Updating Geological Information about the Metallogenesis of the Iberian Pyrite Belt
Abstract
:1. Introduction
2. Stratigraghy
3. Magmatism
4. Deformation and Metamorphism
5. Geodynamic Setting
6. IPB Metallogeny
6.1. Massive Sulfides
6.2. Relation with the Hosting Rocks
6.3. Mineralogy and Zonation
6.4. Hydrothermal Alteration
- On a regional scale, most rocks are affected by low-temperature hydrothermal alterations, with the most evident features being the widespread albitization of feldspars and the partial destruction of ferromagnesian minerals. This type of alteration has been termed “hydrothermal metamorphism” [93] or “regional alteration” [4,153]. The extensive volume of affected rocks and the homogeneity of the processes involved indicate the necessity for an immense amount of fluids to generalize the process. Isotopic data (δD; δ18O) [93,154] suggest that the primary chemical agent was seawater with very high fluid/rock ratios. In mafic rocks, regional alteration involves the albitization of plagioclases and the hydration of ferromagnesian minerals, forming amphibole (actinolite) and chlorite. Calcium derived from plagioclase alteration is fixed in the form of epidote, pumpellyite, and carbonates. In felsic rocks, the most evident feature of regional alteration is the widespread albitization of feldspars, typically accompanied by sericitization, slight chloritization, and in some cases, adularization [42]. Rocks of the underlying sequence (PQ Group) are also affected by regional alteration, with the most evident effects being enrichment in K and significant loss of Na+Ca [155]. These processes involve intense water–rock interactions, with seawater playing a significant role as basin fluids, potentially contributing to the pre-concentration of metals involved in the genesis of the IPB massive sulfides;
- On a local scale, intense hydrothermal alteration halos develop in the footwall of massive sulfide orebodies. The most characteristic features of these halos are the widespread chloritization and/or sericitization of the rocks [4,42,48,142,156,157,158,159,160,161]. Additionally, silicification and carbonatization of the rocks are common, often occurring in association with these processes [157,162]. Sericite alteration is typically associated with the initial stages of the hydrothermal system, located in the outer zones and related to relatively low-temperature fluids. The transition from sericite to regional alteration is gradual, often making it difficult to delineate the boundary between the two types. Geochemically, this implies a generalized loss of Na+Ca and a relative gain of K+Al [161]. Chlorite alteration is associated with the core of hydrothermal systems and related to later and higher-temperature processes [41,42,163]. The chlorite associated with the alteration zone is classified within the range of clinochlore, with its composition in terms of Fe/Fe+Mg and Si/Al varying among deposits and from the periphery to the core of the alteration halos [41,160,161,164]. The dioctahedral mica present in the inner alteration halo has a muscovite composition and anomalously high Ba contents [41,157]. Carbonate alteration is evidenced by the presence of Fe-carbonates (e.g., siderite, Fe–dolomite–ankerite), which appear as very thin veins or are pervasively disseminated in the altered rocks. When disseminated, the dominant textural feature is nodules nucleating on chlorite or pyrite. Compositionally, they are characterized by Fe/Fe+Mg ratios between 0.7 and 0.9, with increasing Fe content toward the core of the hydrothermal system. Isotopic ratios (δ18O, δ13C) suggest a hydrothermal fluid derived from modified seawater with a minor contribution of C from the mineralization of organic matter contained in the black shales hosting the studied ore deposits [157,165]. This type of carbonate alteration has been explained in relation to partial boiling processes of the hydrothermal fluids due to decompression during ascent to the seafloor [165]. Silica alteration has been associated with two types of processes. The first involves low-temperature fluids, which leach silica to be deposited in the upper parts of hydrothermal systems, creating siliceous levels through the replacement of shales or volcanic rocks, or by direct deposition on the seafloor [42,74,133,134]. The second involves high-temperature processes associated with the core of hydrothermal systems [41,132]. In some cases, the silicified core of the hydrothermal system is enriched in gold and silver, as occurs in the siliceous mineralization at La Zarza [132,166]. Geochemically, the intensity of the alteration is indicated by the enrichment in Fe+Mg and the loss of Na+K toward the interior of the alteration halo [160]. Some authors have proposed using the Fe/(Fe+Mg) ratio in chlorite and the (Ba+K)/Na ratio in muscovite (sericite) as criteria for evaluating the intensity of the alteration and as vectors for guiding mineral exploration [1,161]. Mineralogically, the neoformation and recrystallization of zircon strongly enriched in rare-earth elements (REE) are characteristic of the inner zone of the alteration halo [167,168].
6.5. Supergene Alteration
6.6. Mineralogenesis
6.7. Classification
6.8. Age of Sulfide Deposits
6.9. Nature and Origin of Hydrothermal Fluids
6.9.1. Sulfur Source
6.9.2. Metal Source
6.9.3. Hydrothermal Systems
7. Genetic Model
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leistel, J.M.; Marcoux, E.; Thieblemont, D.; Quesada, C.; Sánchez, A.; Almodóvar, G.R.; Pascual, E.; Sáez, R. The volcanic hosted massive sulphide deposits of the Iberian Pyrite Belt. Review and preface to the special issue. Miner. Depos. 1998, 33, 2–30. [Google Scholar] [CrossRef]
- Pinedo Vara, I. Piritas de Huelva; Summa: Madrid, Spain, 1963; p. 1003. [Google Scholar]
- IGME. Síntesis Geológica de la Faja Pirítica del SO de España; IGME: Madrid, Spain, 1982; p. 106. [Google Scholar]
- Sáez, R.; Almodóvar, G.R.; Pascual, E. Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt. Ore Geol. Rev. 1996, 11, 429–451. [Google Scholar] [CrossRef]
- Sáez, R.; Almodóvar, G.R.; Barriga, F.J.A.S. Mineral exploration in the Iberian Pyrite Belt. SGA News 1997, 3, 7–11. [Google Scholar]
- Tornos, F.; Barriga, F.; Marcoux, E.; Pascual, E.; Pons, J.M.; Relvas, J.; Velasco, F. The Iberian Pyrite Belt. In Data-Base on Global VMS Districts; Large, R.R., Blundell, D.J., Eds.; CODES-GEODE: Sydney, Australia, 2000; pp. 19–52. [Google Scholar]
- Bateman, A.M. Ore deposits of the Rio Tinto (Huelva) district, Spain. Econ. Geol. 1927, 22, 569–614. [Google Scholar] [CrossRef]
- Franklin, J.M.; Gibson, H.L.; Jonasson, I.R.; Galley, A.G. Volcanogenic massive sulfide deposits. In Encyclopedia of Marine Geosciences; 100th Anniversary Volume; Springer: Dordrecht, The Netherlands, 2005; pp. 523–560. [Google Scholar]
- Rona, P.A.; Scott, S.D. Preface to Special Issue on Sea-Floor Hydrothermal Mineralizations: New Perspectives. Econ. Geol. 1993, 88, 1935–1976. [Google Scholar] [CrossRef]
- Lydon, J.W. Ore deposit models #14, volcanogenic massive sulphide deposits Part 2: Genetic models. Geosci. Canada 1988, 15, 43–65. [Google Scholar]
