Mechanical, Chloride Resistance, and Microstructural Properties of Basalt Fiber-Reinforced Fly Ash–Silica Fume Composite Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Test Scheme and Mix Proportion Design
2.3. Testing
2.3.1. Mechanical Performance Test
2.3.2. Impermeability Test
3. Results and Discussion
3.1. Compression Test
3.2. Tensile Test
3.3. Flexural Test
3.4. Chloride Permeability Test
3.4.1. Electric Flux Test
3.4.2. Rapid Chloride Ion Permeability Coefficient Test
3.4.3. Function Fitting
3.5. SEM Images Microstructure Analysis
4. Conclusions
- (1)
- Incorporating basalt fibers improves the compressive strength of concrete. The maximum enhancement in compressive strength occurs when the fiber length is 18 mm and the dosage is 1.5 kg/m3. In this case, the 28-day compressive strength of concrete increased by 18.94% compared to the control group without fibers.
- (2)
- Basalt fibers with a length of 18 mm show better improvement in concrete tensile strength than fibers with 6 mm and 12 mm lengths. The tensile strength of concrete shows the most significant increase, rising by 37.43% compared to the control group when the fiber length is 18 mm and the dosage is 1.0 kg/m3.
- (3)
- Concrete flexural strength improves with the fiber length and dosage increase. The strength increase is as high as 28.72% compared to concrete without fibers when the fiber length is 18 mm and the fiber dosage is 1.5 kg/m3.
- (4)
- Concrete impermeability is enhanced after basalt fibers are incorporated. The electric flux and chloride ion diffusion coefficient are minimized when the fiber length is 18 mm and the dosage is 1.0 kg/m3. Smaller values of these parameters indicate stronger resistance of concrete to the penetration of water and ions, which results in better impermeability of fiber-reinforced concrete.
- (5)
- A nonlinear relationship exists between the electric flux measured by the electric flux method and the chloride ion diffusion coefficient calculated by the rapid chloride ion diffusion coefficient method. The fitted equation is: .
- (6)
- Scanning electron microscopy (SEM) results show that after the incorporation of basalt fibers, the number of internal pores and cracks in the cement matrix decreases. Fly ash and silica fume waste promote the secondary hydration reaction process in the cementitious material, increasing gel products, improving the density of the concrete matrix, reducing the channels through which external substances can enter, and enhancing impermeability. The fibers in the concrete fracture surface are evenly distributed, resisting external tensile forces and effectively dissipating some of the energy, thereby improving the mechanical properties of the concrete.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.G.; Guan, Y.H.; Fan, C.Q.; Cao, G.Q.; Liu, J.L. Experimental and theoretical investigations on the damage evolution of the basalt fiber reinforced concrete under freeze-thaw cycles. Constr. Build. Mater. 2024, 422, 135703. [Google Scholar] [CrossRef]
- Lv, J.; Han, W.C.; Zheng, J.L.; Lin, S.N.; Yuan, S.J. Effects of basalt fiber and rubber particles on the mechanical properties and impact resistance of concrete. Structures 2024, 65, 106677. [Google Scholar] [CrossRef]
- Hu, P.; Song, X.H.; Liu, Y.; Gao, Z.M.; Wu, Q.R.; Zhang, L. Optimizing fiber-reinforced flexible concrete blankets: A study on basalt fiber effects on strength properties. Constr. Build. Mater. 2024, 456, 139272. [Google Scholar] [CrossRef]
- Yang, Q.G.; Wang, H.H.; Zheng, J.Y.; Cheng, W.C.; Xia, S.C. Prediction of mechanical properties of basalt fiber concrete using hybrid recurrent neural networks based on freeze-thaw damage quantification. J. Build. Eng. 2024, 98, 111360. [Google Scholar] [CrossRef]
