X-Ray Diffraction Assessment of Expanding Minerals in a Semi-Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural Clays
2.2. Bentonite Clay
3. Experimental Program
3.1. Characterization and Compaction
3.2. The XRD Analysis
4. Results and Discussion
4.1. Gradations
4.2. Moisture Density Relationship
4.3. Swelling Properties
4.4. Minerals Detected by X-Rays
- Montmorillonite group (smectite) with various d-spacings (d—14.4 to 15.6 Å).
- Vermiculite (d—14 Å).
- Chlorite (d—14 Å)
- Illite (d—10 Å)
- Muscovite and Biotite (d—10 Å).
- Other minerals.
4.5. X-Ray Peak Intensity Method
4.6. X-Ray Peak Integrated Area Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carroll, D. Clay Minerals: A Guide to Their X-Ray Identification; Geological Society of America: Boulder, CO, USA, 1970. [Google Scholar] [CrossRef]
- Eckert, M. Max von Laue and the discovery of X-ray diffraction in 1912. Ann. Phys. 2012, 524, A83–A85. [Google Scholar] [CrossRef]
- Kumari, N.; Mohan, C. Basics of clay minerals and their characteristic properties. In Clay and Clay Minerals; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Dafalla, M.A.; Ali, M.D. Quantitative identification of montmorillonite in clays using X-ray diffraction. Aust. Geomech. 1991, 21, 32–34. [Google Scholar]
- Ahmed, R. Engineering Properties and Mineralogical Composition of Expansive Clays in Al-Qatif Area (K.S.A). Master’s Thesis, King Fahd University of Petroleum and Minerals Dhahran, Dhahran, Saudi Arabia, 1988. [Google Scholar]
- Dhowian, A.W.; Erol, A.O.; Youssef, A.A. Evaluation of Expansive Soils and Foundation Methodology in the Kingdom of Saudi Arabia; King Abdul Aziz City for Science and Technology: Riyadh, Saudi Arabia, 1990; p. AT-5-88. [Google Scholar]
- Mahmoud, M.M. Chemical Treatments of Moderate to Highly Expansive Clays. Master’s Thesis, King Saud University, Riyadh, Saudi Arabia, 2011. [Google Scholar]
- Ruwaih, I.A. Experiences with expansive soils in Saudi Arabia. In Proceedings of the 6th International Conference on Expansive Soils, New Delhi, India, 1–4 December 1987; pp. 317–322. [Google Scholar]
- Abduljauwad, S.N.; Al-Sulaimani, G.J.; Basunbul, I.A.; Al-Buraim, I. Laboratory and field studies of response of structures to heave of expansive clay. Geotechnique 1998, 48, 103–121. [Google Scholar] [CrossRef]
- Azam, S.; Abduljauwad, S.N.; Al-Shayea, N.A.; Al-Amoudi, O.S.B. Effects of calcium sulfate on swelling potential of an expansive clay. Geotech. Testing J. 2000, 23, 389–403. [Google Scholar] [CrossRef]
- Dafalla, M.A.; Shamrani, M.A.; Puppala, A.J.; Ali, H.E. Use of Rigid Foundation System on Expansive Soils; ASCE—American Society for Civil Engineers: Reston, VA, USA; GSP (Geotechnical Special Publication): Orlando, FL, USA, 2010; p. 199. [Google Scholar]
- Sabtan, A. Geotechnical properties of expansive clay shale in Tabuk, Saudi Arabia. J. Asian Earth Sci. 2005, 25, 747–757. [Google Scholar] [CrossRef]
- Shaker, A. Hydraulic Conductivity and Shear Strength of Sand-Al Qatif Expansive Clay Mixtures. Master’s Thesis, King Saud University, Riyadh, Saudi Arabia, 2014. [Google Scholar]
- Chittoori, B.C.S.; Moghal, A.A.B.; Pedarla, A.; Al-Mahbashi, A.M. Effect of unit weight on porosity and consolidation characteristics of expansive clays. J. Test. Eval. 2017, 45, 94–104. [Google Scholar] [CrossRef]
- Al-Mahbashi, A.M.; Al-Shamrani, M.A.; Abbas, M.F. Hydromechanical behavior of unsaturated expansive clay under repetitive loading. J. Rock Mech. Geotech. Eng. 2021, 13, 1136–1146. [Google Scholar] [CrossRef]