- Apps, J.A. An Account of the Geology, Petrology and Mineralogy of the San Miguel Concessions and Orebodies in the Province of Huelva, Spain. Ph.D. Thesis, Imperial College, London, UK, 1961; p. 162. [Google Scholar]
- Williams, D. Further reflections on the origin of the porphyries and ores of Riotinto, Spain. Trans. Inst. Min. Metall. 1962, 71, 265–266. [Google Scholar]
- Rambaud, F. El sinclinal carbonífero de Rio Tinto (Huelva) y sus mineralizaciones asociadas. Mem. Inst. Geol. Min. España 1969, 71, 229. [Google Scholar]
- Routhier, P.; Aye, F.; Lécolle, M.; Molière, E.P.; Picot, P.; Roger, G. La Ceinture Sud-Ibérique à amas sulfurés dans sa partie espagnole médiane. Bur. Rech. Géol. Mini. Mem. 1978, 94, 265. [Google Scholar]
- Oliveira, J.T.; Quesada, C.; Pereira, Z.; Matos, J.X.; Solá, R.A.; Rosa, D.; Albardeiro, L.; Díez-Montes, A.; Morais, I.; Inverno, C.; et al. South Portuguese Terrane: A continental affinity exotic unit. In The Geology of Iberia: A Geodynamic Approach; Quesada, C., Oliveira, J.T., Eds.; Volume 2: The Variscan Cycle; Springer: Berlin/Heidelberg, Germany, 2019; p. 173. [Google Scholar]
- Schermerhörn, L.J.G. An outline stratigraphy of the Iberian Pyrite Belt. Bol. Geol. Min. 1971, 82, 239–268. [Google Scholar]
- Delgado, J.F.N. Terrenos paleozoicos de Portugal. Sobre a existencia do terreno siluriano no Baixo Alentejo. Mem. Acad. Ciênc. Lisboa 1876, 1, 56. [Google Scholar]
- Gonzalo Tarín, J. Descripción física, geológica y minera de la provincia de Huelva. In Memoria de la Comisión del Mapa Geológico de España; Tercera Parte de la Memoria; Descripción Minera (Classic Reprint): Madrid, Spain, 1878; Volume 2, p. 660. [Google Scholar]
- Finlayson, A.M. The pyritic deposits of Huelva, Spain. Econ. Geol. 1910, 5, 356–372. [Google Scholar]
- McGillavry, H.J. The Upper Paleozoic of the Baixo Alemtejo, Southern Portugal. In Proceedings of the 4th Congress on Carboniferous Stratigraphy and Geology, Herlen, The Netherlands, 1958; Volume 2, pp. 395–408. [Google Scholar]
- Strauss, G.K. Zur Geologia der Kieslagerstätte Lousal, Portugal. Master’s Thesis, University of Munich, Munich, Germany, 1961; p. 87. [Google Scholar]
- Strauss, G.K. Sobre la geología de la provincia piritífera del suroeste de la Península Ibérica y de sus yacimientos, en especial sobre la mina de pirita de Lousal (Portugal). Mem. Inst. Geol. Min. España 1970, 77, 266. [Google Scholar]
- van den Boogaard, M. Conodonts of Upper Devonian and Lower Carboniferous from Southern Portugal. Geol. Mijnb. 1963, 42, 248–259. [Google Scholar]
- Colmenero, J.R.; Fernández, L.P.; Moreno, C.; Bahamonde, J.R.; Barba, P.; Heredia, N.; González, F. Carboniferous. In The Geology of Spain; Gibbons, W., Moreno, M.T., Eds.; The Geological Society: London, UK, 2002; pp. 93–116. [Google Scholar]
- Pruvost, P. Observations sur les terrains dévoniens et carbonifères du Portugal et sur leur faune. Com. Serv. Geol. Port. 1912, 10, 1–21. [Google Scholar]
- van den Boogaard, M.; Schermerhörn, L.J.G. Conodonts faunas from Portugal and southwestern Spain. Scripta Geol. 1975, 28, 1–41. [Google Scholar]
- Oliveira, J.T. The marine Carboniferous of South Portugal. A stratigraphic and sedimentological approach. Mem. Serv. Geol. Portugal 1983, 29, 3–37. [Google Scholar]
- Pereira, Z.; Matos, J.X.; Fernandes, P.; Jorge, R.; Oliveira, J.T. New Lower Givetian age miospores of the Phyllite-Quartzite Group (São Francisco da Serra Anticline IPB Portugal). In Proceedings of the CIMP Faro UALG-LNEG, Faro, Portugal, 2009; pp. 75–78. [Google Scholar]
- González, F.; Playford, G.; Moreno, C. Upper Devonian biostratigraphy of the Iberian Pyrite Belt, southwest Spain. Part One: Miospores. Palaeontographica Abt. B 2005, 273, 1–51. [Google Scholar] [CrossRef]
- Sáez, R.; Moreno, C. Geology of the Puebla de Guzmán anticlinorium. In Geology and VMS Deposits of the Iberian Pyrite Belt; Barriga, F.J.A.S., Carvalho, D., Eds.; Guidebook Series; Society of Economic Geologists: Littleton, CO, USA, 1997; Volume 27, pp. 131–136. [Google Scholar]
- Pereira, Z. Palinoestratigrafia do Sector Sudoeste da Zona Sul Portuguesa. Comun. Geol. 1999, 86, 25–57. [Google Scholar]
- Azor, A.; Dias da Silva, Í.; Gómez Barreiro, J.; González-Clavijo, E.; Martínez Catalán, J.R.; Simancas, J.F.; Martínez Poyatos, D.; Pérez-Cáceres, I.; González Lodeiro, F.; Expósito, I.; et al. The Geology of Iberia: A Geodynamic Approach; Quesada, C., Oliveira, J.T., Eds.; Volume 2: The Variscan Cycle; Springer: Berlin/Heidelberg, Germany, 2019; pp. 307–348. [Google Scholar]
- Moreno, C.; Sierra, S.; Sáez, R. Evidence for catastrophism at the Famennian–Dinantian boundary in the Iberian Pyrite Belt. In Recent Advances in Lower Carboniferous Geology; Strogen, P., Somerville, D., Jones, G.L., Eds.; Geological Society Special Publication: London, UK, 1996; Volume 107, pp. 153–162. [Google Scholar]
- Dennison, J.M. Devonian eustatic fluctuations in Euroamerica: Discussions. Geol. Soc. Am. Bull. 1985, 96, 1595–1597. [Google Scholar] [CrossRef]
- Moreno, C.; Sierra, S.; Sáez, R. Mega-debris flows en el tránsito Devónico-Carbonífero de la Faja Pirítica Ibérica. Geogaceta 1995, 17, 9–11. [Google Scholar]
- McGhee, G.R., Jr. The Late Devonian Mass Extinction: The Frasnian/Famennian Crisis; Columbia University Press: New York, NY, USA, 1996; 303p. [Google Scholar]
- Murphy, A.E.; Sageman, B.B.; Hollander, D.J. Eutrophization by decoupling of the marine biogeochemical cycles of C, N, and P: A mechanism for the Late Devonian mass extinction. Geology 2000, 28, 427–430. [Google Scholar] [CrossRef]
- Kaiser, S.I.; Steuber, T.; Becker, R.T. Environmental change during the Late Famennian and Early Tournaisian (Late Devonian–Early Carboniferous): Implications from stable isotopes and conodont biofacies in southern Europe. Geol. J. 2008, 43, 241–260. [Google Scholar] [CrossRef]
- Moreno, C.; Sáez, R.; González, F. Paleosismicidad asociada al tránsito Devónico–Carbonífero en la Zona Surportuguesa (SW Ibérico). Geogaceta 2007, 43, 35–38. [Google Scholar]
- Sáez, R.; Moreno, C.; González, F.; Toscano, M.; Almodóvar, G.R. Devonian/Carboniferous Boundary: Tectonic Onset and Massive Sulphide Deposition in the Iberian Pyrite Belt, 33rd ed.; International Geological Congress: Oslo, Norway, 2008. [Google Scholar]
- Almodóvar, G.R.; Sáez, R.; Pons, J.M.; Toscano, M.; Pascual, E. Geology and genesis of the Aznalcóllar massive sulphide deposits, Iberian Pyrite Belt, Spain. Miner. Depos. 1998, 33, 111–136. [Google Scholar] [CrossRef]
- Sáez, R.; Pascual, E.; Toscano, M.; Almodóvar, G.R. The Iberian Type of volcano-sedimentary massive sulphide deposits. Miner. Depos. 1999, 34, 549–570. [Google Scholar] [CrossRef]
- Tornos, F.; Casquet, C.; Relvas, J.M.R.S.; Barriga, F.J.A.S.; Sáez, R. The relationship between ore deposits and oblique tectonics: The SW Iberian Variscan Belt. In The Timing and Location of Major Ore Deposits in an Evolving Orogen; Blundell, D.J., Neubauer, F., Von Quadt, A., Eds.; Special Publications, 204; Geological Society: London, UK, 2002; pp. 179–198. [Google Scholar]