- Ja’e, I.A.; Sazrin, R.A.N.B.R.; Syamsir, A.; Bhee, N.; Amaechi, C.V.; Min, T.H.; Anggraini, V. Optimisation of mechanical properties and impact resistance of basalt fiber reinforced concrete containing silica fume: Experimental and response surface assessment. Dev. Built Environ. 2024, 17, 100368. [Google Scholar] [CrossRef]
- Huo, X.Y.; Wang, P.W.; Wang, S.H.; Guo, R.; Wang, Y.J. Experimental study on the mechanical properties and impermeability of basalt-PVA hybrid fiber reinforced concrete. Case Stud. Conster. Mat. 2024, 21, e03646. [Google Scholar] [CrossRef]
- Wu, J.; Pang, Q.; Lv, Y.Y.; Zhang, J.P.; Gao, S. Research on the mechanical and physical properties of basalt fiber-reinforced pervious concrete. Materials 2022, 15, 6527. [Google Scholar] [CrossRef]
- Khan, M.B.; Houda, M.; Zada, N.S.; Imran, M.; Benjeddou, O. Hybrid effect of basalt fibers and carbon fibers on concrete mechanical and environmental properties. Results Eng. 2025, 25, 103780. [Google Scholar] [CrossRef]
- Barforoush, M.J.; Roshan, A.M.; Nazarpour, H.; Razavi, S.M. Experimental investigation of the effect of basalt fibers on the mechanical properties and gamma ray shielding properties of high-performance fiber-reinforced concrete containing magnetite fine particles. Constr. Build. Mater. 2025, 458, 139551. [Google Scholar] [CrossRef]
- He, J.; Lu, Z.Y.; Tan, S.R.; Ueda, T.; Pan, Y.F.; Xie, J.H.; Xian, G.J. Effect of temperature variation and pre-sustained loading on the bond between basalt FRP sheets and concrete. Materials 2020, 13, 1530. [Google Scholar] [CrossRef]
- Li, S.P.; Sun, Y.; Qian, Y.; Chen, W.J.; Hu, J.H. Flexural behaviour of post-tensioned precast beams manufactured with basalt-fiber-reinforced recycled concrete—Conventional concrete. J. Build. Eng. 2024, 89, 109154. [Google Scholar] [CrossRef]
- Almohammed, F.; Thakur, M.S.; Lee, D.; Kumar, R.; Singh, T. Flexural and split tensile strength of concrete with basalt fiber: An experimental and computational analysis. Constr. Build. Mater. 2024, 414, 134936. [Google Scholar] [CrossRef]
- Xie, L.; Sun, X.J.; Yu, Z.P.; Guan, Z.X.; Long, A.X.; Lian, H.; Lian, Y. Experimental study and theoretical analysis on dynamic mechanical properties of basalt fiber reinforced concrete. J. Build. Eng. 2020, 62, 105334. [Google Scholar] [CrossRef]
- Zhou, H.; Jia, B.; Huang, H.; Mou, Y. Experimental study on basic mechanical properties of basalt fiber reinforced concrete. Materials 2020, 13, 1362. [Google Scholar] [CrossRef]
- Yang, W.R.; Liu, L.A.; Wu, W.W.; Zhang, K.; Xiong, X.L.; Li, C.W.; Huang, Y.W.; Zhang, X.; Zhou, H. A review of the mechanical properties and durability of basalt fiber recycled concrete. Constr. Build. Mater. 2024, 412, 134882. [Google Scholar] [CrossRef]
- Han, W.; Xia, Q.; Xu, H.; Kaewunruen, S. Engineering, mechanical and dynamic properties of basalt fiber reinforced concrete. Materials 2023, 16, 623. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.R.; Huang, Y.W.; Tang, Z.Y.; Xiong, X.L.; Li, C.W.; Zhong, X.W.; Liu, L.; Zhou, H.; Zhang, X. Impermeability performance and corrosion resistance mechanism of basalt fiber recycled concrete under the coastal tidal environment. Constr. Build. Mater. 2024, 411, 134510. [Google Scholar] [CrossRef]
- Zeng, Y.S.; Zhou, X.Y.; Tang, A.P.; Sun, P. Mechanical properties of chopped basalt fiber-reinforced lightweight aggregate concrete and chopped polyacrylonitrile fiber reinforced lightweight aggregate concrete. Materials 2020, 13, 1715. [Google Scholar] [CrossRef]
- Liu, A.; Kong, D.W.; Jiang, J.T.; Wang, L.L.; Liu, C.; He, R.Y. Mechanical properties and microscopic mechanism of basalt fiber-reinforced red mud concrete. Constr. Build. Mater. 2024, 416, 135155. [Google Scholar] [CrossRef]
