Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes
Abstract
:1. Introduction
2. Geological Setting and Samples
2.1. Regional Geology
2.2. Geology of Study Area
2.3. Sample Descriptions
- Monzogranite (MG), which was collected at 96°32′07″ E, 35°51′07″ N (Figure 1c), is flesh-pink and has a fine- to medium-grained granitic texture (Figure 2a). It consists of plagioclase (~30 vol.%), potassium feldspar (~25 vol.%), quartz (~40 vol.%), biotite (<5 vol.%) and accessory minerals including zircon (Figure 2b).
- Quartz porphyry (QP), which was collected at 96°32′17″ E, 35°51′07″ N (Figure 1c), is light gray and has a porphyritic texture (Figure 2c). The phenocrysts are potassium feldspar (~10 vol.%), plagioclase (~10 vol.%) and quartz (~10 vol.%), and the groundmass consists of plagioclase (~20 vol.%), K-feldspar (~20 vol.%), quartz (~20 vol.%) and biotite (<5 vol.%) (Figure 2d).
3. Analytical Methods
3.1. Zircon U-Pb Isotope Analyses
3.2. Whole-Rock Major and Trace Elements Analyses
3.3. Zircon In Situ Lu-Hf Isotope Analyses
4. Results
4.1. Zircon U-Pb Dating
4.2. Major and Trace Elements
4.2.1. Monzonitic Granite (MG)
Rock Type | Monzogranite | Quartz Porphyry | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample No. | 18XSG1-1 | 18XSG1-2 | 18XSG1-3 | 18XSG1-4 | 18XSG1-5 | 18XSG2-1 | 18XSG2-2 | 18XSG2-3 | 18XSG2-4 | 18XSG2-5 |
Major elements (wt%) | ||||||||||
SiO2 | 78.21 | 73.00 | 78.29 | 79.56 | 79.01 | 74.32 | 65.86 | 66.68 | 68.91 | 72.31 |
TiO2 | 0.10 | 0.21 | 0.10 | 0.08 | 0.10 | 0.39 | 0.81 | 0.58 | 0.46 | 0.45 |
Al2O3 | 11.65 | 14.46 | 12.17 | 10.49 | 11.49 | 11.22 | 20.20 | 14.76 | 12.92 | 12.95 |
Fe2O3 | 0.43 | 1.22 | 0.40 | 0.29 | 0.77 | 4.00 | 4.44 | 2.17 | 1.67 | 3.28 |
FeO | 0.81 | 0.64 | 0.79 | 0.73 | 0.79 | 1.59 | 1.45 | 2.94 | 3.27 | 1.85 |
MnO | 0.03 | 0.06 | 0.02 | 0.03 | 0.03 | 0.16 | 0.20 | 0.21 | 0.28 | 0.16 |
MgO | 0.12 | 0.24 | 0.11 | 0.11 | 0.12 | 0.78 | 1.01 | 1.51 | 1.69 | 0.87 |
CaO | 1.45 | 0.76 | 0.27 | 2.05 | 0.34 | 1.45 | 1.61 | 2.02 | 3.44 | 1.38 |
Na2O | 5.77 | 4.10 | 6.24 | 5.11 | 5.67 | 0.29 | 0.12 | 0.17 | 0.16 | 0.22 |
K2O | 0.36 | 3.97 | 0.50 | 0.31 | 0.61 | 4.40 | 2.66 | 7.56 | 5.77 | 5.21 |
P2O5 | 0.02 | 0.05 | 0.02 | 0.02 | 0.01 | 0.12 | 0.20 | 0.16 | 0.15 | 0.15 |
LOI | 0.90 | 1.25 | 0.70 | 1.20 | 0.85 | 1.20 | 1.00 | 1.10 | 0.80 | 1.10 |
Total | 99.86 | 99.96 | 99.61 | 99.99 | 99.79 | 99.92 | 99.57 | 99.86 | 99.51 | 99.90 |
FeOT | 1.21 | 1.76 | 1.16 | 1.01 | 1.50 | 5.25 | 5.53 | 4.95 | 4.83 | 4.85 |
Mg# | 15.29 | 19.99 | 14.69 | 16.79 | 12.71 | 21.25 | 25.03 | 35.66 | 38.92 | 24.64 |
A/CNK | 0.93 | 1.16 | 1.08 | 0.84 | 1.08 | 1.42 | 3.36 | 1.21 | 1.01 | 1.52 |
A/NK | 1.18 | 1.31 | 1.13 | 1.20 | 1.15 | 2.14 | 6.57 | 1.74 | 1.98 | 2.15 |
Trace elements (ppm) | ||||||||||
Li | 0.25 | 4.01 | 2.19 | 4.02 | 2.66 | 21.81 | 48.51 | 22.86 | 14.37 | 20.46 |
Be | 1.96 | 1.18 | 1.58 | 1.32 | 1.06 | 0.87 | 1.54 | 0.86 | 0.89 | 0.93 |
B | 11.49 | 18.19 | 8.33 | 9.35 | 6.57 | 11.76 | 19.34 | 14.52 | 8.98 | 12.21 |
Sc | 1.09 | 1.11 | 2.14 | 1.81 | 1.67 | 7.73 | 10.27 | 9.08 | 7.58 | 7.56 |
Ti | 537.80 | 1298.00 | 564.60 | 421.40 | 472.20 | 2275.00 | 3990.00 | 3129.00 | 2380.00 | 2497.00 |
V | 3.22 | 16.18 | 2.51 | 3.06 | 3.65 | 59.89 | 92.46 | 74.28 | 58.62 | 64.67 |
Cr | 5.27 | 6.65 | 4.08 | 5.54 | 3.91 | 7.70 | 4.71 | 4.95 | 6.34 | 5.85 |
Mn | 154.80 | 370.20 | 103.60 | 139.40 | 164.50 | 1171.00 | 1327.00 | 1396.00 | 1823.00 | 1075.00 |
Co | 2.86 | 4.10 | 3.16 | 2.25 | 3.54 | 10.41 | 10.14 | 7.59 | 87.14 | 7.46 |
Ni | 2.50 | 3.13 | 1.70 | 2.22 | 1.32 | 4.01 | 3.39 | 2.77 | 4.98 | 3.11 |
Cu | 4.01 | 36.72 | 4.03 | 4.08 | 3.32 | 152.00 | 93.74 | 516.90 | 280.10 | 273.20 |
Zn | 9.70 | 63.54 | 7.41 | 9.01 | 8.17 | 163.90 | 184.50 | 157.10 | 112.20 | 147.50 |
Ga | 7.47 | 11.05 | 10.51 | 10.70 | 8.87 | 11.16 | 17.50 | 12.54 | 10.50 | 11.73 |
As | 7.46 | 9.82 | 2.73 | 3.45 | 2.06 | 18.23 | 13.55 | 6.61 | 5.41 | 8.36 |
Se | 1.14 | 1.08 | 1.25 | 1.22 | 1.06 | 1.70 | 1.76 | 1.42 | 1.47 | 1.48 |
Rb | 17.68 | 119.50 | 22.19 | 15.21 | 26.93 | 154.50 | 127.80 | 254.90 | 168.00 | 182.70 |
Sr | 56.41 | 309.10 | 63.22 | 81.85 | 52.61 | 55.72 | 32.52 | 74.41 | 103.40 | 56.50 |
Y | 9.83 | 7.67 | 13.03 | 14.79 | 11.42 | 12.58 | 19.36 | 15.37 | 14.42 | 13.64 |
Zr | 63.48 | 165.60 | 62.83 | 59.17 | 55.76 | 109.10 | 194.90 | 149.40 | 113.30 | 120.00 |
Nb | 11.56 | 4.74 | 12.39 | 11.46 | 13.83 | 4.29 | 6.95 | 5.30 | 4.06 | 5.01 |
Mo | 5.49 | 1.50 | 0.50 | 0.84 | 3.10 | 1.42 | 5.32 | 0.49 | 1.24 | 0.65 |
Ag | 0.09 | 0.17 | 0.08 | 0.09 | 0.06 | 1.16 | 0.83 | 0.98 | 1.12 | 0.46 |
Cd | 0.44 | 1.14 | 0.40 | 0.39 | 0.35 | 0.77 | 1.43 | 1.01 | 0.77 | 0.90 |
Sn | 2.33 | 1.09 | 1.10 | 1.25 | 1.03 | 1.40 | 1.60 | 1.19 | 1.71 | 1.70 |
Sb | 132.50 | 125.60 | 32.66 | 60.10 | 29.31 | 11.86 | 35.39 | 26.90 | 44.45 | 638.60 |
Cs | 0.55 | 2.22 | 0.57 | 0.73 | 0.74 | 2.23 | 4.00 | 3.56 | 1.85 | 2.90 |
Ba | 27.92 | 1670.00 | 61.86 | 49.33 | 70.10 | 1186.00 | 154.40 | 1466.00 | 1400.00 | 1609.00 |
La | 21.51 | 59.99 | 28.61 | 35.10 | 17.11 | 23.35 | 36.78 | 14.84 | 37.11 | 17.02 |
Ce | 41.25 | 101.30 | 51.45 | 63.35 | 32.10 | 41.48 | 65.29 | 27.78 | 61.85 | 32.34 |
Pr | 3.95 | 10.40 | 5.14 | 6.08 | 3.25 | 4.42 | 7.01 | 2.98 | 6.43 | 3.52 |
Nd | 12.24 | 31.03 | 15.73 | 17.99 | 10.02 | 15.69 | 23.66 | 10.91 | 22.22 | 12.53 |
Sm | 2.04 | 3.52 | 2.55 | 2.99 | 1.91 | 2.73 | 3.73 | 2.09 | 3.47 | 2.33 |
Eu | 0.19 | 1.23 | 0.25 | 0.26 | 0.19 | 0.80 | 0.79 | 0.71 | 0.94 | 0.77 |
Gd | 1.80 | 2.70 | 2.21 | 2.70 | 1.88 | 2.58 | 3.64 | 2.35 | 3.18 | 2.50 |
Tb | 0.27 | 0.30 | 0.33 | 0.39 | 0.31 | 0.37 | 0.51 | 0.39 | 0.45 | 0.39 |
Dy | 1.64 | 1.48 | 2.06 | 2.20 | 1.90 | 2.20 | 3.25 | 2.52 | 2.65 | 2.36 |
Ho | 0.35 | 0.30 | 0.46 | 0.50 | 0.42 | 0.48 | 0.73 | 0.57 | 0.54 | 0.50 |
Er | 1.11 | 0.89 | 1.44 | 1.57 | 1.33 | 1.46 | 2.31 | 1.73 | 1.56 | 1.50 |
Tm | 0.18 | 0.14 | 0.25 | 0.26 | 0.23 | 0.24 | 0.36 | 0.27 | 0.25 | 0.23 |
Yb | 1.32 | 0.98 | 1.75 | 1.85 | 1.59 | 1.66 | 2.43 | 1.82 | 1.57 | 1.51 |
Lu | 0.21 | 0.16 | 0.29 | 0.31 | 0.27 | 0.28 | 0.39 | 0.29 | 0.25 | 0.23 |
Hf | 3.94 | 6.29 | 3.87 | 3.67 | 3.48 | 4.30 | 7.83 | 6.02 | 4.54 | 4.82 |
Ta | 1.27 | 0.37 | 1.17 | 1.22 | 1.05 | 0.32 | 0.54 | 0.42 | 0.33 | 0.40 |
W | 31.53 | 29.66 | 28.61 | 30.77 | 22.49 | 21.76 | 15.94 | 18.53 | 15.19 | 93.29 |
Tl | 0.20 | 1.12 | 0.22 | 0.19 | 0.23 | 1.45 | 1.01 | 2.35 | 1.71 | 1.68 |
Pb | 5.03 | 23.05 | 2.62 | 5.55 | 3.04 | 277.10 | 59.12 | 17.47 | 37.36 | 15.90 |
Bi | 0.20 | 0.52 | 0.15 | 0.20 | 0.10 | 0.14 | 0.09 | 0.07 | 0.12 | 0.08 |
Th | 23.37 | 16.39 | 34.20 | 28.95 | 27.73 | 8.32 | 12.60 | 9.97 | 7.68 | 8.21 |
U | 1.98 | 4.34 | 2.07 | 3.76 | 2.25 | 1.78 | 2.76 | 2.37 | 1.57 | 1.61 |
ΣREEs | 88.06 | 214.41 | 112.52 | 135.54 | 72.50 | 97.74 | 150.88 | 69.27 | 142.46 | 77.72 |
ΣLREEs | 81.17 | 207.47 | 103.73 | 125.77 | 64.58 | 88.47 | 137.26 | 59.31 | 132.02 | 68.51 |