- Simancas, J.F.; Carbonell, R.; González Lodeiro, F.; Pérez Estaún, A.; Juhlin, C.; Ayarza, P.; Kashubin, A.; Azor, A.; Martínez Poyatos, D.J.; Almodóvar, G.R.; et al. Crustal structure of the transpressional Variscan orogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS). Tectonics 2003, 22, 1062. [Google Scholar] [CrossRef]
- Simancas, J.F.; Carbonell, R.; González Lodeiro, F.; Pérez Estaún, A.; Juhlin, C.; Ayarza, P.; Kashubin, A.; Azor, A.; Martínez Poyatos, D.J.; Sáez, R.; et al. Transpresional collision tectonics and mantle plume dynamics: The Variscides of southwestern Iberia. In European Lithosphere Dynamics; Gee, D.G., Stephenson, R.A., Eds.; Memoirs; Geological Society: London, UK, 2006; Volume 32, pp. 345–354. [Google Scholar]
- Giese, U.; Bühn, B. Early Paleozoic rifting and bimodal volcanism in the Ossa Morena Zone of southwest Spain. Geol. Rundsch. 1993, 83, 143–160. [Google Scholar] [CrossRef]
- Lécolle, M. La Ceinture Sud-Ibérique: Un Exemple de Province à Amas Sulfurés Volcano-Sédimentaires (Téctonique, Métamorphisme, Stratigraphie, Volcanisme, Paléogéographie et Métallogénie). Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 1977; p. 609. [Google Scholar]
- Routhier, P.; Aye, F.; Boyer, C.; Lécolle, M.; Molière, P.; Picot, P.; Roger, G. La ceinture Sud-Iberique à amas sulfurés dans sa partie espagnole médiane. Tableau géologique et métallogénique. Synthèse sur le type amas sulfurés volcano-sédimentaires. Mem. du BRGM 1980, 94, 265. [Google Scholar]
- Oliveira, J.T. The South Portuguese Zone: Stratigraphy and sedimentary tectonism. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez García, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 334–347. [Google Scholar]
- Albardeiro, L.; Morais, I.; Matos, J.X.; Solá, R.; Salgueiro, R.; Pereira, Z.; Mendes, M.; Batista, M.J.; de Oliveira, D.; Díez-Montes, A.; et al. Time-Space Evolution of Iberian Pyrite Belt Igneous Activity: Volcanic and Plutonic Lineaments, Geochronology, Ore Horizons and Stratigraphic Constraints. Gondwana Res. 2023, 121, 235–257. [Google Scholar] [CrossRef]
- Moreno, C.; González, F.; Sáez, R.; Sierra, S. Inicio del vulcanismo en el sector de Calañas (Faja Pirítica Ibérica). Datación y caracterización. Geogaceta 2003, 33, 59–62. [Google Scholar]
- Lake, P.A. The Biostratigraphy and Structure of the Pulo Do Lobo Domain and Iberian Pyrite Belt Domain within the Huelva Province. Ph.D. Thesis, University of Southampton, Southampton, UK, 1991; p. 324. [Google Scholar]
- Oliveira, J.T.; Pereira, Z.; Carvalho, P.; Pacheco, N.; Korn, D. Stratigraphy of the tectonically imbricated lithological succession of the Neves Corvo mine area, IPB, Portugal. Miner. Depos. 2004, 39, 422–436. [Google Scholar] [CrossRef]
- Oliveira, J.T.; Horn, M.; Paproth, E. Preliminary note on the stratigraphy of the Baixo Alentejo Flysh Group, Carboniferous of Portugal, and on the paleogeographic development compared to corresponding units in northwest Germany. Com. Serv. Geol. Portugal 1979, 65, 151–168. [Google Scholar]
- Simancas, J.F. Coord. La Zona Surportuguesa. In Geología de España; Vera, J.A., Ed.; SGE-IGME: Madrid, Spain, 2004; pp. 199–201. [Google Scholar]
- Carvalho, D. Consideraçoes sobre o vulcanic¡smo da regiao de Cercal Odemira. Suas relaçoes com a Faixa Piritosa. Com. Ser. Geol. Portugal 1976, 60, 215–238. [Google Scholar]
- Simancas, J.F. Geología de la Extremidad Oriental de la Zona Sudportuguesa. Ph.D. Thesis, University of Granada, Granada, Spain, 1983; p. 439. [Google Scholar]
- Rambaud, F. Distribucion de focus volcánicos y yacimientos en la banda pirítica de Huelva. Bol. Geol. Min. 1978, 89, 223–233. [Google Scholar]
- Rosa, D.R.N.; Finch, A.A.; Andersen, T.; Inverno, C.M.C. U–Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt. Mineral. Petrol. 2009, 95, 47–69. [Google Scholar] [CrossRef]
- Pereira, Z. Palinologia E Petrologia Organica Do Sector Sudoeste Da Zona Sul Portuguesa. Ph.D. Thesis, Universidade do Porto, Porto, Portugal, 1997; p. 268. [Google Scholar]
- González, F. Las Pizarras Negras Del Límite Devónico/Carbonífero de la Faja Pirítica Ibérica (s.o. De EspañA). Estudio Bioestratigráfico E Implicaciones Sobre la Paleogeografía de la Cuenca Y El Origen de Las Mineralizaciones de Sulfuros. Ph.D. Thesis, Universidad de Huelva, Huelva, Spain, 2004; p. 196. [Google Scholar]
- Moreno, C. Postvolcanic Paleozoic of the Iberian Pyrite Belt: An example of basin morphologic control on sediment distribution in a turbidite basin. J. Sed. Petrol. 1993, 63, 1118–1128. [Google Scholar] [CrossRef]
- Moreno, C.; González, F. Estratigrafía de la Zona Sudportuguesa. In Geología de España; Vera, J.A., Ed.; SGE-IGME: Madrid, Spain, 2004; pp. 201–205. [Google Scholar]
- Mantero, E.M.; García-Navarro, E.; Alonso-Chaves, F.; Martín Parra, L.; Matas, J.; Azor, A. La Zona Sudportuguesa: Propuesta para la división de un bloque continental en dominios. Geogaceta 2007, 43, 27–30. [Google Scholar]
- Aye, F. Géologie ET Gîtes Métallifères de la Moyenne Vallée de L’Odiel (Huelva, Espagne). Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 1974; p. 227. [Google Scholar]
- Pascual, E.; Sáez, R.; Donaire, T. The Rio Jarama section. In The Iberian Pyrite Belt. Field Trip Guide; Tornos, F., Locutura, J., Martins, L., Eds.; Joint SGA IAGOD International Meeting; Field Trip B4; ITGE-IGM: Madrid, Spain, 1999; pp. 39–40. [Google Scholar]
- Sánchez-España, J. Mineralogía Y Geoquímica de Yacimientos de Sulfuros Masivos en El áRea Nor-Oriental de la Faja Pirítica Ibérica (San Telmo-San Miguel-Peña del Hierro), Norte de Huelva, España. Ph.D. Thesis, Universidad del País Vasco, Bilbao, Spain, 2000; p. 307. [Google Scholar]
- Yusta, I.; Martínez, A.; Velasco, F. Litogeoquímica de las pizarras negras de la Faja Pirítica Ibérica: Implicaciones en la génesis de los sulfuros masivos. Bol. Soc. Esp. Miner. 2002, 25A, 107–108. [Google Scholar]
- Tornos, F.; Solomon, M.; Conde, C.; Spiro, B.F. Formation of the Tharsis massive sulfide deposit, Iberian Pyrite Belt: Geological, lithogeochemical, and stable isotope evidence for deposition in a brine pool. Econ. Geol. 2008, 103, 185–214. [Google Scholar] [CrossRef]
- Sáez, R.; Moreno, C.; González, F.; Almodóvar, G. Black shales and massive sulfides: Causal or casual relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar. Miner. Depos. 2011, 46, 585–614. [Google Scholar] [CrossRef]
- Luz, F.; Mateus, A.; Figueiras, J.; Tassinari, C.C.G.; Ferreira, E.; Gonçalves, L. Recognizing metasedimentary sequences potentially hosting concealed massive sulfide accumulations in the Iberian Pyrite Belt using geochemical fingerprints. Ore Geol. Rev. 2019, 107, 973–998. [Google Scholar] [CrossRef]
- Luz, F.; Mateus, A.; Rosa, C.; Figueiras, J. Geochemistry of Famennian to Visean metapelites from the Iberian Pyrite Belt: Implications for provenance, paleo-redox conditions and vectoring to massive sulfide deposits. Nat. Resour. Res. 2020, 29, 3613–3652. [Google Scholar] [CrossRef]
- Conde, C.; Tornos, F. Geochemistry and Architecture of the Host Sequence of the Massive Sulphides in the Northern Iberian Pyrite Belt. Ore Geol. Rev. 2020, 127, 103042. [Google Scholar] [CrossRef]
- Leistel, J.M.; Marcoux, E.; Deschamps, Y. Chert in the Iberian Pyrite Belt. Miner. Depos. 1998, 33, 59–81. [Google Scholar] [CrossRef]