- Al-Mahbashi, A.M.; Al-Shamrani, M. Long-term and immediate effects of freeze–thaw cycles on the resilient modulus of treated expansive subgrades. Road Mater. Pavement Des. 2022, 24, 2411–2424. [Google Scholar] [CrossRef]
- Mutaz, E.; Shamrani, M.A.; Puppala, A.J.; Dafalla, M.A. Evaluation of chemical stabilization of a highly expansive soil. Transp. Res. Rec. 2011, 2204, 148–157. [Google Scholar] [CrossRef]
- Al-Muhaidib, A.I. Effects of fiber on swell of expansive soils. In Proceedings of the 20th International Offshore and Polar Engineering Conference, Beijing, China, 20–25 June 2010; pp. 20–25. [Google Scholar]
- Shamrani, M.A.; Mutaz, E.; Puppala, A.J.; Dafalla, M.A. Characterization of Problematic Expansive Soils from Mineralogical and Swell Characterization Studies; ASCE—American Society for Civil Engineers: Reston, VA, USA; GSP (Geotechnical Special Publication): Orlando, FL, USA, 2010; p. 199. [Google Scholar]
- Abdullah, A.S.; Elkady, T.Y.; Dhowian, A. Swell and Compressibility of Sand-Expansive Clay Mixtures. In Soil Behavior and Geomechanics; Auris Reference Limited Location: Nottingham, UK, 2014; pp. 15–24. [Google Scholar]
- Dafalla, M.A.; Al-Shamrani, M.A. Swelling characteristics of Saudi Tayma shale and consequential impact on light structures. J. Civ. Eng. Arch. 2014, 8, 613–623. [Google Scholar]
- Dafalla, M.; Al-Shamrani, M.; Al-Mahbashi, A. Expansive Soil Foundation Practice in a Semiarid Region. J. Perform. Constr. Facil. 2017, 31, 04017084. [Google Scholar] [CrossRef]
- Elkady, T.Y.; Al-Mahbashi, A.M.; Al-Refeai, T.O. Stress-dependent soil-water characteristic curves of lime-treated expansive clay. J. Mater. Civ. Eng. 2015, 27, 04014127. [Google Scholar] [CrossRef]
- Al-Mahbashi, A.M.; Elkady, T.Y. Prediction of unsaturated shear strength of expansive clays. Proc. Inst. Civ. Eng. Geotech. Eng. 2017, 170, 407–420. [Google Scholar] [CrossRef]
- Al-Mahbashi, A.M.; Elkady, T.Y.; Al-Shamrani, M.A. Hysteresis soil-water characteristic curves of highly expansive clay. Eur. J. Environ. Civ. Eng. 2018, 22, 1041–1059. [Google Scholar] [CrossRef]
- Shaker, A.A.; Dafalla, M.; Al-Mahbashi, A.M.; Al-Shamrani, M.A. Predicting Hydraulic Conductivity for Flexible Wall Conditions Using Rigid Wall Permeameter. Water 2022, 14, 286. [Google Scholar] [CrossRef]
- Dafalla, M. Predicting Swell in Clay-Sand Mixtures Used in Liners. Appl. Sci. 2023, 13, 11161. [Google Scholar] [CrossRef]
- Al-Rawas, A.; Sutherland, H.; Hago, A.; Basma, A.; Al-Shihi, B. Quantitative Analysis of Clay Minerals Using X-Ray Diffraction Technique. Part 1. Sultan Qaboos Univ. J. Sci. 1998, 3, 31. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Brown, G.; Brindley, G.W. X-Ray diffraction procedures for clay minerals identification. In Crystal Structure of Clay Minerals and Their X-Ray Identification; Brindley, G.W., Brown, G., Eds.; Mineralogical Society: London, UK, 1980. [Google Scholar]
- Visser, J.W.; Wolff, P.M.T.N.O. Absolute Intensities—Outline of a Recommended Practice; Report 641.109; Technisch Physische Dienst: Delft, The Netherlands, 1964. [Google Scholar]
- Chipera, S.I.; Bish, D.L. Fitting full x-ray diffraction patterns for quantitative analysis: A method for readily quantifying crystalline and disordered phases. Adv. Mater. Phys. Chem. 2013, 03, 47–53. [Google Scholar] [CrossRef]
- Runčevski, T.; Brown, C.M. The Rietveld Refinement Method: Half of a Century Anniversary. Cryst. Growth Des. 2021, 21, 4821–4822. [Google Scholar] [CrossRef]
- ASTM D854; Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM: West Conshohocken, PA, USA, 2014.