ΣHREEs | 6.89 | 6.94 | 8.79 | 9.77 | 7.92 | 9.27 | 13.62 | 9.96 | 10.44 | 9.22 |
(La/Yb)N | 11.71 | 43.94 | 11.71 | 13.59 | 7.70 | 10.08 | 10.87 | 5.85 | 16.94 | 8.11 |
Eu/Eu* | 0.30 | 1.23 | 0.32 | 0.28 | 0.31 | 0.92 | 0.66 | 0.99 | 0.87 | 0.98 |
TZr (°C) | 647.73 | 761.73 | 666.20 | 630.77 | 658.52 | 753.40 | 889.96 | 748.40 | 698.63 | 767.19 |
4.2.2. Quartz Porphyry (QP)
4.3. In Situ Zircon Hf Isotope
5. Discussion
5.1. Petrogenesis of the XSG Granitoids
5.2. Geochronology and Tectonic Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EKOB | East Kunlun Orogenic Belt |
BAO | Buqingshan-A’nyemaqing Ocean |
AOB | A’nyemaqen Ophiolitic Belt |
NKB | Caledonian back-arc basin of Northern East Kunlun Orogenic Belt |
CKB | uplifted granitic basement of Central East Kunlun Orogenic Belt |
SKB | composite accretion of the Southern East Kunlun Orogenic Belt |
NEKF | Northern East Kunlun fault |
CEKF | Central East Kunlun fault |
SEKF | Southern East Kunlun fault |
ATF | Altyn Tagh strike-slip fault |
WWF | Wenquangou–Wahongshan fault |
XSG | Xingshugou |
MG | monzogranite |
Qtz | quartz |
Pl | plagioclase |
Kfs | potassium feldspar |
Zir | zircon |
QP | quartz porphyry |
CL | cathodoluminescence |
LREEs | light rare earth elements |
TDM2 | two-stage model age |
References
- Whalen, J.B.; Currue, K.L.; Chappell, B.W. A-type granites: Geochemical characteritics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite type. Pac. Geol. 1974, 18, 173–174. [Google Scholar]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 2011, 83, 1–26. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- White, A.J.R.; Chappell, B.W. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. In Circum-Pacific Plutonic Terranes; Roddick, J.A., Ed.; Geological Society of America: Boulder, CO, USA, 1983; Volume 159, pp. 21–24. [Google Scholar]
- White, A.J.R. Sources of Granite Magmas; Geological Society of America: Boulder, CO, USA, 1979; p. 539. [Google Scholar]
- Loiselle, M.C.; Wones, D.R. Characteristics and origin of anorogenic granites. Geol. Soc. Am. 1979, 11, 468. [Google Scholar]
- Bian, Q.T.; Li, D.H.; Pospelov, I.; Yin, L.M.; Li, H.S.; Zhao, D.S.; Chang, C.F.; Luo, X.Q.; Gao, S.L.; Astrakhantsev, O.; et al. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. J. Asian Earth Sci. 2004, 23, 577–596. [Google Scholar] [CrossRef]
- Dong, Y.P.; He, D.F.; Sun, S.S.; Liu, X.M.; Zhou, X.H.; Zhang, F.F.; Yang, Z.; Cheng, B.; Zhao, G.C.; Li, J.H. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Sci. Rev. 2018, 186, 231–261. [Google Scholar] [CrossRef]
- Li, R.; Pei, X.; Pei, L.; Li, Z.; Chen, G.; Chen, Y.; Liu, C.; Wang, M. The Early Triassic Andean-type Halagatu granitoids pluton in the East Kunlun orogen, northern Tibet Plateau: Response to the northward subduction of the Paleo-Tethys Ocean. Gondwana Res. 2018, 62, 212–226. [Google Scholar] [CrossRef]
- Li, Z.C.; Pei, X.Z.; Bons, P.D.; Li, R.B.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wang, M.; Zhao, S.W.; et al. Petrogenesis and tectonic setting of the early-middle triassic subduction-related granite in the eastern segment of East Kunlun: Evidences from petrology, geochemistry, and zircon U-Pb-Hf isotopes. Int. Geol. Rev. 2021, 64, 698–721. [Google Scholar] [CrossRef]
- Wu, D.Q.; Sun, F.Y.; Pan, Z.C.; Tian, N. Geochronology, geochemistry, and Hf isotopic compositions of Triassic igneous rocks in the easternmost segment of the East Kunlun Orogenic Belt, NW China: Implications for magmatism and tectonic evolution. Int. Geol. Rev. 2020, 63, 1011–1029. [Google Scholar] [CrossRef]
- Xue, H.R.; Sun, F.Y.; Li, L.; Xin, W. Geochronology, geochemistry, and Sr–Nd–Hf isotopes of the Late Permian–Early Triassic granitoids in Eastern Kunlun Orogen, Northwest China: Petrogenesis and implications for geodynamic setting. Int. Geol. Rev. 2020, 63, 696–716. [Google Scholar] [CrossRef]
- Pan, Z.C.; Sun, F.Y.; Cong, Z.C. Petrogenesis, Sources, and Tectonic Settings of Triassic Volcanic Rocks in the Ela Mountain Area of the East Kunlun Orogen: Insights from Geochronology, Geochemistry and Hf Isotopic Compositions. Minerals 2022, 12, 1085. [Google Scholar] [CrossRef]
- Xu, Q.L.; Sun, Y.G.; Mao, G.Z.; Xin, W.; Yang, Y.Q. Petrogenesis of the Ore-Related Intrusions of the Aikengdelesite Mo (–Cu) and Halongxiuma Mo Deposits: Implication for Geodynamic Evolution and Mineralization in the East Kunlun Orogen, Northwest China. Minerals 2023, 13, 447. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, Y.; Sun, S.; He, D.; Hui, B.; Yue, Y.; Ren, X.; He, W. Late Triassic extension of thickened lithosphere of the East Kunlun orogenic Belt, northern Tibetan Plateau: Evidence from the geochemistry and geochronology of mafic magmatism. Gondwana Res. 2025, 137, 99–116. [Google Scholar] [CrossRef]
- Li, H.R.; Qiao, J.F.; Sun, F.Y.; Qian, Y.; Wang, Y.Z.; Bakht, S.; Liu, H.T.; Gu, Y. Three episodes of Triassic volcanism in the Eastern Kunlun Orogen, NW China: Constraints for evolution of the Paleo-Tethys Ocean. Int. Geol. Rev. 2024, 66, 1815–1837. [Google Scholar] [CrossRef]
- Yang, J.S.; Shi, R.D.; Wu, C.L.; Wang, X.B.; Robinson, P.T. Dur’ngoi ophiolite in East Kunlun, Northeast Tibetan plateau: Evidence for paleo-Tethyan suture in Northwest China. J. Earth Sci. 2009, 20, 303–331. [Google Scholar] [CrossRef]
- Chen, L.; Sun, Y.; Pei, X.Z.; Gao, M. Northernmost paleo-tethyan oceanic basin in Tibet:Geo-chronological evidence from ~(40)Ar/~(39)Ar age dating of Dur’ngoi ophiolite. Chin. Sci. Bull. 2001, 46, 1203–1205. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Pei, X.Z.; Liu, R.B.; Li, Z.C.; Zhang, X.F.; Liu, Z.G.; Chen, G.C.; Chen, Y.X.; Ding, S.P.; Guo, J.F. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A’nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta GeoloGICA Sin. 2011, 85, 185–194, (In Chinese with English Abstract). [Google Scholar]
- Liu, B.; Ma, C.Q.; Zhang, J.Y.; Xiong, F.H.; Huang, J.; Jiang, H.A. 40Ar–39Ar age and geochemistry of subduction-related mafic dikes in northern Tibet, China: Petrogenesis and tectonic implications. Int. Geol. Rev. 2014, 56, 57–73. [Google Scholar] [CrossRef]
- Pan, Z.C.; Sun, F.U.; Cong, Z.H.; Tian, N.; Xin, W.; Wang, L.; Zhang, Y.J.; Wu, D.Q. Petrogenesis and Tectonic Implications of the Triassic Granitoids in the Ela Mountain Area of the East Kunlun Orogenic Belt. Minerals 2022, 12, 880. [Google Scholar] [CrossRef]
- Zhao, X.; Fu, L.B.; Wei, J.H.; Bagas, L.; Santosh, M.; Liu, Y.; Zhang, D.H.; Zhou, H.Z. Late Permian back-arc extension of the eastern Paleo-Tethys Ocean: Evidence from the East Kunlun Orogen, Northern Tibetan Plateau. Lithos 2019, 340–341, 34–48. [Google Scholar] [CrossRef]
- Xia, R.; Deng, J.; Qing, M.; Li, W.L.; Guo, X.D.; Zeng, G.Z. Petrogenesis of ca. 240 Ma intermediate and felsic intrusions in the Nan’getan: Implications for crust–mantle interaction and geodynamic process of the East Kunlun Orogen. Ore Geol. Rev. 2017, 90, 1099–1117. [Google Scholar] [CrossRef]