- Moreno, C.; Sequeiros, L. The Basal Shaly formation of the Iberian Pyrite Belt (South-Portuguese zone): Early carboniferous bituminous deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1989, 73, 233–241. [Google Scholar] [CrossRef]
- Oliveira, J.T.; Wagner-Gentis, C.H.T. The Mértola and Mira formations boundary between Dugueno and Almada de Ouro, Marine Carboniferous of South Portugal. In Contributions to the Carboniferous Geology and Palaeontology of the Iberian Peninsula; Lemos de Sousa, J.M., Ed.; University of Porto: Porto, Portugal, 1983; pp. 1–39. [Google Scholar]
- Moreno, C.; Sáez, R. Petrología y procedencia de las areniscas del Culm de la parte occidental de la Faja Pirítica Ibérica (Zona Sur-Portuguesa). Bol. Geol. Min. 1989, 100, 134–147. [Google Scholar]
- Moreno, C. Las facies Culm del Anticlinorio de Puebla de Guzmán (Huelva, España). Ph.D. Thesis, Universidad de Granada, Granada, Spain, 1987; p. 375. [Google Scholar]
- Munhá, J. Low-grade regional metamorphism in the Iberian Pyrite Belt. Comun. Serv. Geol. Portugal 1983, 69, 3–35. [Google Scholar]
- Mitjavilla, J.; Martí, J.; Soriano, C. Magmatic evolution and tectonic setting of the Iberian Pyrite Belt volcanism. J. Petrol. 1997, 38, 727–755. [Google Scholar] [CrossRef]
- Thiéblemont, D.; Pascual, E.; Stein, G. Magmatism in the Iberian Pyrite Belt: Petrological constraints on a metallogenetic model. Miner. Depos. 1997, 33, 98–110. [Google Scholar] [CrossRef]
- Valenzuela, A.; Donaire, T.; Pin, C.; Toscano, M.; Hamilton, M.A.; Pascual, E. Geochemistry and U-Pb dating of felsic volcanic rocks in the Rio Tinto-Nerva unit, Iberian Pyrite Belt, Spain: Crustal thinning, progressive crustal melting and massive sulphide genesis. J. Geol. Soc. 2011, 168, 717–732. [Google Scholar] [CrossRef]
- IGME. Mapa Geológico de España; Escala 1:200.000; Sevilla-Puebla de Guzmán: Madrid, Spain, 2015. [Google Scholar]
- McPhie, J.; Doyle, M.; Allen, R.L. Volcanic Textures: A Guide to the Interpretation of Textures in Volcanic Rocks; Centre for Ore Deposit and Exploration Studies, University of Tasmania: Hobart, Australia, 1993; 196p. [Google Scholar]
- Boulter, C.A. Comparison of Riotinto, Spain, and Guaymas Basin, Gulf of California: An explanation of a supergiant massive sulphide deposit in an ancient sill-sediment complex. Geology 1993, 21, 801–804. [Google Scholar] [CrossRef]
- Boulter, C.A. Extensional tectonics and magmatism as drivers of convection leading to Iberian Pyrite Belt massive sulphide deposits? J. Geol. Soc. 1996, 153, 181–184. [Google Scholar] [CrossRef]
- Soriano, C.; Martí, J. Facies analysis of volcano-sedimentary successions hosting massive sulphide deposits in the Iberian Pyrite Belt, Spain. Econ. Geol. 1999, 94, 867–882. [Google Scholar] [CrossRef]
- Rosa, C.J.P.; McPhie, J.; Relvas, J.M.R.S. Type of volcanoes hosting the massive sulfide deposits of the Iberian Pyrite Belt. J. Volcanol. Geotherm. Res. 2010, 194, 107–126. [Google Scholar] [CrossRef]
- Valenzuela, A.; Donaire, T.; González-Roldán, M.; Toscano, M.; Pascual, E. Volcanic architecture in the Odiel river area and the volcanic environment in the Riotinto-Nerva Unit, Iberian Pyrite Belt, Spain. J. Volcanol. Geotherm. Res. 2011, 202, 29–46. [Google Scholar] [CrossRef]
- Donaire, T.; Pascual, E.; Sáez, R.; Toscano, M. Facies architecture and palaeoenvironmental constraints of subaqueous felsic volcanism in the Iberian Pyrite Belt: The Paymogo Volcano-Sedimentary Alignment. J. Volcanol. Geotherm. Res. 2020, 405, 107045. [Google Scholar] [CrossRef]
- Pascual, E.; Donaire, T.; Toscano, M.; Macías, G.; Pin, C.; Hamilton, M.A. Geochemical and Volcanological Criteria in Assessing the Links between Volcanism and VMS Deposits: A Case on the Iberian Pyrite Belt., Spain. Minerals 2021, 11, 826. [Google Scholar] [CrossRef]
- Rosa, C.J.P.; McPhie, J.; Relvas, J.M.R.S.; Pereira, Z.; Oliveira, T.; Pacheco, N. Facies analysis and volcanic setting of the giant Neves Corvo massive sulfide deposit, Iberian Pyrite Belt, Portugal. Miner. Depos. 2008, 43, 449–466. [Google Scholar] [CrossRef]
- Munhá, J.; Kerrich, R. Sea water-basalt interaction in spilites from the Iberian Pyrite Belt. Contrib. Mineral. Petrol. 1980, 73, 191–200. [Google Scholar] [CrossRef]
- Relvas, J.M.R.S.; Barriga, F.J.A.S.; Ferreira, A.; Noiva, P.C.; Pacheco, N.; Barriga, G. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. I. Geology, mineralogy, and geochemistry. Econ. Geol. 2006, 101, 753–790. [Google Scholar] [CrossRef]
- Gifkins, C.C.; Herrmann, W.; Large, R.R. Altered Volcanic Rocks: A Guide to Description and Interpretation; Centre for Ore Deposit and Exploration Studies, University of Tasmania: Hobart, Australia, 2005; 275p. [Google Scholar]
- Díez Montes, A.; Bellido Mulas, F. Magmatismos TTG y Al-K en la Zona Surportuguesa. Relaciones entre plutonismo y vulcanismo. Geo-Temas 2008, 10, 1449–1452. [Google Scholar]
- Amaral, L.J.; Solá, A.R.; Bento Dos Santos, T.M.; Feitoza, L.; Tassinari, C.C.G.; Crispim, L.; Chichorro, M.; Zieger-Hofmann, M.; Gärtner, J.; Linnemann, U.; et al. The bimodal Fii-A2-type and calc-alkaline volcanic sequence of the Aljustrel brownfield region, Iberian Pyrite Belt, SW Iberian Massif. Geochemistry 2024, 84, 126049. [Google Scholar] [CrossRef]
- Soriano, C. Evolució Geodinàmica de la Faja Pirítica Ibérica, Zona Sud Portuguesa. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 1997; p. 328. [Google Scholar]
- Inverno, C.; Ayala, C.; Sousa, P. The Iberian Pyrite Belt: Introduction and geological setting. In 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe; Weihed, P., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9, pp. 191–208. [Google Scholar]
- Onèzime, J.; Charvet, J.; Faure, M.; Bourdier, J.-L.; Chauvet, A. A new geodynamic interpretation for the South Portuguese Zone (SW Iberia) and the Iberian Pyrite Belt genesis. Tectonics 2003, 22, 1027. [Google Scholar] [CrossRef]
- Albardeiro, L.; Matos, J.X.; Mendes, M.; Solá, R.; Pereira, Z.; Morais, I.; Salgueiro, R.; Pacheco, N.; Araújo, V.; Oliveira, J.T. Geological correlation of Neves-Corvo Mine and Pomarão Antiform sequences (Iberian Pyrite Belt, Portugal). Comun. Geol. 2020, 107, 111–132. [Google Scholar]
- Barrie, C.T.; Amelin, Y.; Pascual, E. U-Pb geochronology of VMS mineralization in the Iberian Pyrite Belt. Miner. Depos. 2002, 37, 684–703. [Google Scholar] [CrossRef]
- Codeço, M.S.; Mateus, A.; Figueiras, J.; Rodrigues, P.; Gonçalves, L. Development of the Ervidel-Roxo and Figueirinha-Albernoa volcanic sequences in the Iberian Pyrite Belt, Portugal: Metallogenic and geodynamic implications. Ore Geol. Rev. 2018, 98, 80–108. [Google Scholar] [CrossRef]
- Donaire, T.; Pascual, E.; Sáez, R.; Pin, C.; Hamilton, M.A.; Toscano, M. Geochemical and Nd isotopic signature of felsic volcanic rocks as a proxy of volcanic-hosted massive sulphide deposits in the Iberian Pyrite Belt (SW, Spain): The Paymogo Volcano-Sedimentary Alignment. Ore Geol. Rev. 2020, 120, 103408. [Google Scholar] [CrossRef]
- Cravinho, A.; Rosa, D.; Relvas, J.M.R.S.; Solá, A.R.; Pereira, I.; Paquette, J.-L.; Borba, M.L.; Tassinari, C.C.G.; Chew, D.; Drakou, F.; et al. From source to surface: Clues from garnet-bearing Carboniferous silicic volcanic rocks, Iberian Pyrite Belt, Portugal. Contrib. Mineral. Petrol. 2024, 179, 32. [Google Scholar] [CrossRef]