- Saradar, A.; Nemati, P.; Paskiabi, A.S.; Moein, M.M.; Moez, H.; Vishki, E.H. Prediction of mechanical properties of lightweight basalt fiber reinforced concrete containing silica fume and fly ash: Experimental and numerical assessment. J. Build. Eng. 2020, 32, 101732. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.P.; He, Y.Z.; Huang, G.J.; Li, J.B.; Niu, Z.X.; Gao, B. A review on the durability of basalt fiber reinforced concrete. Compos. Sci. Technol. 2022, 225, 109519. [Google Scholar] [CrossRef]
- Da, Y.; Li, J.Z.; Xiao, H.G.; Yang, W.W.; Liu, R. Research on the surface abrasion resistance performance of basalt fiber reinforced concrete. J. Build. Eng. 2024, 88, 109125. [Google Scholar] [CrossRef]
- Liu, X.X.; Wang, S.X.; Han, F.; Qin, J.Y.; Lu, L.M.; Xue, Q.; Ji, Y.S. Mechanical relationship between compressive strength and sulfate erosion depth of basalt fiber reinforced concrete. Constr. Build. Mater. 2024, 411, 134412. [Google Scholar] [CrossRef]
- Guo, Y.H.; Gao, J.L.; Lv, J.F. Experimental study on the frost resistance of basalt fiber reinforced concrete. Materials 2024, 17, 4593. [Google Scholar] [CrossRef]
- Li, Y.; Ye, L.F.; Gu, Z.C.; Liu, Y.D. Study on resistance of basalt fiber reinforced concrete to sulfate erosion after cryogenic freeze-thaw cycles. J. Build. Eng. 2024, 98, 111123. [Google Scholar] [CrossRef]
- Wang, X.G.; Yang, L. Experimental study on the effect of basalt fiber length on carbonation resistance and impermeability of shotcrete. Sichuan Archit. 2022, 42, 280–283. [Google Scholar]
- Jiang, C.; Fan, K.; Wu, F. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 2014, 58, 187–193. [Google Scholar] [CrossRef]
- Pehlivanh, Z.O.; Uzun, I.; DemirI, L. Mechanical and micro structural features of autoclaved aerated concrete reinforced with autoclaved polypropylene, carbon, basalt and glass fiber. Constr. Build. Mater. 2015, 96, 428–433. [Google Scholar] [CrossRef]
- Katkhuda, H.; Shatarat, N. Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment. Constr. Build. Mater. 2017, 140, 328–335. [Google Scholar] [CrossRef]
- El-Gelani, A.M.; High, C.M.; Rizkalla, S.H.; Abdalla, E.A. Effects of basalt fibres on mechanical properties of concrete. In Proceedings of the MATEC Web Conference, El Maarif, Morocco, 14 February 2018; p. 01028. [Google Scholar] [CrossRef]
- Wang, X.; He, J.; Mosallam, A.S.; Li, C.; Xin, H. The effects of fiber length and volume on material properties and crack resistance of basalt fiber reinforced concrete (BFRC). Adv. Mater. Sci. Eng. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Yang, L.; Xie, H.; Fang, S. Experimental study on mechanical properties and damage mechanism of basalt fiber reinforced concrete under uniaxial compression. Structures 2021, 31, 330–340. [Google Scholar] [CrossRef]
- Yu, H.Y.; Meng, T.; Zhao, Y.X.; Liao, J.P.; Ying, K.J. Effects of basalt fiber powder on mechanical properties and microstructure of concrete. Case Stud. Constr. Mater. 2022, 17, e01286. [Google Scholar] [CrossRef]
- Xu, Z.N.; Bao, B.; Yao, H.Y.; Shen, Y.; Sun, L. Effect of basalt fiber on mechanical properties of concrete and toughening analysis. Met. Mine. 2024, 1, 310–314. [Google Scholar] [CrossRef]
- Wang, G.; Zhuang, Y.H.; Song, L.B.; He, Z.H.; Zhang, J.R.; Zhou, H.F. Mechanical properties and failure mechanism of fiber-reinforced concrete materials: Effects of fiber type and content. Constr. Build. Mater. 2025, 465, 140190. [Google Scholar] [CrossRef]
- GB/T50081-2019; Standard for Test Methods of Physical and Mechanical Properties of Concrete. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China; China Construction Industry Press: Beijing, China, 2019.
- JG/T261-2009; Concrete Chloride Ion Electric Flux Meter. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2009.
- JG/T262-2009; Concrete Chloride Ion Diffusion Coefficient Meter. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2009.