- Huang, H.; Niu, Y.L.; Nowell, G.; Zhao, Z.D.; Yu, X.H.; Zhu, D.C.; Mo, X.X.; Ding, S. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chem. Geol. 2014, 370, 1–18. [Google Scholar] [CrossRef]
- Kong, J.J.; Niu, Y.L.; Hu, Y.; Zhang, Y.; Shao, F.L. Petrogenesis of the Triassic granitoids from the East Kunlun Orogenic Belt, NW China: Implications for continental crust growth from syn-collisional to post-collisional setting. Lithos 2020, 364–365, 105513. [Google Scholar] [CrossRef]
- Yuan, C.; Sun, M.; Xiao, W.; Wilde, S.; Li, X.; Liu, X.; Long, X.; Xia, X.; Ye, K.; Li, J. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for adakite and magmas from the MASH Zone. Int. J. Earth Sci. 2009, 98, 1489–1510. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.X.; Chung, S.L.; Wyman, D.A.; Sun, Y.L.; Zhao, Z.H.; Zhu, Y.T.; Qiu, H.N. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos 2011, 126, 54–67. [Google Scholar] [CrossRef]
- Shao, F.L.; Niu, Y.L.; Liu, Y.; Chen, S.; Kong, J.J.; Duan, M. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 2017, 282–283, 33–44. [Google Scholar] [CrossRef]
- Kamaunji, V.D.; Wang, L.X.; Ma, C.Q.; Liu, J.; Zhu, Y.X. Petrogenesis and tectonic implication of the Permian-Triassic syenogranites from the eastern segment of the East Kunlun Orogen, China. Lithos 2021, 402–403, 105932. [Google Scholar] [CrossRef]
- Yao, L.; Dong, S.Y.; Lü, Z.C.; Zhao, C.S.; Pang, Z.S.; Yu, X.F.; Xue, J.L.; Geng, L.; Zhang, Z.H.; Liu, Y. Origin of the Late Permian gabbros and Middle Triassic granodiorites and their mafic microgranular enclaves from the Eastern Kunlun Orogen Belt: Implications for the subduction of the Palaeo-Tethys Ocean and continent–continent collision. Geol. J. 2018, 55, 147–172. [Google Scholar] [CrossRef]
- Ding, Q.F.; Jiang, S.; Sun, F.Y. Zircon U–Pb geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: Petrogenesis and tectonic implications. Lithos 2014, 205, 266–283. [Google Scholar] [CrossRef]
- Xia, R.; Wang, C.M.; Qing, M.; Li, W.L.; Carranza, E.J.M.; Guo, X.D.; Ge, L.S.; Zeng, G.Z. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan’getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys. Lithos 2015, 234–235, 47–60. [Google Scholar] [CrossRef]
- Yin, S.; Ma, C.q.; Xu, J.n. Geochronology, geochemical and Sr–Nd–Hf-Pb isotopic compositions of the granitoids in the Yemaquan orefield, East Kunlun orogenic belt, northern Qinghai-Tibet Plateau: Implications for magmatic fractional crystallization and sub-solidus hydrothermal alteration. Lithos 2017, 294–295, 339–355. [Google Scholar] [CrossRef]
- Qu, H.Y.; Friehauf, K.; Santosh, M.; Pei, R.F.; Li, D.X.; Liu, J.N.; Zhou, S.M.; Wang, H. Middle–Late Triassic magmatism in the Hutouya Fe–Cu–Pb–Zn deposit, East Kunlun Orogenic Belt, NW China: Implications for geodynamic setting and polymetallic mineralization. Ore Geol. Rev. 2019, 113, 103088. [Google Scholar] [CrossRef]
- Yin, S.; Ma, C.Q.; Xu, J.N.; Fu, J.L.; Zhang, X.N. The role of crystal mush in porphyry systems: A case study from the Baishiya ore field, East Kunlun orogenic belt, northern Qinghai-Tibet plateau. Ore Geol. Rev. 2022, 146, 104962. [Google Scholar] [CrossRef]
- Mo, X.X.; Luo, Z.H.; Deng, J.F.; Yu, X.H.; Liu, C.D.; CHen, H.W.; Yuan, W.M.; Liu, Y.H. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geol. J. China Univ. 2007, 13, 403–414, (In Chinese with English Abstract). [Google Scholar]
- Sun, F.Y.; (Geological Survey Institute of Jilin University, Changchun, China); Li, B.L.; (Geological Survey Institute of Jilin University, Changchun, China). Research on Major Prospecting Challenges in the East Kunlun Metallogenic Belt. Unpublished work. 2009. (In Chineses) [Google Scholar]
- Xiong, F.; Ma, C.; Zhang, J. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for magma mixing during subduction of Paleo-Tethyan Lithosphere. Mineral. Petrol. 2012, 104, 211–224. [Google Scholar] [CrossRef]
- Yuan, C.; Zhou, M.F.; Sun, M.; Zhao, Y.J.; Wilde, S.; Long, X.P.; Yan, D.P. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth Planet. Sci. Lett. 2010, 290, 481–492. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.h.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.00—A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; Volume 4, pp. 1–4. [Google Scholar]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Streckeisen, A.L. To each plutonic rock its proper name. Earth-Sci. Rev. 1976, 12, 1–33. [Google Scholar]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Sun, S.s.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites: Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar]
- Blichert-Toft, J.; Chauvel, C.; Albarède, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol. 1997, 127, 248–260. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol. 2004, 148, 635–661. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, J.; Fu, L.; Huizenga, J.M.; Santosh, M.; Chen, J.; Wang, D.; Li, A. Multi-stage crustal melting from Late Permian back-arc extension through Middle Triassic continental collision to Late Triassic post-collisional extension in the East Kunlun Orogen. Lithos 2020, 360–361, 105446. [Google Scholar] [CrossRef]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon saturation re-revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- Chappell, B.W.; Bryant, C.J.; Wyborn, D. Peraluminous I-type granites. Lithos 2012, 153, 142–153. [Google Scholar] [CrossRef]
- Wu, F.; Liu, X.; Ji, W.; Wan, J.; Yang, L. Highly fractionated granites: Recognition and research. Sci. China Earth Sci. 2017, 60, 1201–1219. [Google Scholar] [CrossRef]
- Collins, W.J. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: Implications for crustal architecture and tectonic models. Aust. J. Earth Sci. 1998, 45, 483–500. [Google Scholar] [CrossRef]
- Gray, C.M.; Kemp, A.I.S. The two-component model for the genesis of granitic rocks in southeastern Australia—Nature of the metasedimentary-derived and basaltic end members. Lithos 2009, 111, 113–124. [Google Scholar] [CrossRef]
- Clemens, J.D.; Darbyshire, D.P.F.; Flinders, J. Sources of post-orogenic calcalkaline magmas: The Arrochar and Garabal Hill–Glen Fyne complexes, Scotland. Lithos 2009, 112, 524–542. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.F.; Zhao, Z.F. Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis. Lithos 2016, 266–267, 133–157. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Gray, C.M.; Whitehouse, M.J. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science 2007, 315, 980–983. [Google Scholar]
- Roberts, M.P.; Clemens, J.D. Origin of high-potassium, calc-alkaline I-type granitoids. Geology 1993, 21, 825–828. [Google Scholar]
- Wu, F.Y.; Jahn, B.-m.; Wilde, S.A.; Lo, C.H.; Yui, T.F.; Lin, Q.; Ge, W.C.; Sun, D.Y. Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 2003, 67, 191–204. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE Chian: In-suit analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar]