- Rosa, D.; Inverno, C.; Oliveira, V.; Rosa, C. Geochemistry of volcanic rocks Albernoa area IPB Portugal. Inter. Geol. Rev. 2004, 46, 366–383. [Google Scholar] [CrossRef]
- Pereira, Z.; Matos, J.X.; Solá, A.R.; Batista, M.J.; Salgueiro, R.; Rosa, C.; Oliveira, J.T. Geology of the recently discovered massive and stockwork sulphide mineralization at Semblana, Rosa Magra and Monte Branco, Neves–Corvo mine region, Iberian Pyrite Belt, Portugal. Geol. Mag. 2021, 158, 1253–1268. [Google Scholar] [CrossRef]
- de Mello, C.R.; Tornos, F.; Conde, C.; Tassinari, C.C.G.; Farci, A.; Vega, R. Geology, Geochemistry, and Geochronology of the Giant Rio Tinto VMS Deposit, Iberian Pyrite Belt, Spain. Econ. Geol. 2022, 117, 1149–1177. [Google Scholar] [CrossRef]
- Sun, S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition processes. Geol. Soc. Spec. Pub. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Munhá, J. Blue amphiboles, metamorphic regime, and plate tectonic modelling in the Iberian Pyrite Belt. Contrib. Mineral. Petrol. 1979, 69, 279–289. [Google Scholar] [CrossRef]
- Dallmeyer, R.D.; Fonseca, P.; Quesada, C.; Ribeiro, A. 40Ar/39Ar mineral age constraints for the tectonothermal evolution of a Variscan suture in southwest Iberia. Tectonophysics 1993, 222, 177–194. [Google Scholar] [CrossRef]
- Crespo, A.; Orozco, M. The Southern Iberia Shear Zone: A major boundary in the Hercynian folded belt. Tectonophysics 1988, 148, 221–227. [Google Scholar] [CrossRef]
- Silva, J.B.; Oliveira, J.T.; Ribeiro, A. Structural outline of the South Portuguese Zone. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez-García, E., Eds.; Springer: Heidelberg, Germany, 1990; pp. 348–362. [Google Scholar]
- Quesada, C. A reappraisal on the structure of the Spanish segment of the Iberian Pyrite Belt. Miner. Depos. 1998, 33, 31–44. [Google Scholar] [CrossRef]
- Martin-Izard, A.; Arias, D.; Arias, M.; Gumiel, P.; Sanderson, D.J.; Castañon, C.; Sanchez, J. Ore deposit types and tectonic evolution of the Iberian Pyrite Belt: From transtensional basins and magmatism to transpression and inversion tectonics. Ore Geol. Rev. 2016, 79, 254–267. [Google Scholar] [CrossRef]
- Quesada, C.; Braid, J.A.; Fernandes, P.; Ferreira, P.; Jorge, R.S.; Matos, J.X.; Murphy, J.B.; Oliveira, J.T.; Pedro, J.; Pereira, Z. SW Iberia Variscan suture Zone: Oceanic affinity units. In The Geology of Iberia: A Geodynamic Approach; Quesada, C., Oliveira, J.T., Eds.; Volume 2: The Variscan Cycle; Springer: Berlin/Heidelberg, Germany, 2019; pp. 131–172. [Google Scholar]
- Paslawski, L.E.; Braid, J.A.; Quesada, C.; McFarlane, C.M. Geochronology of the Iberian Pyrite Belt and the Sierra Norte Batholith: Lower Plate Magmatism during Supercontinent Amalgamation? J. Geol. Soc. Lond. Spec. Publ. 2020, 503, 589–617. [Google Scholar] [CrossRef]
- Quesada, C.; Fonseca, P.; Munhá, J.; Oliveira, J.T.; Ribeiro, A. The Beja—Acebuches Ophiolite (Southern Iberia Variscan fold belt): Geological characterization and geodynamic significance. Bol. Geol. Min. 1994, 105, 3–49. [Google Scholar]
- Möller, P.; Dieterle, M.A.; Dulski, P.; German, K.; Schneider, H.J.; Schultz, W. Geochemical proximity indicators of massive sulphide mineralization in the Iberian Pyrite Belt and the East Pontic Metallotect. Miner. Depos. 1983, 18, 387–398. [Google Scholar] [CrossRef]
- Sáez, R. Geología Y Mineralizaciones de Sn-W de la Región Del Bajo Corumbel (La Palma del Condado, Huelva). Bachelor’s Thesis, Universidad de Sevilla, Sevilla, Spain, 1986; p. 210. [Google Scholar]
- Sáez, R.; Almodóvar, G.R.; Pascual, E. Mineralizaciones estratoligadas de scheelita en la Faja Pirítica del SO Ibérico. Bol. Soc. Esp. Miner. 1988, 11, 135–141. [Google Scholar]
- Sáez, R.; Requena, A.; Fernández-Caliani, J.C.; Almodóvar, G.R. Control estructural de las mineralizaciones de Sn-W-As del Bajo Corumbel, La Palma del Condado, Huelva. Stud. Geol. Sal. 1989, 4, 189–203. [Google Scholar]
- Sáez, R.; Alonso-Chaves, F. Control estructural de las mineralizaciones del grupo La Ratera-Masegoso. Bol. Soc. Esp. Miner. 1998, 21, 186–187. [Google Scholar]
- German, K.; Lüders, V.; Banks, D.A.; Simon, K.; Hoefs, J. Late Hercynian polymetallic mineralization in the Iberian Pyrite Belt: Fluid inclusion and stable isotope geochemistry (S-O-H-Cl). Miner. Depos. 2003, 38, 953–967. [Google Scholar] [CrossRef]
- Blanco, A.; Rothenberg, B. Exploración Arqueometalúrgica de Huelva; Labor: Barcelona, Spain, 1981; p. 312. [Google Scholar]
- Sáez, R.; Nocete, F.; Nieto, J.M.; Capitán, M.A.; Rovira, S. The extractive metallurgy of copper from Cabezo Juré, Huelva, Spain: Chemical and mineralogical study of slags dated to the Third Millennium B.C. Can. Mineral. 2003, 41, 627–638. [Google Scholar] [CrossRef]
- Yesares, L.; Piña, R.; González-Jiménez, J.M.; Sáez, R.; Ruíz de Almodóvar, G.; Fanlo, I.; Manuel Pons, J.; Vega, R. Distribution of critical metals in evolving pyrite from massive sulfide ores of the Iberian Pyrite Belt. Ore Geol. Rev. 2023, 153, 105275. [Google Scholar] [CrossRef]
- Carvalho, J.R.S.; Relvas, J.M.R.S.; Pinto, A.M.M.; Frenzel, M.; Krause, J.; Gutzmer, J.; Pacheco, N.; Fonseca, R.; Santos, S.; Caetano, P.; et al. Indium and selenium distribution in the Neves-Corvo deposit, Iberian Pyrite Belt, Portugal. Mineral. Mag. 2018, 82, 5–41. [Google Scholar] [CrossRef]
- Tornos, F. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geol. Rev. 2006, 28, 259–307. [Google Scholar] [CrossRef]
- Relvas, J.M.R.S.; Barriga, F.J.A.S.; Pinto, A.; Ferreira, A.; Pacheco, A.; Noiva, P.C.; Barriga, G.; Baptista, R.; Carvalho, D.; Oliveira, V.; et al. The Neves Corvo deposit, Iberian Pyrite Belt, Portugal: Impacts and future, 25 years after discovery. Soc. Econ. Geol. Spec. Publ. 2002, 9, 155–176. [Google Scholar]
- Santos, A.; Caballero, B.; Prada, J.M. Descripción geológica de los yacimientos de Sotiel Coronada. Bol. Geol. Min. 1996, 107, 31–38. [Google Scholar]
- Strauss, G.K.; Roger, G.; Lécolle, M.; Lopera, E. Geochemical and geologic study of the volcano-sedimentary sulfide orebody of La Zarza, Huelva province, Spain. Econ. Geol. 1981, 76, 1975–2000. [Google Scholar] [CrossRef]
- Barriga, F.J.A.S. Hydrothermal Metamorphism and Ore Genesis at Aljustrel, Portugal. Ph.D. Thesis, University Western Ontario, London, ON, Canada, 1983; p. 386. [Google Scholar]
- Barriga, F.J.A.S.; Fyfe, W.S. Giant pyritic base-metal deposits: The example of Feitais (Aljustrel, Portugal). Chem. Geol. 1988, 69, 331–343. [Google Scholar] [CrossRef]
- Almodóvar, G.; Yesares, L.; Sáez, R.; Toscano, M.; González, F.; Pons, J.M. Massive sulfide ores in the Iberian pyrite belt: Mineralogical and textural evolution. Minerals 2019, 9, 653. [Google Scholar] [CrossRef]
- Tornos, F.; González Clavijo, E.; Spiro, B. The Filón Norte orebody, Tharsis, Iberian Pyrite Belt: A proximal low-temperature shale hosted massive sulphide in a thin-skinned tectonic belt. Miner. Depos. 1998, 33, 150–169. [Google Scholar] [CrossRef]
