Next Article in Journal
The Potential of Grinding Media Shape to Enhance the Selective Flotation Separation of Ilmenite
Previous Article in Journal
Zircon U-Pb Geochronology and Hf Isotopes of the Granitoids from Cahanwusu Cu Deposit in Awulale Mountain, Western Tianshan: Implication for Regional Mineralization
Previous Article in Special Issue
Petrogenesis and Tectonic Evolution of I- and A-Type Granites of Mount Abu Kibash and Tulayah, Egypt: Evidence for Transition from Subduction to Post-Collision Magmatism
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes

1
College of Earth Sciences, Jilin University, Changchun 130061, China
2
Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources of China, Jilin University, Changchun 130061, China
3
Qinghai Geological Survey, Xining 810000, China
4
Technology Innovation Center for Exploration and Exploitation of Strategic Mineral Resources in Plateau Desert Region, Ministry of Natural Resources, Xining 810000, China
5
Northeast Oli & Gas Branch of SINOPEC, Changchun 130062, China
*
Author to whom correspondence should be addressed.
Minerals 2025, 15(4), 381; https://doi.org/10.3390/min15040381
Submission received: 16 February 2025 / Revised: 10 March 2025 / Accepted: 31 March 2025 / Published: 4 April 2025

Abstract

:
Permian magmatic rocks are extensively distributed in the East Kunlun Orogenic Belt (EKOB), yet controversies persist regarding the petrogenesis of granitoid rocks and the tectonic evolution of the Buqingshan-A’nyemaqing Ocean (BAO), which is a part of the Paleo-Tethys. This study addresses these debates through petrological analyses, whole-rock geochemistry and zircon U-Pb-Lu-Hf isotopic investigations of newly identified granitoids in the EKOB. Monzogranite (MG) and quartz porphyry (QP) yield weighted mean ages of 254.7 ± 1.1 Ma and 254.3 ± 1.1 Ma, respectively. Geochemically, the MG shows metaluminous to weakly peraluminous low-K calc-alkaline I-type affinity, characterized by high SiO2 and low K2O, MgO and FeOT contents, as well as marked enrichment in light rare earth elements (LREEs), but depletion in Eu, Ba, Sr, P and Ti anomalies. In contrast, the QP exhibits a peraluminous high-K calc-alkaline I-type affinity, displaying high SiO2 but low Na2O and P2O5 contents. It is enriched in LREEs and Rb but displays negative Nb, Sr, P and Ti anomalies. Zircon εHf(t) values range from −1.6 to 2.6 for MG and −4.4 to 1.5 for QP. We suggest that both MG and QP were derived from the partial melting of juvenile mafic lower crust, and that MG underwent a high degree of fractional crystallization. A synthesis of multiscale geological evidence allows us to propose a five-stage tectonic evolution for the BAO in the EKOB: (1) oceanic basin initiation before ca. 345 Ma; (2) incipient northward subduction commencing at ca. 278 Ma; (3) slab rollback stage (263–240 Ma); (4) syn-collisional compression (240–230 Ma); (5) post-collisional extension (230–195 Ma).

Graphical Abstract

1. Introduction

I-, S-, M- and A-type granite have been defined according to different geochemical characteristics [1,2]. The I- and S-type granites, first proposed in the Lachlan Fold Belt of southeastern Australia [3], are derived from the partial melting of metaigneous rocks and metasedimentary rocks, respectively [2,4,5]. M-type granite is thought to originate from the mantle [6,7]. A-type granites, first presented by Loiselle and Wones (1979) [8], represent alkaline, anhydrous and anorogenic characteristics. The various granites can provide significant evidence for the evolution of orogens.
The East Kunlun Orogenic Belt (EKOB), a suggested subduction–accretion orogen, preserves multistage tectonomagmatic records associated with Cambrian–Devonian Proto-Tethys and Carboniferous–Triassic Paleo-Tethys oceanic cycles [9,10,11,12,13,14,15,16,17,18]. A consensus exists on the Paleo-Tethyan oceanic opening prior to the Early Carboniferous [19,20,21] and initial northward subduction around 278 Ma [22]. Three principal controversies persist regarding its geodynamic evolution: (1) Majority view: Prolonged subduction (278–240 Ma) followed by collisional (240–230 Ma) and post-collisional phases (230–190 Ma) [11,13,15,16,23,24,25]. (2) Alternative model 1: Early collision initiation (pre-251 Ma) transitioning to post-collisional extension by 247 Ma [26,27]. (3) Alternative model 2: Continuous subduction through the Late Triassic prior to terminal collision [28,29]. Petrogenetic investigations of EKOB granitoids document diverse magma provenance, including the following: (1) subducted oceanic plate with overlying sediments [26,30], (2) lower crust [12,31], (3) juvenile mafic crust [32,33], (4) enriched mantle [34,35], (5) hybrid mantle–crust systems [36,37].
In this paper, we conducted an integrated petrogenetic investigation of two Permian granitoids from the Xingshugou area within the EKOB. Monzogranite and quartz porphyry were selected as they represent Late Permian magmatism. Through a combination of petrological analysis, whole-rock geochemistry, zircon U-Pb geochronology and in situ zircon Hf isotopic studies, this study aims to address the following questions: (1) when did the Xingshugou granitoids emplace, (2) what types of granites do they belong to, (3) what are the magmatic sources, and what petrogenetic processes operated during magma evolution, and (4) did they form in a subduction-related, syn-collisional and post-collisional setting? By resolving these issues and integrating regionally published literature, we have constrained the emplacement time, rock classification, magmatic sources and petrogenetic processes of these granites and reconstructed the Paleo-Tethyan geodynamic evolution during the Carboniferous–Triassic transition.