- Baker, M.B.; Hirschmann, M.M.; Ghiorso, M.S.; Stolper, E.M. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 1993, 375, 308–311. [Google Scholar]
- Niu, Y.; Batiza, R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Planet. Sci. Lett. 1997, 148, 471–483. [Google Scholar] [CrossRef]
- Hu, Y.; Niu, Y.; Li, J.; Ye, L.; Kong, J.; Chen, S.; Zhang, Y.; Zhang, G. Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos 2016, 245, 205–222. [Google Scholar] [CrossRef]
- Xiong, F.H.; Ma, C.Q.; Chen, B.; Ducea, M.N.; Hou, M.C.; Ni, S.J. Intermediate-mafic dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A window into paleo-arc magma feeding system. Lithos 2019, 340–341, 152–165. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B.; Miller, C.F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res. 1991, 51, 1–25. [Google Scholar] [CrossRef]
- Fu, L.B.; Bagas, L.; Wei, J.H.; Chen, Y.; Chen, J.; Zhao, X.; Zhao, Z.X.; Li, A.B.; Zhang, W.K. Growth of early Paleozoic continental crust linked to the Proto-Tethys subduction and continental collision in the East Kunlun Orogen, northern Tibetan Plateau. GSA Bull. 2023, 135, 1709–1733. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. 3.01—Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, England, 2003; pp. 1–64. [Google Scholar] [CrossRef]
- Green, T.H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol. 1995, 120, 347–359. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B.; Jiang, H.A. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau. J. Geol. Soc. 2014, 171, 847–863. [Google Scholar] [CrossRef]
- Liu, H.T. Petrology, geochemistry and geochronology of late Triassic volcanics, Kunlun orogenic belt, western China: Implications for tectonic setting and petrogenesis. Geochem. J. 2005, 39, 1–20. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, Q.; Jarquín, E.; Sha, H.; Wang, R. Late Cretaceous-Palaeocene arc magmatism in Bumeicun, Gangdese, southern Tibet: Products of slab rollback of Neo-Tethyan Ocean? Geol. J. 2023, 58, 2526–2554. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Chai, J.X.; Zhang, L.X.; Huang, Q.; Wang, Q.L.; Pan, L.; Ma, C.Q.; Li, J.W.; Pan, Y.M. Lower crustal copper enrichment and mobilization indicated by Late Permian amphibole gabbros and granodiorites in the eastern Kunlun Orogen, northern Tibet. Lithos 2024, 482–483, 107740. [Google Scholar] [CrossRef]
- Zhang, M.D.; Tan, S.C.; Ruan, M.F.; Li, L.; Yan, Q.H. Petrogenesis and tectonic implication of the Triassic monzogranite from the central segment of the East Kunlun Orogen, NW China. J. Asian Earth Sci. 2024, 276, 106341. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Liu, Z.Q.; Chen, G.C.; Chen, Y.X.; Wei, F.H.; Gao, J.M.; Liu, C.J.; Pei, L. Geological characteristics of Late Paleozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun. Earth Sci. Front. 2012, 19, 244–254, (In Chinese with English Abstract). [Google Scholar]
- Abdelfadil, K.M.; Mansour, S.; Asran, A.M.; Younis, M.H.; Lentz, D.R.; Fowler, A.R.; Fnais, M.S.; Abdelrahman, K.; Radwan, A. Composite Granitic Plutonism in the Southern Part of the Wadi Hodein Shear Zone, South Eastern Desert, Egypt: Implications for Neoproterozoic Dioritic and Highly Evolved Magma Mingling during Volcanic Arc Assembly. Minerals 2024, 14, 1002. [Google Scholar] [CrossRef]
- Yan, Z.; Bian, Q.T.; Oleg, A.K.; Igor, I.P.; Li, J.; Wang, Z. Provenance of Early Triassic Hongshuichuan Formation in the southern margin of the East Kunlun Mountains: Constrains from detrital framework, heavy mineral analysis and geochemistry. Acta Petrol. Sin. 2008, 24, 1068–1078, (In Chinese with English Abstract). [Google Scholar]
- Hu, C.B.; Li, M.; Zha, X.F.; Gao, X.F.; Li, T. Genesis and Geological Signigicance of Late Paleozoic Mantle-Derived Magmatism in Qimantag, East Kunlun: A Case Study of Intrusion in YingZhuagou. Earth Sci. 2018, 43, 4334–4349, (In Chinese with English Abstract). [Google Scholar]
- Ren, X.; Dong, Y.; He, D.; Sun, S.; Hauzenberger, C.A.; Zhou, B.; Yue, Y.; Hui, B.; Zhang, B. Petrogenesis and tectonic implications of Late Permian S-type granites in the South Kunlun Belt, northern Tibetan Plateau. J. Asian Earth Sci. 2022, 230, 105204. [Google Scholar] [CrossRef]
- Chen, X.D.; Li, B.; Sun, C.B.; Zhou, H.B. Protracted Storage for Calc-Alkaline Andesitic Magma in Magma Chambers: Perspective from the Nageng Andesite, East Kunlun Orogen, NW China. Minerals 2021, 11, 198. [Google Scholar] [CrossRef]
- Zhang, J.D.; Yu, M.; Wang, H.; Li, B.; Feng, C.Y.; Dick, J.M.; Li, J.C.; Kong, H.L.; Zhao, Z.Y. Geodynamic Setting and Cu-Ni Potential of Late Permian Xiwanggou Mafic-Ultramafic Rocks, East Kunlun Orogenic Belt, NW China. Front. Earth Sci. 2021, 9, 666967. [Google Scholar] [CrossRef]
- Xin, W.; Sun, F.Y.; Zhang, Y.T.; Fan, X.Z.; Wang, Y.C.; Li, L. Mafic–intermediate igneous rocks in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic. Lithos 2019, 346–347, 105159. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Jiang, M.; Yang, J.S.; Xue, G.Q.; Su, H.P.; Li, H.B.; Cui, J.W.; Wu, C.L.; Liang, F.H. Mantle structure of Qinghai-Tibet Plateau: Mantle plume, mantle shear zone and delamination of lithospheric slab. Earth Sci. Front. 2004, 11, 329–343, (In Chinese with English Abstract). [Google Scholar]
- Deng, J.; Wu, Z.; Yang, J.; Zhao, H.; Liu, H.; Lai, S.; Di, Y. Crust-mantle petrological strcucture and deep processes along the Golmud–Ejin Qi geoscience section. Acta Geophys. Sin. 1995, 38, 130–144, (In Chinese with English Abstract). [Google Scholar]
- Yu, M.; Feng, C.Y.; Zhao, Y.M.; Li, D.X. Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China. Lithos 2015, 239, 45–59. [Google Scholar] [CrossRef]
- Liu, W.D. Study on rock age and formation mechanism of intrusive rocks in Early Triassic in Xiangride Area in East Kunlun Orogenic. Shandong Land Resour. 2014, 32, 1–7, (in Chinese with English abstract). [Google Scholar]
- Kong, H.L.; Li, Y.Z.; Li, Y.Z.; Jia, Q.Z.; Guo, X.Z.; Zhang, B. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Xiwanggou olivine pyroxenolite in East Kunlun. J. Geomech. 2019, 25, 440452, (in Chinese with English abstract). [Google Scholar]
- Ni, J.Y. Zircon U-Pb age and tectonic setting of Permian-Triassic Volcanic Rock in East Kunlun Orogenic Belt. Master’s Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2010; pp. 1–65. [Google Scholar]
- Luo, M.; Mo, X.; Yu, X.; Li, X.; Huang, X. Zircon U-Pb geochronology, petrogenesis and implication of the Late Permian granodiorite from the Wulonggou area in East Kunlun, Qinghai Province. Earth Sci. Front. 2015, 22, 182–195, (in Chinese with English abstract). [Google Scholar]