- González, F.; Moreno, C.; Sáez, R.; Clayton, G. Ore genesis age of the Tharsis Mining District (Iberian Pyrite Belt): A palynological approach. J. Geol. Soc. 2002, 159, 229–232. [Google Scholar] [CrossRef]
- Ferreira da Silva, E.; Bobos, I.; Matos, J.X.; Patinha, C.; Reis, A.P.; Cardoso, E. Mineralogy and geochemistry of trace metals and REE in volcanic massive sulfide host rocks, stream sediments, stream waters and acid mine drainage from the Lousal mine area (Iberian Pyrite Belt, Portugal). Appl. Geochem. 2009, 24, 383–401. [Google Scholar] [CrossRef]
- González, F.; Moreno, C.; Santos, A. The massive sulphide event in the Iberian Pyrite Belt: Confirmatory evidence from the Sotiel-Coronada. Mine. Geol. Mag. 2006, 143, 821–827. [Google Scholar] [CrossRef]
- Ruiz, C.; Arribas, A.; Arribas, A., Jr. Mineralogy and geochemistry of the Masa Valverde blind massive sulphide deposit, Iberian Pyrite Belt (Spain). Ore Geol. Rev. 2002, 19, 1–22. [Google Scholar] [CrossRef]
- Sáez, R.; Moreno, C.; González, F. Synchronous deposition of massive sulphide deposits in the Iberian Pyrite Belt: New data from Las Herrerías and La Torerera ore-bodies. C. R. Geosci. 2008, 340, 829–839. [Google Scholar] [CrossRef]
- García Palomero, F. Caracteres Geológicos y Relaciones Morfológicas y Genéticas de Las Mineralizaciones Del Anticlinal de Riotinto; Excma Diputación; Instituto Estudios Onubenses “Padre Marchena”: Huelva, Spain, 1980; p. 264. [Google Scholar]
- Knight, F.C. The Mineralogy, Geochemistry and Genesis of Secondary Sulphide Mineralization of the Las Cruces, Spain. Ph.D. Thesis, University Wales, Cardiff, UK, 2000; p. 434. [Google Scholar]
- García de Miguel, J.M. Mineralogía, paragénesis y sucesión de los sulfuros masivos de la Faja Pirítica en el suroeste de la Península Ibérica. Bol. Geol. Min. 1990, 101, 73–105. [Google Scholar]
- Marcoux, E.; Moelo, Y. Comparative mineralogy of massive and stringer sulphide ore deposits in Southern Spain. In Current Research in Geology Applied to Ore Deposits; Fenoll Hach-Ali, P., Torres Ruiz, J., Gervilla, F., Eds.; University Granada: Granada, Spain, 1993; pp. 343–345. [Google Scholar]
- Marcoux, E.; Moelo, Y.; Leistel, J.M. Bismuth and cobalt minerals: Indicators of stringer zones to massive-sulfide deposits, South Iberian Pyrite Belt. Miner. Depos. 1996, 31, 1–26. [Google Scholar] [CrossRef]
- Gaspar, O.C. Mineralogy and sulfide mineral chemistry of the Neves-Corvo ores, Portugal: Insight into their genesis. Can. Mineral. 2002, 40, 611–636. [Google Scholar] [CrossRef]
- Fernández Álvarez, G. Los Yacimientos de Sulfuros Polimetálicos Del s.o. Ibérico Y Sus Métodos de Prospección. Ph.D. Thesis, University of Salamanca, Salamanca, Spain, 1974; p. 844. [Google Scholar]
- Barrett, T.J.; Dawson, G.L.; MacLean, W.H. Volcanic stratigraphy, alteration, and sea-floor setting of the Paleozoic Feitais massive sulfide deposit, Aljustrel, Portugal. Econ. Geol. 2008, 103, 215–239. [Google Scholar] [CrossRef]
- García de Miguel, J.M.; Chamorro, R. Geología y mineralogía del yacimiento de Sierrecilla (Puebla de Guzmán, Huelva, España). Bol. Geol. Min. 1986, 97, 510–520. [Google Scholar]
- Velasco, F.; Sánchez-España, J.; Boyce, A.J.; Fallick, A.E.; Sáez, R.; Almodóvar, G.R. A new sulphur isotopic study of some IPB deposits: Evidence of a textural control on sulphur isotope composition. Miner. Depos. 1998, 34, 14–18. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Yesares, L.; Piña, R.; Sáez, R.; Almodóvar, G.R.; Nieto, F.; Tenorio, S. Polymetallic nanoparticles in pyrite from VMS deposits of the Iberian Pyrite Belt. Ore Geol. Rev. 2022, 145, 104875. [Google Scholar] [CrossRef]
- Barriga, F.J.A.S.; Carvalho, D. Carboniferous volcanogenic sulfide mineralization in south Portugal, Iberian pyrite belt. Com. Serv. Geol. Port. 1983, 29, 99–113. [Google Scholar]
- Munhá, J.; Barriga, F.J.A.S.; Kerrich, R. High 18O ore-forming fluids in volcanic hosted base metal massive sulphide deposits: Geologic, 18O/16O, and D/H evidence for the Iberian Pyrite Belt; Crandon, Wisconsin; and Blue Hill, Maine. Econ. Geol. 1986, 81, 530–552. [Google Scholar] [CrossRef]
- Jorge, R.S. Caracterização Petrográfica, Geoquímica E Isotópica Dos Reservatórios Metalíferos Crustais, Dos Processos de Extracção de Metais E Dos Fluidos Hidrotermais Envolvidos Em Sistemas Mineralizantes Híbridos NA Faixa Piritosa Ibérica. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2010; p. 324. [Google Scholar]
- Plimer, I.R.; Carvalho, D. The geochemistry of hydrothermal alteration at the Salgadinho copper deposit, Portugal. Miner. Depos. 1982, 17, 193–211. [Google Scholar] [CrossRef]
- Toscano, M.; Almodóvar, G.R.; Pascual, E.; Sáez, R. Hydrothermal alteration related to the “Masa Valverde” massive sulphide deposit, Iberian Pyrite Belt, Spain. In Current Research in Geology Applied to Ore Deposits; Fenoll Hach-Ali, P., Torres Ruiz, J., Gervilla, F., Eds.; University Granada: Granada, Spain, 1993; pp. 389–392. [Google Scholar]
- Toscano, M.; Almodóvar, G.R.; Sáez, R.; Nieto, J.M.; Escobar, J.M. Mineralogy and geochemistry of hydrothermal alteration in the stockwork of Atalaya (Rio Tinto, Huelva). Bol. Soc. Esp. Min. 2002, 23, 212–215. [Google Scholar]
- Almodóvar, G.R.; Sáez, R.; Toscano, M.; Pascual, E. Co-Ni and “inmobile” element behaviour in ancient hydrothermal systems, Aznalcóllar, Iberian Pyrite Belt, Spain. In Mineral Deposits: From Their Origin to Their Environmental Impacts; Pašava, J., Kríbek, R., Zák, K., Eds.; Balkema: Rotterdam, The Netherlands, 1995; pp. 217–220. [Google Scholar]
- Sánchez-España, J.; Velasco, F.; Yusta, I. Hydrothermal alteration of felsic volcanic rocks associated with massive sulphide deposition in the northern Iberian Pyrite Belt (SW Spain). Appl. Geochem. 2000, 15, 1265–1290. [Google Scholar] [CrossRef]
- Toscano, M. Alteración Hidrotermal Asociada a Los Yacimientos de Sulfuros Masivos de la Faja Pirítica Suribérica. Ph.D. Thesis, Universidad de Huelva, Huelva, Spain, 2015; p. 224. [Google Scholar]
- Almodóvar, G.R.; Sáez, R. Los sulfuros masivos de la Faja Pirítica Ibérica. In Geología de España; Vera, J.A., Ed.; SGE-IGME: Madrid, Spain, 2004; pp. 207–209. [Google Scholar]
- Barriga, F.J.A.S.; Relvas, J.M.R.S. Hydrothermal alteration an exploration criterion in the IPB: Facts, problems and future. In Symposium Polymetallic Sulphides of the Iberian Pyrite Belt; Universidade de Evora: Evora, Portugal, 1993; pp. 1.3.1–1.3.2. [Google Scholar]
- Inverno, C.M.; Solomon, M.; Barton, M.D.; Foden, J. The Cu stockwork and massive sulfide ore of the Feitais volcanic-hosted massive sulfide deposit, Aljustrel, Iberian Pyrite Belt, Portugal: A mineralogical, fluid inclusion, and isotopic investigation. Econ. Geol. 2008, 103, 241–267. [Google Scholar] [CrossRef]
- Toscano, M.; Sáez, R.; Almodóvar, G.R. Carbonatos hidrotermales asociados al depósito de sulfuros masivos “Masa Valverde” (Faja Pirítica Ibérica): Características texturales y geoquímicos. Cuad. Lab. Xeol. Laxe 2000, 25, 211–214. [Google Scholar]
- Locutura, J. The La Zarza mine. In The Iberian Pyrite Belt; Tornos, F., Locutura, J., Martins, L., Eds.; Joint SGA-IAGOD International Meeting 1999; Field Trip B4; ITGE-IGM: Madrid, Spain, 1999; p. 49. [Google Scholar]
