About the Origin of Carbonado
Abstract
:1. Introduction
- 1.
- Meteoritic impact [4];
- 2.
- 3.
- 4.
- 5.
2. Materials and Methods
3. Results
3.1. Carbonado Morphology
3.2. EBSD
3.3. X-ray Diffraction Study
3.4. Photoluminescence (PL)
3.5. EPR Spectra
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leonardos, O.H. Diamante e Carbonado do Estado da Bahia; Departamento Nacional da Producção Mineral: Rio de Janeiro, Brazil, 1937; pp. 1–16.
- Kaminsky, F.V.; Klyuev, Y.A.; Prokopchuk, B.I.; Shcheka, S.A.; Smirnov, V.I.; Ivanovskaya, I.N. The first finds of carbonado and a new find of ballas in the Soviet Union. Dokl. Earth Sci. SSSR 1978, 242, 687–689. [Google Scholar]
- Argunov, K.P.; Zinchuk, N.N.; Zuev, V.M.; Kvasnitsa, V.N.; Melnrikov, V.S.; Sleptsov, V.V. Carbonado and defective crystals among small diamonds from kimberlites. Mineral. J. 1985, 7, 95–98. [Google Scholar]
- Smith, J.V.; Dawson, J.B. Carbonado: Diamond aggregates from early impacts of crustal rocks? Geology 1985, 13, 342–343. [Google Scholar] [CrossRef]
- Kaminsky, F.V.; Bartoshinsky, Z.V.; Koptil, V.I. Some questions of terminology of polycrystalline diamond aggregates. Mineral. Collect. 1987, 41, 16–20. [Google Scholar]
- Gorshkov, A.I.; Seliverstov, V.A.; Baykov, A.I.; Anikin, L.P.; Sivtsov, A.V.; Dunin-Barkovsky, R.L. Crystal chemistry and genesis of carbonado diamonds from melanocratic basaltic of Avacha volcano in Kamchatka. Geol. Rudn. Mestorozhd. 1995, 37, 54–66. [Google Scholar]
- Gorshkov, A.I.; Titkov, S.V.; Sivtsov, A.V.; Bershov, L.V.; Marfunin, A.S. First finds of native metals Cr, Ni, and αFe in carbonado from diamond deposits of Yakutia. Geochemistry 1995, 4, 588–591. [Google Scholar]
- Titkov, S.V.; Gorshkov, A.I.; Vinokurov, S.F.; Bershov, L.V.; Solodov, D.I.; Sivtsov, A.V. Geochemistry and genesis of carbonado from Yakut diamond deposits. Geochemistry 2001, 3, 261–270. [Google Scholar]
- Chumak, M.A.; Bartoshinsky, Z.V. Yakutite—A new variety of diamond. Geol. Yakutia 1968, 27, 29–38. [Google Scholar]
- Orlov, Y.L. The Mineralogy of the Diamond; John Wiley & Sons: New York, NY, USA, 1977; p. 235. [Google Scholar]
- Kaminsky, F.V. Carbonado and yakutite: Properties and possible genesis. In International Kimberlite Conference: Extended Abstracts; CPRM Special Publication: Rio de Janeiro, Brazil, 1991; pp. 136–143. [Google Scholar] [CrossRef]
- Kagi, H.; Takahashi, K.; Hidaka, H.; Masuda, A. Chemical properties of Central African carbonado and its genetic implications. Geochim. Cosmochim. Acta 1994, 58, 2629–2638. [Google Scholar] [CrossRef]
- Shibata, K.; Kamioka, H.; Kaminsky, F.V.; Koptil, V.I.; Svisero, D.P. Rare earth element patterns of carbonado and yakutite: Evidence for their crustal origin. Mineral. Mag. 1993, 57, 607–611. [Google Scholar] [CrossRef]
- Gorshkov, A.I.; Bershov, L.V.; Vinokurov, S.F.; Oton, K.L.; Sivtsov, A.V.; Mokhov, A.V.; Bogacheva, E.O. Carbonado from Lencois district, Bahia state (Brazil): Mineral inclusions, physical properties, geochemical features and conditions of formation. Geol. Ore Depos. 1997, 39, 269–277. [Google Scholar]
- Francesson, E.V.; Kaminsky, F.V. Carbonado—A variety of diamond of non-kimberlite genesis. Rep. Acad. Sci. USSR 1974, 219, 187–189. [Google Scholar]
- Demény, A.; Nagy, G.; Garai, J.; Bajnóczi, B.; Németh TDrozd, V.; Hegner, E. Hydrogen isotope compositions in carbonado diamond: Constraints on terrestrial formation. Cent. Eur. Geol. 2011, 54, 51–74. [Google Scholar] [CrossRef]