- Peng, B.; Li, B.; Zhao, T.; Wang, C.; Chang, J.; Wang, G.; Yang, W. Identification of A-type granite in the southeastern Kunlun Orogen, Qinghai Province, China: Implications for the tectonic framework of the Eastern Kunlun Orogen. Geol. J. 2017, 52, 454–469. [Google Scholar] [CrossRef]
- Chen, X.; Gehrels, G.; Yin, A.; Li, L.; Jiang, R. Paleozoic and Mesozoic Basement Magmatism of Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau: LA-ICP-MS Zircon U-Pb Geochronology and its Geological Significance. Acta Geol. Sin. 2012, 86, 350–369. [Google Scholar]
- Sun, Y.; Pei, X.Z.; Ding, S.P.; Li, R.B.; Feng, J.Y.; Zhang, Y.F.; Chen, G.C. Halagatu magma mixing granite in the East Kunlun Mountains—Evidence from zircon U-Pb dating. Acta Geol. Sin. 2009, 83, 1000–1010. [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, C.J.; Chen, Y.X.; Li, X.B. Triassic magma mixing and mingling at the the eastern section of Eastern Kunlun: A case study from Xiangjiananshan granitic batholith. Acta Petrol. Sin. 2018, 34, 2441–2480. [Google Scholar]
- Zhang, J.Y.; Ma, C.Q.; Xiong, F.H.; Liu, B. Petrogenesis and tectonic significance of the Late Permian–Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China. Geol. Mag. 2012, 149, 892–908. [Google Scholar]
- Ren, H.D.; Wang, T.; Zhang, L.; Wang, X.X.; Huang, H.; Feng, C.Y.; Teschner, C.; Song, P. Age, Sources and Tectonic Setting of the Triassic Igneous Rocks in the Easternmost Segment of the East Kunlun Orogen, Central China. Acta Geol. Sin. 2016, 90, 641–668. [Google Scholar]
- Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt. Acta Petrol. Sin. 2011, 27, 3350–3364. [Google Scholar]
- Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B.; Jiang, H.A.; Huang, J. Zircon LA-ICP-MS U-Pb dating of Bairiqili gabbro pluton in East Kunlun orogenic belt and its geological significance. Geol. Bull. China 2011, 30, 1196–1202, (in Chinese with English abstract). [Google Scholar]
- Gao, H.; Sun, F. Middle to Late Triassic granitic magmatism in the East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for a transition from subduction to post-collision setting of the Palaeo-Tethys Ocean. Geol. J. 2021, 56, 3378–3395. [Google Scholar]
- Song, K.; Ding, Q.F.; Zhang, Q.; Cheng, L.; Han Yu Liu, F. Zircon U–Pb geochronology, Hf isotopes, and whole-rock geochemistry of Hongshuihe Early to Middle Triassic quartz diorites and granites in the Eastern Kunlun Orogen, NW China: Implication for petrogenesis and geodynamics. Geol. J. 2019, 55, 1507–1528. [Google Scholar] [CrossRef]
- Li, X.W.; Huang, X.F.; Luo, M.F.; Dong, G.C.; Mo, X.X. Petrogenesis and geodynamic implications of the Mid-Triassic lavas from East Kunlun, northern Tibetan Plateau. J. Asian Earth Sci. 2015, 105, 32–47. [Google Scholar] [CrossRef]
- Tian, N.; Sun, F.-Y.; Pan, Z.-C.; Li, L.; Gu, Y.; Wu, D.-Q.; Deng, J.-F.; Liu, Z.-D.; Wang, L.; Zhang, Y.-J. Triassic igneous activities in the east flank of the East Kunlun orogenic belt: The Daheba complex example. Int. Geol. Rev. 2023, 65, 1077–1104. [Google Scholar] [CrossRef]
- Wang, K.; Wang, L.X.; Ma, C.Q.; Zhu, Y.X.; Gao, L.Y. Petrogenesis and Geological Implications of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun. Earth Sci. 2020, 45, 400–418. [Google Scholar] [CrossRef]
- Xu, Q.L.; Sun, F.Y.; Li, B.L.; Qian, Y.; Li, L.; Yang, Y.Q. Geochronological dating, geochemical characteristics and tectonic setting of the granite-porphyry in the Mohexiala silver polymetallic deposit, Eastern Kunlun Orogenic Belt. Geotecton. Metallog. 2014, 38, 421–433, (in Chinese with English abstract). [Google Scholar]
- Tian, N.; Sun, F.; Pan, Z.; Li, L.; Yan, J.; Wu, D.; Gu, Y.; Deng, J.; Liu, Z.; Wang, L.; et al. Petrogenesis and tectonic setting of Mid-Triassic volcanic rocks in the East Kunlun orogenic belt, NW China: Insights from geochemistry, zircon U–Pb dating, and Hf isotopes. Geol. J. 2021, 56, 3257–3274. [Google Scholar] [CrossRef]
- Chen, G.; Pei, X.Z.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Liu, C.J.; Chen, G.C.; Wang, X.B.; Sang, J.Z.; Yang, S.; et al. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, East Kunlun Mountains. Geol. Bull. China 2016, 35, 1990–2005. [Google Scholar]
- Zhang, Y.; Pei, X.Z.; Li, R.B.; Liu, C.J.; Chen, Y.X.; Li, Z.u.o.C.; Wang, X.; Hu, C.G. Zircon U-Pb geochronology, geochemistry of the Alasimu gabbro in eastern section of East Kunlun Mountains and the closing time of Paleoocean basin. Geol. China 2017, 44, 526–540, (in Chinese with English abstract). [Google Scholar]
- Yao, X.G.; Zhou, S.A.; Jia, Q.Z.; Li, J.C.; Kong, H.L.; Guo, X.Z.; Wang, Y. Zircon U-Pb dating and geological characteritics of Monzogranite in the Shengli Iron-Copper deposit from East Kunlun Mountains and its prospecting significance. Geol. Sci. Technol. Inf. 2018, 37, 11–20, (in Chinese with English abstract). [Google Scholar]
- Deng, W.B.; Pei, X.Z.; Liu, C.J.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Chen, G.C.; Yang, S.; Chen, G.; Sang, J.Z.; et al. LA-ICP-MS zircon U-Pb dating of the Chahantaolegai syenogranites in Xiangride area of East Kunlun and its geological significance. Geol. Bull. China 2016, 35, 687–699. [Google Scholar]
- Guo, X.Z.; Jia, Q.; Li, J.; Kong, H.; Yao, X.; Li, Y. Geochronology and geochemical characteristics of syenogranites from Zhamaxiuma area in east Kunlun and their tectonic significance. Acta Geol. Sin. 2019, 93, 830–842. (In Chinese) [Google Scholar]
- He, C.; Wang, L.Y.; Tian, L.M.; Xu, J. Petrogenesis and geological implications of granitoids from Halasen, East Kunlun. Earth Sci. 2018, 4, 1207–1217, (in Chinese with English abstract). [Google Scholar]
- Li, H.; Qian, Y.; Sun, F.; Li, L. Geochemistry, zircon geochronology, and isotopic systematics of the Zhanbuzhale granites in the East Kunlun, Qinghai Province, NW China: Implications for the tectonic setting. Can. J. Earth Sci. 2019, 57, 275–291. [Google Scholar] [CrossRef]
- Xiong, F.; Ma, C.; Jiang, H.; Zhang, H. Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun orogen, West China: Juvenile lower crustal melting during post-collisional extension. J. Earth Sci. 2016, 27, 474–490. [Google Scholar] [CrossRef]
- Xia, R.; Qin, Y.; Wang, C.M.; Li, W.L. The genesis of the Ore-bearing porphyry of the Tuoketuo porphyry Cu-Au-(Mo) deposit in the East Kunlun, Qinghai Province: Constraints from zircon U-Pb geochronological and geochemistry. J. Jilin Univ. Earth Sci. Ed. 2014, 44, 1502–1524. [Google Scholar] [CrossRef]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Li, X.B. Age and lithogenesis of Keri syenogranite from eastern part of East Kunlun Orogenic Belt: Constraint on the Middle Triassic tectonic evolution of East Kunlun. Acta Petrol. Sin. 2018, 34, 567–585, (In Chinese with English abstract). [Google Scholar]
- Shao, F.; Niu, Y.; Kong, J.; Liu, Y.; Wang, G.; Zhang, Y. Petrogenesis and tectonic implications of the Triassic rhyolites in the East Kunlun Orogenic Belt, northern Tibetan Plateau. Geosci. Front. 2021, 12, 101243. [Google Scholar] [CrossRef]