- Nesbitt, R.W.; Pascual, E.; Fanning, C.M.; Toscano, M.; Sáez, R.; Almodóvar, G.R. U-Pb dating of stockwork zircons from the eastern Iberian Pyrite Belt. J. Geol. Soc. 1999, 156, 7–10. [Google Scholar] [CrossRef]
- Toscano, M.; Pascual, E.; Nesbitt, R.W.; Almodóvar, G.R.; Sáez, R.; Donaire, T. Geochemical discrimination of hydrothermal and igneous zircon in the Iberian Pyrite Belt, Spain. Ore Geol. Rev. 2014, 56, 301–311. [Google Scholar] [CrossRef]
- Williams, P.A. Oxide Zone Geochemistry; Ellis Harwood: New York, NY, USA, 1990; 286p. [Google Scholar]
- Boyle, D.R. Preglacial Weathering of Massive Sulfide Deposits in the Bathurst Mining Camp: Economic Geology, Geochemistry, and Exploration Applications. In Massive Sulphide Deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine; Goodfellow, W.D., McCutcheon, S.R., Peter, J.M., Eds.; Economic Geology Monograph; Society of Economic Geologists: Littleton, CO, USA, 2003; Volume 11, pp. 689–721. [Google Scholar]
- Arribas, A. Los Yacimientos de Oro Asociados con las Monteras Limoníticas de la FPI. Bol. Geol. Min. 1998, 109, 429–434. [Google Scholar]
- Yesares, L.; Sáez, R.; Nieto, J.M.; Almodóvar, G.R.; Gómez, C.; Escobar, J.M. The Las Cruces Deposit, Iberian Pyrite Belt, Spain. Ore Geol. Rev. 2015, 66, 25–46. [Google Scholar] [CrossRef]
- Capitán, M.A. Mineralogía y Geoquímica de la Alteración Superficial de Depósitos de Sulfuros Masivos en la Faja Pirítica Ibérica. Ph.D. Thesis, Universidad de Huelva, Huelva, Spain, 2006; 260p. [Google Scholar]
- Velasco, F.; Herrero, J.M.; Suárez, S.; Yusta, I.; Álvaro, A.; Tornos, F. Supergene Features and Evolution of Gossans Capping Massive Sulphide Deposits in the Iberian Pyrite Belt. Ore Geol. Rev. 2013, 53, 181–203. [Google Scholar] [CrossRef]
- Andrew, R.L. Short Course in Evaluation of Gossans in Mineral Exploration; ADIMB: Brasilia, Brazil, 2000; 57p. [Google Scholar]
- Oliveira, V.; Matos, J.; Bengala, M.; Silva, N.; Sousa, P.; Torres, L. Geology and Geophysics as Successful Tools in the Discovery of the Lagoa-Salgada Orebody (Sado Tertiary Basin-Iberian Pyrite Belt), Grandola, Portugal. Miner. Depos. 1998, 33, 170–189. [Google Scholar] [CrossRef]
- Kinkel, A.R., Jr. Observations on the pyrite deposits of the Huelva district, Spain, and their relationships to volcanism. Econ. Geol. 1962, 57, 1071–1080. [Google Scholar] [CrossRef]
- Carvalho, D. Geologia, metalogenia e metodologia da investigaçao de sulfuretos polimetálicos do Sul do Portugal. Comun. Serv. Geol. Port. 1979, 65, 169–191. [Google Scholar]
- Barriga, F.J.A.S. Metallogenesis in the Iberian Pyrite Belt. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez-García, E., Eds.; Springer: Berlin, Germany, 1990; pp. 369–379. [Google Scholar]
- Sato, T. Behaviours of ore-forming solutions in seawater. Mining Geol. 1972, 22, 31–42. [Google Scholar]
- Solomon, M. ‘Volcanic’ massive sulphide deposits and their host rocks—A review and an explanation. In Handbook of Strata-Bound and Stratiform Ore Deposits, II, Regional Studies and Specific Deposits; Wolf, K.A., Ed.; Elsevier: Amsterdam, The Netherlands, 1976; pp. 21–50. [Google Scholar]
- Francheteau, J.; Needham, H.D.; Choukroune, P.; Juteau, T.; Seguret, M.; Ballard, R.D.; Fox, J.P.; Normark, W.; Carranza, A.; Cordoba, D.; et al. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise. Nature 1979, 277, 523–528. [Google Scholar] [CrossRef]
- Finlow-Bates, T. The chemical and physical controls on the genesis of submarine exhalative orebodies and their implications for formulating exploration concepts: A review. Geol. Jahrb. 1980, 40, 131–168. [Google Scholar]
- Franklin, J.M.; Sangster, D.F.; Lydon, J.W. Volcanogenic massive sulfide deposits. In Economic Geology; 75th Anniversary Volume; SEG: Littleton, CO, USA, 1981; pp. 485–627. [Google Scholar]
- Urabe, T. Kuroko deposit modelling based on magmatic hydrothermal theory. Mining Geol. 1987, 37, 159–176. [Google Scholar]
- Large, R.R. Australian volcanic-hosted massive sulfide deposits: Features, styles, and genetic models. Econ. Geol. 1992, 87, 471–510. [Google Scholar] [CrossRef]
- Barrie, C.T.; Hannington, M.D. Classification of volcanic-associated massive sulfide deposits based on host-rock composition. In Volcanic-Associated Massive Sulphide Deposits: Processes and Examples in Modern and Ancient Settings; Barrie, C.T., Hanningtonm, N.D., Eds.; Reviews in Economic Geology; SEG: Littleton, CO, USA, 1999; Volume 8, pp. 1–11. [Google Scholar]
- Stein, H.J.; Morgan, J.W.; Scherstén, A. Re-Os dating of low-level highly-radiogenic (LLHR) sulfides: The Harnas gold deposit, southwest Sweden records continental scale tectonic events. Econ. Geol. 2000, 95, 1657–1671. [Google Scholar] [CrossRef]
- Nieto, J.M.; Almodóvar, G.R.; Pascual, E.; Sáez, R.; Jagoutz, E. Evidencias isotópicas sobre el origen de los metales en los sulfuros masivos de la Faja Pirítica Ibérica. Cuad. Lab. Xeol. Laxe 2000, 25, 139–142. [Google Scholar]
- Mathur, R.; Ruiz, J.; Tornos, F. Age and sources of the ore at Tharsis and Rio Tinto, Iberian Pyrite Belt, from Re-Os isotopes. Miner. Depos. 1999, 34, 790–793. [Google Scholar] [CrossRef]
- Munhá, J.; Relvas, J.M.R.S.; Barriga, F.J.A.S.; Conceição, P.; Jorge, R.C.G.S.; Mathur, R.; Ruiz, J.; Tassinari, C.C.G. Os isotope systematics in the Iberian Pyrite Belt. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin, Germany, 2005; Volume 1, pp. 663–666. [Google Scholar]
- Pereira, Z.; Sáez, R.; Pons, J.M.; Oliveira, J.T.; Moreno, C. Edad devónica (Struniense) de las mineralizaciones de Aznalcóllar (Faja Pirítica Ibérica) en base a palinología. Geogaceta 1996, 20, 1609–1612. [Google Scholar]
- Li, X.; Zhao, K.D.; Jiang, S.Y.; Palmer, M.R. In-situ U-Pb Geochronology and Sulfur Isotopes Constrain the Metallogenesis of the Giant Neves Corvo Deposit, Iberian Pyrite Belt. Ore Geol. Rev. 2019, 105, 223–235. [Google Scholar] [CrossRef]
- Pereira, Z.; Pacheco, N.; Oliveira, J. A case of applied palynology: Dating the lithological succession of the Neves Corvo Mine, Iberian Pyrite Belt, Portugal. In Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy, Utrecht, The Netherlands, 2003; Abstracts Book. pp. 397–401. [Google Scholar]
- Dunning, G.R.; Díez Montes, A.; Matas, J.; Martín Parra, L.M.; Almarza, J.; Donaire, M. Geocronología U/Pb del vulcanismo ácido y granitoides de la Faja Pirítica Ibérica (Zona Surportuguesa). Geogaceta 2002, 32, 127–130. [Google Scholar]
- Amaral, L.J.; Solá, A.R.; Bento dos Santos, T.M.; Tassinari, C.C.G.; Gonçalves, J. U-Pb zircon SHRIMP dating of a protracted magmatic setting and its volcanic emplacement: Insights from the felsic volcanic rocks hosting the sulphide ore of the giant Aljustrel Deposit, Iberian Pyrite Belt. Ore Geol. Rev. 2021, 134, 104147. [Google Scholar] [CrossRef]
- Streel, M.; Higgs, K.; Loboziak, S.; Riegel, W.; Steemans, P.H. Spore Stratigraphy and Correlation with Faunas and Floras in the Type Marine Devonian of the Ardenne-Rhenish Regions. Rev. Palaeobot. Palynol. 1987, 50, 211–229. [Google Scholar] [CrossRef]
- Bobrowicz, G.L. Mineralogy, Geochemistry and Alteration as Exploration Guides at Aguas Teñidas Este, Pyrite Belt, Spain. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 1995; p. 424.