- Zhang, W.; Gu, J.R.; Zhou, X.; Li, Y.; Wang, Y.G.; Xue, W.; Liu, X.M. Circulating fluidized bed fly ash based multi-solid wastes road base materials: Hydration characteristics and utilization of SO3 and f-CaO. J. Clean. Prod. 2021, 316, 128355. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.M.; Wang, Y.G.; Li, Z.P.; Li, Y.; Ren, Y.Y. Binary reaction behaviors of red mud based cementitious material: Hydration characteristics and Na+ utilization. J. Hazard. Mater. 2021, 410, 124592. [Google Scholar] [CrossRef]
Scholar | Test | Fiber Length | Fiber Content | Time |
---|---|---|---|---|
Jiang, C. [27] | tensile mechanical properties | 12 mm | 0.30% | 2014 |
Pehlivanh, Z.O. [28] | compressive, flexural | 8 mm | 0.30% | 2015 |
Katkhuda, H. [29] | compressive, splitting tensile, flexural | 18 mm | 0.30% | 2017 |
El-Gelani, A.M. [30] | residual flexural stress | / | 0.20% | 2018 |
Wang, X.Z. [31] | mechanical property | 12 mm | 0.10%–0.50% | 2019 |
Zhou, H. [14] | mechanical property | 12 mm | 0.40% | 2020 |
Yang, L. [32] | compressive | / | 0.26% | 2021 |
Yu, H. [33] | anti-abrasion property | / | 0.20% | 2022 |
Xu, Z.N. [34] | compressive, splitting tensile | 12 mm | 0.10% | 2024 |
Wang, G. [35] | mechanical property | / | 0.50% | 2025 |
Testing Items | Detection Result |
main chemical components | SiO2 Al2O3 CaCO3 MgO Fe2O3 |
fiber diameter (μm) | 17.00 |
proportion (g/cm3) | 2.80~3.30 |
tensile strength (N/tex) | 0.41 |
elastic modulus (GPa) | 100.00 |
Materials | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | SO3 | K2O | TiO2 |
---|---|---|---|---|---|---|---|---|
Cement | 18.32 | 59.74 | 4.04 | 3.32 | 8.90 | 3.82 | 0.92 | 0.30 |
Fly ash | 50.68 | 13.28 | 23.20 | 6.45 | 4.36 | 1.32 | 0.24 | 0.47 |
Silica fume | 98.10 | 0.52 | 0.46 | 0.32 | 0.28 | 0.31 | - | - |
Sieve Size/mm | 25 | 19 | 16 | 9.5 | 4.75 | 2.36 |
---|---|---|---|---|---|---|
Pass rate/% | 99.90 | 79.60 | 57.30 | 32.40 | 0.00 | 0.00 |
Sieve Size/mm | 4.75 | 2.36 | 1.18 | 0.60 | 0.30 | 0.15 | 0.075 |
---|---|---|---|---|---|---|---|
Pass rate/% | 99.80 | 90.60 | 73.20 | 65.40 | 43.60 | 24.20 | 2.60 |
Sample NO. | Water (kg/m3) | Cement (kg/m3) | Coarse Aggregate (kg/m3) | Fine Aggregate (kg/m3) | Fly Ash (kg/m3) | Silica Fume (kg/m3) | Water Reducing Agent(kg/m3) | Fiber Length (mm) | Fiber Content (kg/m3) |
---|---|---|---|---|---|---|---|---|---|
B0 | 185 | 320 | 1195 | 615 | 155 | 40 | 13.75 | / | 0 |
B0.5–6 | 185 | 320 | 1195 | 615 | 155 | 40 | 13.75 | 6 | 0.5 |
B0.5–12 | 185 | 320 | 1195 | 615 | 155 | 40 | 13.75 | 12 | |
B0.5–18 | 185 | 320 | 1195 | 615 | 155 | 40 | 13.75 | 18 | |
B1.0–6 | 185 | 320 | 1195 | 615 | 155 | 40 | 13.75 | 6 | 1.0 |
B1.0–12 | 185 | 320 | 1195 | 615 | 155 | 40 | 13.75 | 12 | |
B1.0–18 | 185 | 320 | 1195 | 615 | 155 | 40 | 13.75 | 18 | |
B1.5–6 | 185 | 320 | 1195 | 615 | 155 | 40 | 13.75 | 6 | 1.5 |
B1.5–12 | 185 | 320 | 1195 | 615 | 155 | 40 | 13.75 | 12 | |
B1.5–18 | 185 | 320 | 1195 | 615 | 155 | 40 | 13.75 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, Y.; Zhang, W. Mechanical, Chloride Resistance, and Microstructural Properties of Basalt Fiber-Reinforced Fly Ash–Silica Fume Composite Concrete. Minerals 2025, 15, 348. https://doi.org/10.3390/min15040348
Li Y, Liu Y, Zhang W. Mechanical, Chloride Resistance, and Microstructural Properties of Basalt Fiber-Reinforced Fly Ash–Silica Fume Composite Concrete. Minerals. 2025; 15(4):348. https://doi.org/10.3390/min15040348
Chicago/Turabian StyleLi, Yishan, Yan Liu, and Wei Zhang. 2025. "Mechanical, Chloride Resistance, and Microstructural Properties of Basalt Fiber-Reinforced Fly Ash–Silica Fume Composite Concrete" Minerals 15, no. 4: 348. https://doi.org/10.3390/min15040348
APA StyleLi, Y., Liu, Y., & Zhang, W. (2025). Mechanical, Chloride Resistance, and Microstructural Properties of Basalt Fiber-Reinforced Fly Ash–Silica Fume Composite Concrete. Minerals, 15(4), 348. https://doi.org/10.3390/min15040348