- ASTM D4318; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM: West Conshohocken, PA, USA, 2017.
- ASTM D422; Standard Test Method for Particle-Size Analysis of Soils. ASTM International: West Conshohocken, PA, USA, 2007.
- ASTM D7928; Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. ASTM: West Conshohocken, PA, USA, 2017.
- ASTM D698; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kNm/m3)). ASTM: West Conshohocken, PA, USA, 2018; Volume 4.
- ASTM D4829; Standard Test Method for Expansion Index of Soils. ASTM: West Conshohocken, PA, USA, 2011.
- Al-Mahbashi, A.M.; Dafalla, M. The distribution and mineralogy of expansive clay in a semi-arid region. Arab. J. Geosci. 2023, 16, 283. [Google Scholar] [CrossRef]
- Al-Rawas, A.A.; Hago, A.; Sutherland, H.H.; Yousif, A.A.; Al-Shihi, M.; Al-Shihi, B. A Comparative Quantitative Study of an Omani Soil Using X-Ray Diffraction Technique. Geotech. Geol. Eng. 2001, 19, 69–84. [Google Scholar] [CrossRef]
Soil/Property | Specific Gravity, Gs | Liquid Limit, LL (%) | The Plastic Limit, PL (%) | Shrinkage Limit, Sh. L (%) | USGS * Classification |
---|---|---|---|---|---|
Hafuf (Hf) | 2.7 | 37.0 | 27.0 | 23.0 | ML-OL |
Hudaibah (Hb) | 2.7 | 33.0 | 23.0 | 16.0 | CL |
Ghatt (Gt) | 2.9 | 59.3 | 33.0 | 14.0 | MH-OH |
Qatif (Qf) | 2.7 | 160.0 | 60.0 | 15.0 | CH-OH |
Tabuk (Tk) | 2.8 | 43.0 | 27.0 | 21.0 | MH-OH |
Property | Value |
---|---|
Specific gravity, Gs | 2.76 |
Liquid limit, LL (%) | 223 |
Plastic limit, PL (%) | 72 |
Plasticity Index, PI (%) | 151 |
Fe2O3 (%) | K2O (%) | Na2O (%) | Al2O3 (%) | MgO (%) | SiO2 (%) | TiO2 (%) | CaO (%) |
---|---|---|---|---|---|---|---|
2.9 | 0.1 | 1.9 | 17.0 | 4.6 | 55.2 | <0.1 | 0.9 |
Mineral | d (Å) |
---|---|
Mica biotite | 24 |
Mica–smectite | 22 |
Mica–smectite | 19.4 |
Smectite–glycerol | 17.8 |
Smectite | 16.8–17 |
Smectite | 15–15.5 |
Chlorite–Smectite | 14.5 |
Chlorite | 14–14.3 |
Smectite, Na | 12.4 |
Palygorskite | 10.3–10.5 |
Smectite, Glycerol | 8.9 |
Chlorite–Smectite | 8.0 |
Sepiolite | 7.4–7.6 |
Nacrite | 7.18 |
kaolinite | 7.15 |
Smectite, Glycerol | 5.9 |
Palygorskite | 3.25 |
Biotite | 2.45 |
Kaolinite | 2.29 |
Soil | Optimum Moisture Content, % | Maximum Dry Density, kN/m3 |
---|---|---|
Hudaiba | 14.2 | 17.6 |
Hafuf | 17.1 | 17.3 |
Qatif | 38 | 11.8 |
Ghatt | 25 | 16 |
Tabuk | 22 | 15 |
Expansion Index, EI | Potential Expansion | Soils |
---|---|---|
0–20 | Very Low | - |
21–50 | Low | Hafuf, Tabuk |
51–90 | Medium | Ghatt |
91–130 | High | - |
>130 | Very High | Qatif |
Clay Composition | Intensity Above Baseline Qatif |