- Wu, Z.N.; Ji, W.H.; He, S.P.; Chen, S.J.; Yu, P.S.; Shi, C.; Chen, F.N.; Zhang, H.S.; Peng, Y. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of granodiorite in Rilonggou area, Xinghai County, Qinghai Province. Geol. Bull. China 2015, 34, 1677–1688. [Google Scholar]
- Fan, X.; Sun, F.; Xu, C.; Wu, D.; Yu, L.; Wang, L.; Yan, C.; Bakht, S. Volcanic rocks of the Elashan Formation in the Dulan-Xiangride Basin, East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for Late Triassic geodynamic evolution. Int. Geol. Rev. 2021, 64, 1–24. [Google Scholar] [CrossRef]
- Xin, W.; Ding Z-j Meng Y-k Bo J-w Li, L.; Mao, G.-z. Late Triassic granites with mafic microenclaves in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for continental crust evolution and geodynamic evolution. Can. J. Earth Sci. 2023, 60, 672–691. [Google Scholar] [CrossRef]
- Wen, G.; Sun, G.-C.; Zhao, Z.-F.; Dai, L.-Q.; Zhou, Y. Post-collisional reworking of juvenile mafic lower crust for the petrogenesis of late Triassic adakitic rocks in the East Kunlun Orogen. Lithos 2024, 482, 107730. [Google Scholar] [CrossRef]
- Zhao, F.F. Metallogenesis of Precious-Nonferrous metal deposits in Gerizhuotuo area, Dulan Qinghai Province. Ph.D. Thesis, University of Jilin, Changchun, China, 2017; pp. 1–151. [Google Scholar]
- Zhang, Y.; Zhang, D.M.; Liu, G.Y.; Li, Z.F.; Zhao, Y.L.; Li, H.H.; Wang, S.M. Zircon U-Pb dating of porphyroid monzonitic granite in the Kaerqueka copper polymetallic deposit of East Kunlun Mountains and its geological significance. Geol. Bull. China 2017, 36, 270–274. [Google Scholar]
- Li, Z.C.; Pei, X.Z.; Liu, Z.Q.; Li, R.B.; Pei, L.; Chen, G.C.; Wu, S.K. Geochronology and geochemistry of the Gerizhuotuo diorites from the Buqingshan Tectonic Mélange Belt in the southern margin of East Kunlun and their geologic implications. Acta Geol. Sin. 2013, 87, 1089–1103. [Google Scholar]
- Chen, G.; Pei, Z.; Li, R.; Li, Z.; Lei, P.; Liu, Z.; Chen, Y.; Liu, C.; Gao, J.; Wei, F. Geochronology and Genesis of the Helegang Xilikete Granitic Plutons from Southern Margin of the Eastern Kunlun Orogenic Belt and Their Tectonic Significance. Acta Geol. Sin. 2013, 87, 1526–1540. [Google Scholar]
- Zhou, H.; Zhang, D.; Wei, J.; Wang, D.; Santosh, M.; Shi, W.; Chen, J.; Zhao, X. Petrogenesis of Late Triassic mafic enclaves and host granodiorite in the Eastern Kunlun Orogenic Belt, China: Implications for the reworking of juvenile crust by delamination-induced asthenosphere upwelling. Gondwana Res. 2020, 84, 52–70. [Google Scholar] [CrossRef]
- Luo, M.; Mo, X.; Yu, X.; Huang, X.; Yu, J. Zircon LA-ICP-MS dating, petrogenesis and tectonic implications of the Late Triassic granites from Xiangride area, East Kunlun. Acta Petrol. Sin. 2014, 30, 3229–3241, (in Chinese with English abstract). [Google Scholar]
- Xia, R.; Wang, C.; Deng, J.; Carranza, E.J.M.; Li, W.; Qing, M. Crustal thickening to 220 Ma in the East Kunlun Orogenic Belt: Insights from Late Triassic granitoids in the Xiao-Nuomuhong pluton. J. Asian Earth Sci. 2014, 93, 193–210. [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Zhang, Y. Age and petrogenesis of Jialuhe basic–intermediate pluton in Xiangjia’nanshan granite batholith in the eastern part of East Kunlun Orogenic Belt, and its geological significance. Geotecton. Metallog. 2017, 41, 1097–1115. [Google Scholar]
- Yu, J.Z.; Zheng, Y.Y.; Xu, R.K.; Hou, W.D.; Cai, P.J. Zircon U-Pb Chronology, Geochemistry of Jiangjunmu Ore-Bearing Pluton, Eastern Part of East Kunlun and Their Geological Significance. Earth Sci. 2020, 45, 1151–1167, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, Z.Q.; Wei, F.H. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Cocoe along quartz diorites body from the Hongshuichuan area in East Kunlun. Acta Geol. Sin 2013, 87, 178–196, (in Chinese with English abstract). [Google Scholar]
- Guo, X.; Jia, Q.; Lü, X.; Li, J.; Kong, H.; Yao, X. The Permian Sn metallogenic event and its geodynamic setting in East Kunlun, NW China: Evidence from zircon and cassiterite geochronology, geochemistry, and Sr–Nd–Hf isotopes of the Xiaowolong skarn Sn deposit. Ore Geol. Rev. 2020, 118, 103370. [Google Scholar]
- Ding, S.; Huang, H.; Niu, Y.L.; Zhao, Z.D.; Yu, X.H.; Mo, X.X. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites. Acta Petrol. Sin. 2011, 27, 3603–3614. [Google Scholar]
- Yan, D.; Zhou, H.; Li, C.; Zhang, X.; Ma, C.; Hou, M.; Huang, H.; Wang, W.; Xiong, F. Petrogenesis of Late Triassic adakitic plutons in the East Kunlun Orogen, Northern Tibet: Geodynamic implications for the Paleo-Tethyan orogeny and crustal evolution. J. Asian Earth Sci. 2024, 268, 106165. [Google Scholar]
- Zhang, Z.C.; Zhang, X.J.; Gao, W.L.; Hu, D.G.; Lu, L. Evidence of zircon U-Pb ages for the formation time of the East Kunlun left-lateral ductile shear belt. J. Geomech. 2010, 16, 51–58, (in Chinese with English abstract). [Google Scholar]
- Feng, L.Q.; Gu, X.X.; Zhang, Y.M.; He, G.; Kang, J.Z. Age and structural deformation of ductile shear zones on the southern margin of the East Kunlun Mountains. Geol. Bull. China 2017, 36, 987–1000, (in Chinese with English abstract). [Google Scholar]
- Yan, J.M.; Sun, F.Y.; Qian, Y.; Tian, N.; Yan, Z.P.; Zhang, Y.S.; Yang, X.M. Petrogenesis and tectonic implications of the Late Triassic Nangou granodiorite porphyry in the Eastern Kunlun Orogenic Belt, northern Tibetan Plateau. Can. J. Earth Sci. 2020, 57, 801–813. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Wang, L.X.; Ma, C.Q.; He, Z.X.; Deng, X.; Tian, Y. Petrogenesis and tectonic implication of the Late Triassic A1-type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China). Lithos 2022, 412, 106595. [Google Scholar] [CrossRef]
- Xu, B.; Li, H.B.; Nan, Y.Y.; Wang, C.Y.; Yue, T.; Zhao, M.F. LA-MC-ICP-MS zircon U-Pb ages, geochemical characteristics and tectonic significance of the Late Triassic igneous rocks in Ageteng area, Qimantagh Mountains. Geol. Rev. 2019, 65, 353–369, (In Chinese with English abstract). [Google Scholar]
- Wang, P.; Zhao, G.C.; Liu, Q.; Yao, J.L.; Han, Y.G. Evolution of the Paleo-Tethys Ocean in Eastern Kunlun, North Tibetan Plateau: From continental rift-drift to final closure. Lithos 2022, 422, 106717. [Google Scholar] [CrossRef]
- Gan, J.; Xiong, F.H.; Xiao, Q.R.; Wang, W.; Yan, D.D. Petrogenesis and geodynamic implications of Late Triassic Mogetong adakitic pluton in East Kunlun Orogen, Northern Tibet: Constraints from zircon U–Pb–Hf isotopes and whole-rock geochemistry. Front. Earth Sci. 2022, 10, 845763. [Google Scholar]
- Yang, X.M.; Sun, F.Y.; Zhao, T.F.; Liu, J.L.; Peng, B. Zircon U-Pb dating, geochemistry and tectonic implications of Akechukesai gabbro in East Kunlun orogenic belt. Geol. Bull. China 2018, 37, 1842–1852, (in Chinese with English abstract). [Google Scholar]