- Pokhilenko, N.P.; Shumilova, T.G.; Afanasyev, V.P.; Litasov, K.D. Diamonds in the Kamchatka peninsula (Tolbachik and Avacha volcanoes): Natural origin or contamination? Geol. Geophys. 2019, 60, 606–618. [Google Scholar] [CrossRef]
- Trueb, L.F.; Butterman, W.C. Carbonado: A microstructural study. Am. Mineral. 1969, 54, 412–425. [Google Scholar]
- Haggerty, S.E. Carbonado Diamond: A Review of Properties and Origin. Gems Gemol. 2017, 53, 168–179. [Google Scholar] [CrossRef]
- Burgess, R.; Johnson, L.H.; Mattey, D.P.; Harris, J.W.; Turner, G. He, Ar and C isotopes in coated and polycrystalline diamonds. Chem. Geol. 1998, 146, 205–217. [Google Scholar] [CrossRef]
- Chen, J.H.; Van Tendeloo, G. Microstructure of tough polycrystalline natural diamond. J. Electron. Microsc. 1999, 48, 121–129. [Google Scholar] [CrossRef]
- Heaney, P.J.; Vicenzi, E.P.; De, S. Strange diamonds: The mysterious origins of carbonado and framesite. Elements 2005, 1, 85–89. [Google Scholar] [CrossRef]
- Kagi, H.; Fukura, S. Infrared and Raman spectroscopic observations of Central African carbonado and implications for its origin. Eur. J. Mineral. 2008, 20, 387–393. [Google Scholar] [CrossRef]
- Ishibashi, H.; Kagi, H.; Sakuai, H.; Ohfuji, H.; Sumino, H. Hydrous fluid as the growth media of natural polycrystalline diamond, carbonado: Implication from IR spectra and microtextural observations. Am. Mineral. 2012, 97, 1366–1372. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Koeberl, C. New textural evidence on the origin of carbonado diamond: An example of 3-D petrography using X-ray computed tomography. Geosphere 2013, 9, 1336–1347. [Google Scholar] [CrossRef]
- De Carli, P.S. Carbonado origin: Impact vs. subduction. In Proceedings of the American Geophysical Union Meeting, Baltimore, MD, USA, 27–30 May 1997; p. S333. [Google Scholar]
- Irifune, T.; Kurio, A.; Sakamoto, S.; Inoue, T.; Sumiya, H.; Funakoshi, K. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature. Phys. Earth Planet. Inter. 2004, 143–144, 593–600. [Google Scholar] [CrossRef]
- Ozima, M.; Zashu, S.; Tomura, K.; Matsuhisa, Y. Constraints from noble-gas contents on the origin of carbonado diamonds. Nature 1991, 351, 472–474. [Google Scholar] [CrossRef]
- Daulton, T.L.; Ozima, M. Radiation-induced diamond formation in uranium-rich carbonaceous materials. Science 1996, 271, 1260–1263. [Google Scholar] [CrossRef]
- Ozima, M.; Tatsumoto, M. Radiation-induced diamond crystallization: Origin of carbonados and its implications on meteorite nano-diamonds. Geochim. Cosmochim. Acta 1997, 61, 369–376. [Google Scholar] [CrossRef]
- Haggerty, S.E. Diamond-carbonado: Models for a new meteorite class of circum-stellar or solar system origin. In Proceedings of the American Geophysical Union, Spring Meeting, Baltimore, MD, USA, 20–24 May 1996; p. S143. [Google Scholar]
- Trueb, L.F.; De Wys, E.C. Carbonado: Natural polycrystalline diamond. Science 1969, 165, 799–802. [Google Scholar] [CrossRef]
- Gorshkov, A.I.; Vinokurov, S.F.; Ryabchikov, I.D.; Bershov, L.V.; Magazina, L.O.; Sivtsov, A.V.; Solodov, D.I. Mineralogical and geochemical features of gold-bearing carbonado from Pochareu district, Mato Grosso state (Brazil). Geochemistry 2000, 1, 3–15. [Google Scholar]
- Kaminsky, F.V.; Wirth, R.; Moralez, L. Internal texture and syngenetic inclusions in carbonado. Can. Miner. 2013, 51, 39–56. [Google Scholar] [CrossRef]
- Jones, A.P.; Beard, A.; Milledge, H.J.; Cressey, G.; Kirk, C.; De Carli, P. A new nitride mineral in carbonado. In Proceedings of the Eighth International Kimberlite Conference, Victoria, BC, Canada, 22–27 June 2003; p. A95. [Google Scholar]