---|---|
Natural Clay | 30 |
Natural Clay Plus 10% bentonite | 40 |
Natural Clay Plus 20% bentonite | 60 |
Natural Clay Plus 30% bentonite | 65 |
Natural Clay Plus 40% bentonite | 65 |
Clay Composition | Intensity Above Baseline Ghatt |
---|---|
Natural Clay | 4 |
Natural Clay Plus 10% bentonite | 5 |
Natural Clay Plus 20% bentonite | 6 |
Natural Clay Plus 30% bentonite | 5 |
Natural Clay Plus 40% bentonite | 15 |
Clay Composition | Intensity Above Baseline Hafuf |
---|---|
Natural Clay | 4 |
Natural Clay Plus 10% bentonite | 5 |
Natural Clay Plus 20% bentonite | 5 |
Natural Clay Plus 30% bentonite | 5 |
Natural Clay Plus 40% bentonite | 10 |
Clay Composition | Intensity Above Baseline Tabuk |
---|---|
Natural Clay | 5 |
Natural Clay Plus 10% bentonite | 5 |
Natural Clay Plus 20% bentonite | 5 |
Natural Clay Plus 30% bentonite | 10 |
Natural Clay Plus 40% bentonite | 20 |
Clay Composition | Intensity Above Baseline Hudaiba |
---|---|
Natural Clay | 4 |
Natural Clay Plus 10% bentonite | 5 |
Natural Clay Plus 20% bentonite | 7 |
Natural Clay Plus 30% bentonite | 12 |
Natural Clay Plus 40% bentonite | 10 |
Bentonite % | Area Method | ||||
---|---|---|---|---|---|
Qatif | Ghatt | Hafuf | Tabuk | Hudaiba | |
40 | 271.755 | 344.3 | 573.18 | 339 | 264.33 |
30 | 279.24 | 120.015 | 215.25 | 301 | 325.5 |
20 | 197.79 | 195.65 | 392.6 | 141.12 | 100.8 |
10 | 207.5 | 111.23 | 178.08 | 191.805 | 152.8 |
0 | 73.44 | 23.125 | 34.435 | 46 | 22.05 |
Area | % of Expansive Minerals Peak Intensity Method | % of Expansive Minerals Integrated Area Method |
---|---|---|
Qatif | 34.7 | 23.9 |
Ghatt | 9.7 | 4.4 |
Hufuf | 16.2 | 5.0 |
Tabuk | 5.7 | 9.3 |
Hudaiba | 20.0 | 6.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dafalla, M.; Al-Mahbashi, A.M.; Al-Shamrani, M. X-Ray Diffraction Assessment of Expanding Minerals in a Semi-Arid Environment. Minerals 2025, 15, 216. https://doi.org/10.3390/min15030216
Dafalla M, Al-Mahbashi AM, Al-Shamrani M. X-Ray Diffraction Assessment of Expanding Minerals in a Semi-Arid Environment. Minerals. 2025; 15(3):216. https://doi.org/10.3390/min15030216
Chicago/Turabian StyleDafalla, Muawia, Ahmed M. Al-Mahbashi, and Mosleh Al-Shamrani. 2025. "X-Ray Diffraction Assessment of Expanding Minerals in a Semi-Arid Environment" Minerals 15, no. 3: 216. https://doi.org/10.3390/min15030216
APA StyleDafalla, M., Al-Mahbashi, A. M., & Al-Shamrani, M. (2025). X-Ray Diffraction Assessment of Expanding Minerals in a Semi-Arid Environment. Minerals, 15(3), 216. https://doi.org/10.3390/min15030216