- Li, Z.; Pei, X.; Pei, L.; Liu, C.; Xu, L.; Li, R.; Lin, H.; Wang, M.; Ji, S.; Qin, L.; et al. Petrogenesis and Geochronology of A1-Type Rhyolites in the Late Late Triassic of the East Kunlun Orogenic Belt: Constraints on the End of the Paleo-Tethys Orogenic Event. Minerals 2023, 13, 290. [Google Scholar] [CrossRef]
- Ren, X.; Dong, Y.; He, D.; Sun, S.; Zhang, B.; Zhou, B.; Hui, B.; Yue, Y. Late Triassic magmatic rocks in the southern East Kunlun Orogenic Belt, northern Tibetan Plateau: Petrogenesis and tectonic implications. Int. Geol. Rev. 2023, 65, 1–24. [Google Scholar]
Sample Name | Content (ppm) | Isotopic Ratios | Isotopic Ages (Ma) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U | Th | Pb | Th/U | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | |
18XSG1—monzogranite, weighted mean age: 254.7 ± 1.1 Ma, MSWD = 0.26 | ||||||||||||||||
18XSG11-1 | 136 | 169 | 8 | 1.25 | 0.05140 | 0.00192 | 0.27890 | 0.01040 | 0.03956 | 0.00049 | 258.71648 | 85.75895 | 249.78293 | 8.25463 | 250.10093 | 3.06022 |
18XSG11-2 | 272 | 309 | 15 | 1.14 | 0.05199 | 0.00109 | 0.28480 | 0.00581 | 0.03989 | 0.00033 | 284.81419 | 47.85650 | 254.45604 | 4.59370 | 252.12208 | 2.01725 |
18XSG11-3 | 250 | 302 | 14 | 1.21 | 0.05211 | 0.00190 | 0.28639 | 0.01016 | 0.04016 | 0.00055 | 290.31512 | 83.26791 | 255.71640 | 8.01661 | 253.84337 | 3.42558 |
18XSG11-4 | 245 | 298 | 14 | 1.22 | 0.05164 | 0.00128 | 0.28393 | 0.00657 | 0.04020 | 0.00040 | 269.32848 | 56.90187 | 253.77020 | 5.19438 | 254.04809 | 2.50053 |
18XSG11-5 | 433 | 478 | 24 | 1.10 | 0.05084 | 0.00117 | 0.28095 | 0.00696 | 0.04021 | 0.00053 | 233.45662 | 53.10910 | 251.41094 | 5.51512 | 254.15459 | 3.29228 |
18XSG11-6 | 377 | 377 | 20 | 1.00 | 0.05193 | 0.00107 | 0.28701 | 0.00624 | 0.04021 | 0.00043 | 282.41105 | 47.03537 | 256.20248 | 4.92545 | 254.15973 | 2.65871 |
18XSG11-7 | 216 | 222 | 12 | 1.03 | 0.05150 | 0.00165 | 0.28270 | 0.00820 | 0.04023 | 0.00049 | 263.41689 | 73.36666 | 252.79409 | 6.48970 | 254.27459 | 3.05476 |
18XSG11-8 | 363 | 429 | 20 | 1.18 | 0.05153 | 0.00112 | 0.28503 | 0.00600 | 0.04027 | 0.00039 | 264.59209 | 49.92739 | 254.63626 | 4.73928 | 254.53441 | 2.39550 |
18XSG11-9 | 311 | 381 | 18 | 1.23 | 0.05163 | 0.00115 | 0.28569 | 0.00593 | 0.04028 | 0.00034 | 269.21598 | 51.21303 | 255.16324 | 4.68715 | 254.56553 | 2.09772 |
18XSG11-10 | 351 | 363 | 18 | 1.03 | 0.05048 | 0.00180 | 0.28014 | 0.01045 | 0.04028 | 0.00058 | 217.07634 | 82.60975 | 250.76554 | 8.28831 | 254.58830 | 3.57059 |
18XSG11-11 | 322 | 448 | 19 | 1.39 | 0.05149 | 0.00104 | 0.28413 | 0.00549 | 0.04029 | 0.00034 | 262.61823 | 46.40960 | 253.92821 | 4.34425 | 254.60255 | 2.09825 |
18XSG11-12 | 347 | 491 | 21 | 1.42 | 0.05102 | 0.00100 | 0.28297 | 0.00570 | 0.04033 | 0.00035 | 241.61252 | 45.39917 | 253.00693 | 4.50891 | 254.85231 | 2.16833 |
18XSG11-13 | 303 | 303 | 16 | 1.00 | 0.05172 | 0.00129 | 0.28600 | 0.00688 | 0.04033 | 0.00052 | 273.23716 | 57.01755 | 255.40424 | 5.43600 | 254.86556 | 3.22598 |
18XSG11-14 | 277 | 271 | 15 | 0.98 | 0.05060 | 0.00141 | 0.28129 | 0.00866 | 0.04035 | 0.00058 | 222.55786 | 64.31826 | 251.68285 | 6.86413 | 254.99052 | 3.61131 |
18XSG11-15 | 432 | 531 | 24 | 1.23 | 0.05167 | 0.00123 | 0.28679 | 0.00699 | 0.04036 | 0.00044 | 270.91240 | 54.51252 | 256.03325 | 5.51555 | 255.07438 | 2.70824 |
18XSG11-16 | 219 | 256 | 12 | 1.17 | 0.05085 | 0.00271 | 0.28257 | 0.01494 | 0.04039 | 0.00060 | 233.94178 | 122.80923 | 252.69145 | 11.83102 | 255.23405 | 3.69472 |
18XSG11-17 | 266 | 332 | 15 | 1.25 | 0.05170 | 0.00220 | 0.28728 | 0.01208 | 0.04046 | 0.00065 | 272.18221 | 97.36731 | 256.41435 | 9.52978 | 255.69555 | 3.99674 |
18XSG11-18 | 2214 | 1479 | 112 | 0.67 | 0.05077 | 0.00118 | 0.28405 | 0.00706 | 0.04048 | 0.00063 | 230.32009 | 53.50437 | 253.86754 | 5.58259 | 255.82961 | 3.90924 |
18XSG11-19 | 258 | 308 | 14 | 1.19 | 0.05059 | 0.00171 | 0.28314 | 0.01071 | 0.04048 | 0.00065 | 222.30992 | 77.94628 | 253.14426 | 8.47522 | 255.83191 | 4.03556 |
18XSG11-20 | 284 | 334 | 16 | 1.18 | 0.05119 | 0.00099 | 0.28513 | 0.00504 | 0.04049 | 0.00035 | 249.51167 | 44.49065 | 254.71927 | 3.98139 | 255.89568 | 2.18967 |
18XSG11-21 | 270 | 275 | 15 | 1.02 | 0.05173 | 0.00128 | 0.28864 | 0.00750 | 0.04051 | 0.00054 | 273.27247 | 56.80927 | 257.48545 | 5.91149 | 256.01441 | 3.33372 |
18XSG11-22 | 247 | 279 | 14 | 1.13 | 0.05180 | 0.00171 | 0.28863 | 0.00978 | 0.04054 | 0.00058 | 276.62797 | 75.54745 | 257.47784 | 7.70645 | 256.20665 | 3.57857 |
18XSG11-23 | 192 | 216 | 11 | 1.13 | 0.05169 | 0.00142 | 0.28860 | 0.00783 | 0.04055 | 0.00041 | 271.84486 | 63.17471 | 257.45876 | 6.16958 | 256.26289 | 2.55778 |
18XSG11-24 | 237 | 242 | 13 | 1.02 | 0.05031 | 0.00146 | 0.27965 | 0.00791 | 0.04057 | 0.00058 | 209.12693 | 67.14474 | 250.37762 | 6.27272 | 256.36658 | 3.59743 |
18XSG11-25 | 253 | 342 | 14 | 1.35 | 0.05013 | 0.00220 | 0.27987 | 0.01161 | 0.04065 | 0.00083 | 200.79700 | 101.82341 | 250.55223 | 9.21420 | 256.88298 | 5.15797 |
18XSG11-26 | 339 | 520 | 21 | 1.53 | 0.05086 | 0.00163 | 0.28376 | 0.00878 | 0.04065 | 0.00046 | 234.69723 | 74.06923 | 253.63532 | 6.94197 | 256.88476 | 2.82308 |
18XSG2—quartz porphyry, weighted mean age: 254.3 ± 1.1 Ma, MSWD = 0.116 | ||||||||||||||||
18XSG21-1 | 622 | 315 | 29 | 0.51 | 0.05108 | 0.00082 | 0.28144 | 0.00490 | 0.03996 | 0.00034 | 244.62329 | 37.16388 | 251.79940 | 3.88583 | 252.56887 | 2.10306 |
18XSG21-2 | 404 | 558 | 24 | 1.38 | 0.05184 | 0.00155 | 0.28623 | 0.00814 | 0.04008 | 0.00040 | 278.41178 | 68.55784 | 255.59015 | 6.42689 | 253.35592 | 2.46419 |
18XSG21-3 | 796 | 518 | 40 | 0.65 | 0.05098 | 0.00087 | 0.28212 | 0.00444 | 0.04011 | 0.00039 | 240.00655 | 39.54202 | 252.33405 | 3.51374 | 253.51168 | 2.42252 |
18XSG21-4 | 322 | 229 | 16 | 0.71 | 0.05155 | 0.00121 | 0.28455 | 0.00654 | 0.04011 | 0.00040 | 265.71394 | 53.95271 | 254.25664 | 5.17224 | 253.53616 | 2.50892 |
18XSG21-5 | 411 | 326 | 21 | 0.79 | 0.05088 | 0.00138 | 0.28126 | 0.00792 | 0.04012 | 0.00046 | 235.20489 | 62.51900 | 251.65580 | 6.27676 | 253.55114 | 2.87919 |
18XSG21-6 | 653 | 501 | 34 | 0.77 | 0.05240 | 0.00101 | 0.29010 | 0.00568 | 0.04014 | 0.00039 | 302.95284 | 44.07263 | 258.64185 | 4.47002 | 253.67520 | 2.40100 |
18XSG21-7 | 495 | 481 | 26 | 0.97 | 0.05156 | 0.00084 | 0.28509 | 0.00482 | 0.04014 | 0.00037 | 265.73063 | 37.57581 | 254.68690 | 3.80942 | 253.71665 | 2.27398 |
18XSG21-8 | 548 | 155 | 25 | 0.28 | 0.05132 | 0.00087 | 0.28504 | 0.00544 | 0.04016 | 0.00037 | 255.37216 | 38.99096 | 254.64898 | 4.29857 | 253.83307 | 2.31534 |
18XSG21-9 | 399 | 294 | 21 | 0.74 | 0.05114 | 0.00156 | 0.28403 | 0.00892 | 0.04019 | 0.00043 | 247.17875 | 70.42622 | 253.84980 | 7.05674 | 254.00163 | 2.67342 |
18XSG21-10 | 491 | 431 | 25 | 0.88 | 0.05169 | 0.00125 | 0.28724 | 0.00721 | 0.04020 | 0.00054 | 271.71940 | 55.27211 | 256.38561 | 5.68736 | 254.06274 | 3.32777 |
18XSG21-11 | 570 | 528 | 31 | 0.93 | 0.05137 | 0.00081 | 0.28510 | 0.00507 | 0.04029 | 0.00035 | 257.53897 | 36.37910 | 254.69304 | 4.00320 | 254.61519 | 2.13993 |