- Vinogradov, A.P.; Kropotova, O.A.; Orlov, Y.L.; Grinenko, V.A. Isotopic composition of diamond and carbonado crystals. Geochemistry 1966, 12, 1385–1387. [Google Scholar]
- Kaminsky, F.V.; Kirikilitsa, S.I.; Eremenko, G.K.; Polkanov, Y.A.; Khrenov, A.Y. New data on Brazilian carbonados. Dokl. Earth Sci. USSR 1979, 249, 443–445. [Google Scholar]
- Sano, Y.; Yokochi, R.; Terada, K.; Chaves, M.L.; Ozima, M. Ion microprobe Pb–Pb dating of carbonado, polycrystalline diamond. Precambrian Res. 2002, 113, 155–168. [Google Scholar] [CrossRef]
- Vins, V.G. New ultra-deep diamond cleaning technology. GemsGemology 2011, 47, 136. [Google Scholar]
- Zaitsev, A.M. Optical Properties of Diamond: A Data Handbook; Springer: New York, NY, USA, 2001; p. 502. [Google Scholar]
- Gippius, A.A.; Zaitsev, A.M.; Vavilov, V.S. Formation, annealing, and interaction of defects in ion-implanted layers of natural diamond. Sov. Phys. Semicond. USSR 1982, 16, 256–261. [Google Scholar]
- Davies, G. In Chemistry and Physics of Carbon; Marcel Dekker: New York, NY, USA, 1977. [Google Scholar]
- Loubser, J.H.N.; van Wyk, J.A. ESR in the study of diamond. Rep. Progr. Phys. 1978, 41, 1201–1248. [Google Scholar] [CrossRef]
- Van Wyk, J.A. EPR of radiation damage centres W11, W12, W13 and W14 in type Ib diamond. J. Phys. Condens. Matter 1994, 6, 801–810. [Google Scholar]
- Twitchen, D.J.; Newton, M.E.; Baker, J.M.; Tucke, O.D.; Anthony, T.R.; Banholzer, W.F. Electron-paramagnetic-resonance measurements on the di-<001>-split interstitial center in diamond. Phys. Rev. B 1996, 54, 6988–6998. [Google Scholar] [CrossRef]
- Ammerlaan, C.A.J. Paramagnetic Centers in Diamond. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series III/22b; Madelung, O., Schulz, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 6–76. [Google Scholar]
- Shames, A.I.; Osipov, V.Y.; von Bardeleben, H.J.; Vul’, A.Y. Spin S = 1 centers: A universal type of paramagnetic defects in nanodiamonds of dynamic synthesis. J. Phys. Condens. Matter 2012, 24, 225302. [Google Scholar] [CrossRef]
- Haggerty, S.E. Carbonado: Physical and chemical properties, a critical evaluation of proposed origins, and a revised genetic model. Earth-Sci. Rev. 2014, 130, 49–72. [Google Scholar] [CrossRef]
- Afanasiev, V.P.; Pokhilenko, N.P.; Egorova, E.O.; Lindenblot, E.S. The oldest diamond crystals of the Siberian platform. Dokl. Earth Sci. 2019, 489, 77–81. [Google Scholar] [CrossRef]
- Kovalevski, V.V.; Prikhodko, A.V.; Buseck, P.R. Diamagnetism of natural fullerene-like carbon. Carbon 2005, 43, 401–405. [Google Scholar] [CrossRef]
- Tashiro, T.; Ishida, A.; Hori, M.; Igisu, M.; Koike, M.; Méjean, P.; Takahata, N.; Sano, Y.; Komiya, T. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 2017, 549, 516–518. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J. New origin seen for Earth’s tectonic plates. Nature 2014. [Google Scholar] [CrossRef]
- Bercovici, D.; Yanick, R. Plate tectonics, damage and inheritance. Nature 2014, 508, 513–516. [Google Scholar] [CrossRef]
- Jones, N. Minerals yield signs of early plate tectonics for this period. Nature 2008. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Shatsky, V.S.; Zayachkovsky, A.A.; Vavilov, M.A.; Sheshkel, G.G. Diamonds in Metamorphic Rocks of Northern Kazakhstan: Geology of Metamorphic Complexes; Ural Branch of the Russian Academy of Sciences: Sverdlovsk, Russia, 1989; pp. 21–35. [Google Scholar]
- Shatsky, V.S.; Sobolev, N.V.; Zayachkovsky, A.A.; Zorin, Y.M.; Vavilov, M.A. New manifestation of microdiamonds in metamorphic rocks as evidence of the regional nature of ultra-high pressure metamorphism in the Kokchetav massif. Dokl. Earth Sci. USSR 1991, 321, 189–194. [Google Scholar]