- Toscano, M.; Sáez, R.; Almodóvar, G.R. Evolución de los fluidos hidrotermales en la génesis de los sulfuros masivos de Aznalcóllar (Faja Pirítica Ibérica): Evidencias a partir de inclusiones fluidas. Geogaceta 1997, 21, 211–214. [Google Scholar]
- Moura, A.; Noronha, F.; Cathelineau, M.; Boiron, M.C.; Ferreira, A. Evidence of metamorphic fluid migration within the Neves Corvo ore deposits: The fluid inclusion data. In Proceedings of the SEG Neves Corvo Field Conference, Lisbon, Portugal, 11–14 May 1997; pp. 11–14. [Google Scholar]
- Nehlig, P.; Cassard, D.; Marcoux, E. Geometry and genesis of feeder zones of massive sulphide deposits: Constraints from the Río Tinto ore deposits (Spain). Miner. Depos. 1998, 33, 137–149. [Google Scholar] [CrossRef]
- Inverno, C.; Lopes, C.; D’Orey, F.; Carvalho, D. The Cu (Au) stockwork deposit of Salgadinho, Cercal, Portugal, Pyrite Belt, SW Portugal—Paragenetic sequence and fluid inclusion investigation. In Volcanic Environments and Massive Sulfide Deposits, Program and Abstracts; Gemmell, J.B., Pongratz, J., Eds.; CODES, Special Publication: Sydney, Australia, 2000; pp. 99–101. [Google Scholar]
- Sánchez-España, J.; Velasco, F.; Boyce, A.J.; Fallick, A.E. Source and evolution of ore-forming hydrothermal fluids in the northern Iberian Pyrite Belt massive sulphide deposits (SW Spain): Evidence from fluid inclusions and stable isotopes. Miner. Depos. 2003, 38, 519–537. [Google Scholar] [CrossRef]
- Moura, A. Fluids from the Neves Corvo massive sulphide ores, Iberian Pyrite Belt, Portugal. Chem. Geol. 2005, 223, 153–169. [Google Scholar] [CrossRef]
- Solomon, M.; Quesada, C. Zn-Pb-Cu massive sulfide deposits: Brine pool types occur in collisional orogens, black smoker types occur in backarc/arc basins. Geology 2003, 31, 1029–1032. [Google Scholar] [CrossRef]
- Relvas, J.M.R.S.; Tassinari, C.C.G.; Munhà, J.; Barriga, F.J.A.S. Multiple sources for ore-forming fluids in the Neves Corvo VHMS deposit of the Iberian Pyrite Belt (Portugal): Strontium, neodymium and lead isotope evidence. Miner. Depos. 2001, 36, 416–427. [Google Scholar] [CrossRef]
- Barriga, F.J.A.S.; Kerrich, R. Extreme 18O-enriched volcanics and 18O-evolved marine water, Aljustrel, Iberian Pyrite Belt: Transition from high to low Rayleigh number convective regimes. Geochim. Cosmochim. Acta 1984, 48, 1021–1031. [Google Scholar] [CrossRef]
- Fouillac, A.M.; Javoy, M. Oxygen and hydrogen isotopes in the volcano-sedimentary complex of Huelva (Iberian Pyrite Belt): Example of water circulation through a volcano-sedimentary sequence. Earth Planet. Sci. Lett. 1988, 87, 473–484. [Google Scholar] [CrossRef]
- Tornos, F.; Heinrich, C.A. Shale basins, sulfur-deficient ore brines and the formation of exhalative base metal deposits. Chem. Geol. 2008, 247, 195–207. [Google Scholar] [CrossRef]
- Relvas, J.M.R.S.; Barriga, F.J.A.S.; Longstaffe, F.J. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal: II. Oxygen, hydrogen, and carbon isotopes. Econ. Geol. 2006, 101, 791–804. [Google Scholar] [CrossRef]
- Mitsuno, C.; Nakamura, T.; Yamamoto, M.; Kase, K.; Oho, M.; Suzuki, S.; Thadeu, D.; Carvalho, D.; Arribas, A. Geological Studies of the “Iberian Pyrite Belt” with Special Reference to Its Genetical Correlation of the Yanahara Ore Deposit and Others in the Inner Zone of Southwest Japan; University of Okayama: Okayama, Japan, 1986; p. 300. [Google Scholar]
- Kase, K.; Yamamoto, M.; Nakamura, T.; Mitsuno, C. Ore mineralogy and sulfur isotope study of the massive sulphide deposit of Filón Norte, Tharsis Mine, Spain. Miner. Depos. 1990, 25, 289–296. [Google Scholar] [CrossRef]
- Velasco-Acebes, J.; Tornos, F.; Kidane, A.; Wiedenbeck, M.; Velasco, F. Strontium and sulfur isotopes reveal the complex evolution of the Sotiel-Migollas VMS deposit (Iberian Pyrite Belt). In Proceedings of the Goldschmidt Conference 2015, Prague, Czech Republic, 16–21 August 2015; p. 3252. [Google Scholar]
- Eastoe, C.J.; Solomon, M.; García Palomero, F. A sulfur isotope study of the massive and stockwork pyrite deposits at Rio Tinto, Spain. Trans. Inst. Min. Metall. 1986, 95, 201–207. [Google Scholar]
- Marcoux, E. Lead isotope systematics of the giant massive sulphide deposits in the Iberian Pyrite Belt. Miner. Depos. 1998, 33, 45–58. [Google Scholar] [CrossRef]
- Pomiès, C.; Cocherie, A.; Guerrot, C.; Marcoux, E.; Lancelot, J. Pb/Pb isotopic ratio intercalibration with accurate U/Pb measurement. Chem. Geol. 1997, 144, 137–149. [Google Scholar] [CrossRef]
- Nieto, J.M.; Almodóvar, G.R.; Pascual, E.; Sáez, R.; Jagoutz, E. Estudio isotópico con el sistema Re-Os de las mineralizaciones de sulfuros de la Faja Pirítica Ibérica. Geogaceta 1999, 27, 181–184. [Google Scholar]
- Mathur, R.; Munk, L.A.; Townley, B.; Gou, K.Y.; Gómez Miguélez, N.; Titley, S.; Chen, G.G.; Song, S.; Reich, M.; Tornos, F.; et al. Tracing Low-Temperature Aqueous Metal Migration in Mineralized Watersheds with Cu Isotope Fractionation. Appl. Geochem. 2014, 51, 109–115. [Google Scholar] [CrossRef]
- Viers, J.; Grande, J.A.; Zouiten, C.; Freydier, R.; Masbou, J.; Valente, T.; De la Torre, M.L.; Destrigneville, C.; Pokrovsky, O.S. Are Cu Isotopes a Useful Tool to Trace Metal Sources and Processes in Acid Mine Drainage (AMD) Context? Chemosphere 2018, 193, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, M.; Relvas, J.M.R.S.; Carvalho, J.; Larsos, P.B.; Hart, G.; Pinto, A.; Pacheco, N.; Nipiva, P.C.; Barriga, G.; Santos, P. Cu Isotopic Variation in the Neves-Corvo Deposit, Iberian Pyrite Belt. Geochim. Cosmochim. Acta 2008, 72, 12. [Google Scholar]
- Sáez, R.; Cardellach, E.; Moreno, C.; Almodovar, G.R.; Wasylenski, L.E.; Hui, A.K. Tracing Paleoenvironmental Conditions during Massive Sulphide Deposition in the Iberian Pyrite Belt (IPB): A Geochemical and Mo Isotope Approach. In Proceedings of the Goldschmidt Conference 2015, Prague, Czech Republic, 16–21 August 2015; Abstract. p. 2727. [Google Scholar]
- Carvalho, D.; Barriga, F.J.A.S.; Munhá, J. Bimodal siliciclastic systems—The case of the Iberian Pyrite Belt. In Volcanic-Associated Massive Sulphide Deposits: Processes and Examples in Modern and Ancient Settings; Barrie, C.T., Hanningtonm, N.D., Eds.; Reviews in Economic Geology; SEG: Littleton, CO, USA, 1999; Volume 8, pp. 375–408. [Google Scholar]
- Goodfellow, W.D.; Lydon, J.W.; Turner, R.W. Geology and genesis of stratiform sediment-hosted (SEDEX) Zn-Pb-Ag sulphide deposits. In Mineral Deposit Modeling; Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., Duke, J.M., Eds.; Special Paper 40; Geological Association of Canada: St. John’s, NF, Canada, 1993; pp. 201–251. [Google Scholar]
- Hannington, M.D. Volcanogenic Massive Sulfide Deposits. In Geochemistry of Mineral Deposits, 2nd ed.; Scott, S.D., Ed.; Treatise on Geochemistry; Elsevier-Pergamon: Oxford, UK, 2014; pp. 463–488. [Google Scholar]
- Tornos, F.; Peter, J.M.; Allen, R.; Conde, C. Controls on the Siting and Style of Volcanogenic Massive Sulphide Deposits. Ore Geol. Rev. 2015, 68, 142–163. [Google Scholar] [CrossRef]
- Eickmann, B.; Baumberger, T.; Thorseth, I.H.; Strauss, H.; Früh-Green, G.L.; Pedersen, R.B.; Jaeschke, A. Sub-seafloor Sulfur Cycling in a Low-Temperature Barite Field: A Multi-Proxy Study from the Arctic Loki’s Castle Vent Field. Chem. Geol. 2020, 539, 119495. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sáez, R.; González, F.; Donaire, T.; Toscano, M.; Yesares, L.; de Almodóvar, G.R.; Moreno, C. Updating Geological Information about the Metallogenesis of the Iberian Pyrite Belt. Minerals 2024, 14, 860. https://doi.org/10.3390/min14090860
Sáez R, González F, Donaire T, Toscano M, Yesares L, de Almodóvar GR, Moreno C. Updating Geological Information about the Metallogenesis of the Iberian Pyrite Belt. Minerals. 2024; 14(9):860. https://doi.org/10.3390/min14090860
Chicago/Turabian StyleSáez, Reinaldo, Felipe González, Teodosio Donaire, Manuel Toscano, Lola Yesares, Gabriel Ruiz de Almodóvar, and Carmen Moreno. 2024. "Updating Geological Information about the Metallogenesis of the Iberian Pyrite Belt" Minerals 14, no. 9: 860. https://doi.org/10.3390/min14090860
APA StyleSáez, R., González, F., Donaire, T., Toscano, M., Yesares, L., de Almodóvar, G. R., & Moreno, C. (2024). Updating Geological Information about the Metallogenesis of the Iberian Pyrite Belt. Minerals, 14(9), 860. https://doi.org/10.3390/min14090860