18XSG21-12 | 169 | 108 | 8 | 0.64 | 0.05172 | 0.00162 | 0.28464 | 0.00923 | 0.04031 | 0.00047 | 273.25698 | 71.91713 | 254.32936 | 7.29228 | 254.73663 | 2.91313 |
18XSG21-13 | 406 | 370 | 22 | 0.91 | 0.05126 | 0.00109 | 0.28449 | 0.00603 | 0.04031 | 0.00037 | 252.75751 | 48.75249 | 254.21339 | 4.76385 | 254.77976 | 2.29346 |
18XSG21-14 | 479 | 523 | 27 | 1.09 | 0.05148 | 0.00137 | 0.28600 | 0.00760 | 0.04033 | 0.00046 | 262.20087 | 60.97490 | 255.40573 | 6.00082 | 254.85345 | 2.83598 |
18XSG21-15 | 374 | 285 | 19 | 0.76 | 0.05098 | 0.00107 | 0.28395 | 0.00654 | 0.04034 | 0.00043 | 239.75846 | 48.33665 | 253.78688 | 5.16854 | 254.94869 | 2.65390 |
18XSG21-16 | 266 | 158 | 13 | 0.60 | 0.05093 | 0.00143 | 0.28384 | 0.00832 | 0.04036 | 0.00055 | 237.65258 | 64.53973 | 253.70299 | 6.58242 | 255.07761 | 3.41664 |
18XSG21-17 | 837 | 540 | 42 | 0.65 | 0.05114 | 0.00073 | 0.28510 | 0.00417 | 0.04037 | 0.00046 | 247.32116 | 33.06678 | 254.69482 | 3.29436 | 255.12577 | 2.84464 |
18XSG21-18 | 603 | 468 | 31 | 0.78 | 0.05114 | 0.00086 | 0.28604 | 0.00587 | 0.04040 | 0.00037 | 247.13819 | 38.88435 | 255.43923 | 4.63591 | 255.29862 | 2.31669 |
18XSG21-19 | 277 | 289 | 15 | 1.04 | 0.05160 | 0.00153 | 0.28690 | 0.00883 | 0.04041 | 0.00045 | 267.91562 | 67.81175 | 256.11619 | 6.96804 | 255.39846 | 2.81089 |
18XSG21-20 | 67 | 62 | 4 | 0.92 | 0.05213 | 0.00282 | 0.28623 | 0.01467 | 0.04043 | 0.00066 | 291.01991 | 123.70139 | 255.58632 | 11.57792 | 255.50768 | 4.11349 |
18XSG21-21 | 361 | 298 | 19 | 0.82 | 0.05114 | 0.00120 | 0.28502 | 0.00688 | 0.04046 | 0.00043 | 247.08752 | 54.01408 | 254.63222 | 5.43348 | 255.70845 | 2.67330 |
18XSG21-22 | 45 | 241 | 5 | 5.39 | 0.05249 | 0.00310 | 0.28681 | 0.01701 | 0.04054 | 0.00083 | 306.83536 | 134.44840 | 256.04430 | 13.42563 | 256.20864 | 5.12164 |
Sample Name | t (Ma) | 176Yb/177Hf | 2σ | 176Lu/177Hf | 2σ | 176Hf/177Hf | 2σ | εHf(0) | εHf(t) | 2σ | TDM1 | TDM2 | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18XSG1-monzogranite | |||||||||||||
18XSG11-1 | 254 | 0.034836 | 0.000313 | 0.001295 | 0.000010 | 0.282638 | 0.000018 | −4.7 | 0.6 | 0.6 | 876 | 1238 | −0.96 |
18XSG11-2 | 254 | 0.050784 | 0.001333 | 0.001922 | 0.000038 | 0.282665 | 0.000020 | −3.8 | 1.5 | 0.7 | 853 | 1186 | −0.94 |
18XSG11-3 | 254 | 0.043135 | 0.000270 | 0.001606 | 0.000003 | 0.282639 | 0.000025 | −4.7 | 0.6 | 0.9 | 882 | 1239 | −0.95 |
18XSG11-4 | 254 | 0.065785 | 0.000262 | 0.002489 | 0.000020 | 0.282606 | 0.000018 | −5.9 | −0.7 | 0.6 | 952 | 1324 | −0.93 |
18XSG11-5 | 254 | 0.041405 | 0.000424 | 0.001573 | 0.000009 | 0.282617 | 0.000017 | −5.5 | −0.2 | 0.6 | 913 | 1290 | −0.95 |
18XSG11-6 | 254 | 0.029869 | 0.000413 | 0.001132 | 0.000018 | 0.282660 | 0.000018 | −4.0 | 1.4 | 0.6 | 842 | 1189 | −0.97 |
18XSG11-7 | 254 | 0.038559 | 0.000794 | 0.001436 | 0.000019 | 0.282590 | 0.000016 | −6.4 | −1.1 | 0.6 | 948 | 1349 | −0.96 |
18XSG11-8 | 254 | 0.039654 | 0.000854 | 0.001438 | 0.000041 | 0.282615 | 0.000026 | −5.6 | −0.2 | 0.9 | 912 | 1292 | −0.96 |
18XSG11-9 | 254 | 0.046882 | 0.000158 | 0.001802 | 0.000017 | 0.282618 | 0.000018 | −5.4 | −0.2 | 0.6 | 917 | 1289 | −0.95 |
18XSG11-10 | 254 | 0.039331 | 0.000520 | 0.001508 | 0.000024 | 0.282616 | 0.000018 | −5.5 | −0.2 | 0.6 | 913 | 1292 | −0.95 |
18XSG11-11 | 254 | 0.043702 | 0.001075 | 0.001638 | 0.000054 | 0.282498 | 0.000017 | −9.7 | −4.4 | 0.6 | 1084 | 1556 | −0.95 |
18XSG11-12 | 254 | 0.043832 | 0.000219 | 0.001601 | 0.000015 | 0.282573 | 0.000023 | −7.1 | −1.7 | 0.8 | 977 | 1389 | −0.95 |
18XSG11-13 | 254 | 0.050955 | 0.000358 | 0.001969 | 0.000009 | 0.282617 | 0.000019 | −5.5 | −0.2 | 0.7 | 922 | 1293 | −0.94 |
18XSG11-14 | 254 | 0.038604 | 0.000614 | 0.001469 | 0.000029 | 0.282609 | 0.000017 | −5.8 | −0.4 | 0.6 | 922 | 1306 | −0.96 |
18XSG11-15 | 254 | 0.033969 | 0.000432 | 0.001268 | 0.000020 | 0.282641 | 0.000016 | −4.6 | 0.7 | 0.6 | 872 | 1233 | −0.96 |
18XSG2-quartz porphyry | |||||||||||||
18XSG21-1 | 254 | 0.035607 | 0.000158 | 0.001366 | 0.000014 | 0.282686 | 0.000022 | −3.0 | 2.3 | 0.8 | 809 | 1132 | −0.96 |
18XSG21-2 | 254 | 0.036748 | 0.000397 | 0.001443 | 0.000010 | 0.282630 | 0.000025 | −5.0 | 0.3 | 0.9 | 892 | 1260 | −0.96 |
18XSG21-3 | 254 | 0.033863 | 0.000710 | 0.001309 | 0.000020 | 0.282693 | 0.000022 | −2.8 | 2.6 | 0.8 | 798 | 1116 | −0.96 |
18XSG21-4 | 254 | 0.037836 | 0.000151 | 0.001444 | 0.000006 | 0.282623 | 0.000026 | −5.3 | 0.1 | 0.9 | 902 | 1275 | −0.96 |
18XSG21-5 | 254 | 0.046779 | 0.000269 | 0.001818 | 0.000006 | 0.282652 | 0.000019 | −4.3 | 1.0 | 0.7 | 869 | 1214 | −0.95 |
18XSG21-6 | 254 | 0.039969 | 0.000349 | 0.001492 | 0.000011 | 0.282631 | 0.000023 | −5.0 | 0.4 | 0.8 | 891 | 1256 | −0.96 |
18XSG21-7 | 254 | 0.040807 | 0.000935 | 0.001567 | 0.000027 | 0.282634 | 0.000021 | −4.9 | 0.4 | 0.7 | 888 | 1251 | −0.95 |
18XSG21-8 | 254 | 0.038238 | 0.000165 | 0.001481 | 0.000013 | 0.282660 | 0.000029 | −4.0 | 1.4 | 1.0 | 850 | 1192 | −0.96 |
18XSG21-9 | 254 | 0.032690 | 0.000530 | 0.001213 | 0.000012 | 0.282682 | 0.000022 | −3.2 | 2.2 | 0.8 | 812 | 1140 | −0.96 |
18XSG21-10 | 254 | 0.043326 | 0.000585 | 0.001721 | 0.000033 | 0.282618 | 0.000029 | −5.4 | −0.2 | 1.0 | 915 | 1289 | −0.95 |
18XSG21-11 | 254 | 0.041520 | 0.000398 | 0.001574 | 0.000013 | 0.282644 | 0.000025 | −4.5 | 0.8 | 0.9 | 875 | 1230 | −0.95 |
18XSG21-12 | 254 | 0.036700 | 0.000303 | 0.001430 | 0.000014 | 0.282665 | 0.000025 | −3.8 | 1.6 | 0.9 | 841 | 1180 | −0.96 |
18XSG21-13 | 254 | 0.032437 | 0.000125 | 0.001222 | 0.000003 | 0.282646 | 0.000025 | −4.5 | 0.9 | 0.9 | 863 | 1221 | −0.96 |
18XSG21-14 | 254 | 0.040993 | 0.001448 | 0.001493 | 0.000048 | 0.282623 | 0.000024 | −5.3 | 0.0 | 0.8 | 903 | 1276 | −0.96 |
18XSG21-15 | 254 | 0.042193 | 0.000783 | 0.001620 | 0.000032 | 0.282576 | 0.000025 | −6.9 | −1.6 | 0.9 | 973 | 1382 | −0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, C.; Sun, F.; Wang, T.; Yang, Y.; Chai, Y.; Yan, J.; Shahzad, B.; Li, B.; Zhang, Y.; Yu, T.; et al. Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes. Minerals 2025, 15, 381. https://doi.org/10.3390/min15040381
Hui C, Sun F, Wang T, Yang Y, Chai Y, Yan J, Shahzad B, Li B, Zhang Y, Yu T, et al. Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes. Minerals. 2025; 15(4):381. https://doi.org/10.3390/min15040381
Chicago/Turabian StyleHui, Chao, Fengyue Sun, Tao Wang, Yanqian Yang, Yun Chai, Jiaming Yan, Bakht Shahzad, Bile Li, Yajing Zhang, Tao Yu, and et al. 2025. "Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes" Minerals 15, no. 4: 381. https://doi.org/10.3390/min15040381
APA StyleHui, C., Sun, F., Wang, T., Yang, Y., Chai, Y., Yan, J., Shahzad, B., Li, B., Zhang, Y., Yu, T., Chen, X., Liu, C., Zhu, X., Wang, Y., Wang, Z., Li, H., Song, R., & Dou, D. (2025). Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes. Minerals, 15(4), 381. https://doi.org/10.3390/min15040381