- Slodkevich, V.V. Paramorphoses of graphite on diamond. Zap. VMO 1982, 1, 13–33. [Google Scholar]
- Pearson, D.G.; Davies, G.R.; Nixon, P.H.; Milledge, H.J. Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurrences. Nature 1989, 338, 60–62. [Google Scholar] [CrossRef]
- Davies, G.R.; Nixon, P.N.; Pearson, G.D. Tectonic implications of graphitized diamonds from the Ronda peridotite massif, southern Spain. Geology 1993, 21, 471–474. [Google Scholar] [CrossRef]
- Afanasiev, V.P.; Litasov, K.D.; Goryainov, S.V.; Kovalevsky, V.V. Raman spectroscopic analysis of nanopolycrystalline diamond, obtained from shungite at 15 GPa and 1600 °C. Lett. J. Exp. Theor. Phys. 2020, 111, 218–224. [Google Scholar] [CrossRef]
- Yavkin, B.V.; Mamin, G.V.; Gafurov, M.R.; Orlinskii, S.B. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds. Magn. Reson. Solids. 2015, 17, 15101. [Google Scholar]
- Noble, C.J.; Pawlik, T.; Spaeth, J.-M. Electron paramagnetic resonance investigations of nickel defects in natural diamonds. J. Phys. Condens. Matter 1998, 10, 11781–11793. [Google Scholar] [CrossRef]
- Shames, A.I.; Panich, A.M. Paramagnetic defects in nanodiamonds. In Nanodiamonds; Elsevier: Amsterdam, The Netherlands, 2017; pp. 131–154. [Google Scholar]
- Isoya, J.; Kanda, H.; Norris, J.R.; Tang, J.; Bowman, M.K. Fourier-transform and continuous-wave EPR studies of nickel in synthetic diamond: Site and spin multiplicity. Phys. Rev. B 1990, 4, 3905–3913. [Google Scholar] [CrossRef] [PubMed]
- Kovalevsky, V.V. Structural state of shungite carbon. Zhurnal Neorg. Chem. 1994, 39, 31–35. [Google Scholar]
- Simakov, S.K. Physicochemical aspects of macro-, micro- and nano-sized diamond formation in nature. Interdiscip. Sci. Appl. J. Biosph. 2014, 6, 257–264. [Google Scholar]
NN | ZPL Position | FWHM, meV | Center Title | Center Structure | |
---|---|---|---|---|---|
Wavelength, nm | Photon Energy, eV | ||||
1 | 388.8 | 3.188 | 7.0 | ||
2 | 415.2 | 2.985 | 7.2 | N3 | N3V |
3 | 503.2 | 2.463 | 7.2 | H3 | NVN |
4 | 575.0 | 2.155 | 9.0 | center 575 | NV0 |
5 | 637.5 | 1.945 | 13.0 | center 638 | NV− |
Center | S | g1 | g2 | g3 | ghf | D1 | D2 | D3 | References |
---|---|---|---|---|---|---|---|---|---|
ΔMS = 1 | ΔMS = 2 | MHz | |||||||
R1 | 1 | 2.0019 | 2.0020 | 2.0027 | 4.704 | −2805.6 | 1408.6 | 1396.8 | [43] |
W15/NV | 1 | 2.0028 | 4.287 | 1916 | −958 | −958 | [41] | ||
NM1 | 3/2 | 2.0002 | 2.0220 | 2.0220 | 1065.7 | −532.8 | −532.8 | ||
NM2 | 1 | 2.0028 | 4.460 | 2350 | −1170 | −1180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afanasiev, V.; Kovalevsky, V.; Yelisseyev, A.; Mashkovtsev, R.; Gromilov, S.; Ugapeva, S.; Barabash, E.; Ivanova, O.; Pavlushin, A. About the Origin of Carbonado. Minerals 2024, 14, 927. https://doi.org/10.3390/min14090927
Afanasiev V, Kovalevsky V, Yelisseyev A, Mashkovtsev R, Gromilov S, Ugapeva S, Barabash E, Ivanova O, Pavlushin A. About the Origin of Carbonado. Minerals. 2024; 14(9):927. https://doi.org/10.3390/min14090927
Chicago/Turabian StyleAfanasiev, Valentin, Vladimir Kovalevsky, Alexander Yelisseyev, Rudolf Mashkovtsev, Sergey Gromilov, Sargylana Ugapeva, Ekaterina Barabash, Oksana Ivanova, and Anton Pavlushin. 2024. "About the Origin of Carbonado" Minerals 14, no. 9: 927. https://doi.org/10.3390/min14090927
APA StyleAfanasiev, V., Kovalevsky, V., Yelisseyev, A., Mashkovtsev, R., Gromilov, S., Ugapeva, S., Barabash, E., Ivanova, O., & Pavlushin, A. (2024). About the Origin of Carbonado. Minerals, 14(9), 927. https://doi.org/10.3390/min14090927