pb–Ag Tailings Waste (Part 2). Minerals. 2024; 14(8):791. https://doi.org/10.3390/min14080791
Chicago/Turabian StyleConić, Vesna, Miloš Janošević, Dragana S. Božić, Ljiljana Avramović, Ivana Jovanović, Dejan M. Bugarin, and Stefan Đorđievski. 2024. "Copper, Zinc, and Lead Recovery from Jarosite Pb–Ag Tailings Waste (Part 2)" Minerals 14, no. 8: 791. https://doi.org/10.3390/min14080791
APA StyleConić, V., Janošević, M., Božić, D. S., Avramović, L., Jovanović, I., Bugarin, D. M., & Đorđievski, S. (2024). Copper, Zinc, and Lead Recovery from Jarosite Pb–Ag Tailings Waste (Part 2). Minerals, 14(8), 791. https://doi.org/10.3390/min14080791