2. Geological Setting and Samples

2.1. Regional Geology

The EKOB, situated along the northern margin of the Tibet Plateau in northwest China (Figure 1a), is bounded by four principal tectonic domains: the Qaidam Block to the north, the A’nyemaqen Ophiolitic Belt (AOB) to the south, the Altyn Tagh strike-slip fault system to the west and the Wenquangou–Wahongshan fault to the east (Figure 1b). This orogen extends approximately 1500 km in an E–W direction with a width of 50–200 km [10]. Wutumeiren Township divides the EKOB into western and eastern sectors [38]. The EKOB is subdivided into three belts: the Caledonian back-arc basin of Northern East Kunlun Orogenic Belt (NKB), the uplifted granitic basement of Central East Kunlun Orogenic Belt (CKB) and the composite accretion of the Southern East Kunlun Orogenic Belt (SKB) from north to south, respectively (Figure 1b). The boundaries of each belt are the Northern East Kunlun fault (NEKF, also named as Nalinggele Fault in the western EKOB), the Central East Kunlun fault (CEKF) and the Southern East Kunlun fault (SEKF) from north to south, respectively (Figure 1b) [10,39]. The NKB and CKB exhibit spatial heterogeneity with the SKB. (1) The basement compositions of the NKB and CKB are of the Paleo-Proterozoic Jinshuikou Group, including Baishahe and Xiaomiao Formations, which are mainly composed of gneiss, marble, migmatite and metasedimentary rocks. Thick sedimentary strata have developed on the top of these basements, which include the Meso- to Neo-Proterozoic Binggou Group, Ordovician Tanjianshan Group, Upper Devonian Maoniushan Formation, Carboniferous Shiguaizi, Dagangou and Di’aosu Formations, Permian Dachaigou Formation and Upper Triassic Elashan Formation. (2) The basement compositions of the SKB are of the Meso- to Neo-Proterozoic Wanbaogou Group, which is mainly composed of basaltic oceanic plateau and overlying meta-volcanic and metasedimentary rocks. Similar to the NKB and CKB, the SKB also features the development of thick sedimentary strata, such as the Ordovician–Silurian Nachitai Group, Carboniferous Halaguole and Haoteluowa Formations, Permian Gequ Formation and Triassic Hongshuichuan, Naocangjiangou and Babaoshan Formations [39]. The EKOB records a protracted tectonic evolution involving (1) Cambrian–Devonian Proto-Tethys Ocean and Carboniferous–Triassic Paleo-Tethys Ocean [10,11,13,14,19,39,40]. Notably, Phanerozoic granitoids cover an area of approximately 47,500 km2, with Permian–Triassic granitoids accounting for 23,000 km2 (approximately 48% of total exposure) [38].

2.2. Geology of Study Area

The Xingshugou (XSG) study area is situated within the SKB, approximately 70 km south of Nuomuhong Township (Figure 1b). The region exposes a complex intrusive suite dominated by granodiorite, monzogranite, quartz porphyry and gabbro, with subordinate moyite. These plutons intrude the Lower Carboniferous Halaguole Formation, which comprises andesite sequences interbedded with carbonaceous slate and minor polymictic conglomerate (Figure 1c). The strata have undergone intense alteration processes including silicification, chloritization, sericitization and kaolinization, with particularly strong alteration intensities observed in contact zones adjacent to intrusive rock. Structural analysis reveals two predominant fault systems: (1) NW–SE-trending and E–W-oriented primary faults; (2) secondary N–S-trending fractures (Figure 1c). Notably, the magmatic complex is spatially associated with an epithermal low-sulfidation Au deposit (Figure 1c), suggesting potential genetic links between magmatism and hydrothermal mineralization. The gold-bearing veins strike northwestward with southwest dips (Figure 1c), accompanied by alteration zones exhibiting silicification, kaolinization, carbonatization, pyritization and limonitization.

2.3. Sample Descriptions

Two representative granitoid samples were collected from the XSG magmatic complex (Figure 1c).
  • Monzogranite (MG), which was collected at 96°32′07″ E, 35°51′07″ N (Figure 1c), is flesh-pink and has a fine- to medium-grained granitic texture (Figure 2a). It consists of plagioclase (~30 vol.%), potassium feldspar (~25 vol.%), quartz (~40 vol.%), biotite (<5 vol.%) and accessory minerals including zircon (Figure 2b).
  • Quartz porphyry (QP), which was collected at 96°32′17″ E, 35°51′07″ N (Figure 1c), is light gray and has a porphyritic texture (Figure 2c). The phenocrysts are potassium feldspar (~10 vol.%), plagioclase (~10 vol.%) and quartz (~10 vol.%), and the groundmass consists of plagioclase (~20 vol.%), K-feldspar (~20 vol.%), quartz (~20 vol.%) and biotite (<5 vol.%) (Figure 2d).

3. Analytical Methods

3.1. Zircon U-Pb Isotope Analyses

Zircons were separated and selected for dating at Langfang Tuoxuan Rock and Mineral Testing Service Co., Ltd., Langfang, China, through the methods of heavy liquid and electromagnetic sorting combined with hand selection under a stereobinocular microscope. Then, an epoxy resin target was made for imaging in transmitted–reflected light and cathodoluminescence (CL). Zircon U-Pb isotope and trace elements analyses were carried out at Yanduzhongshi Geological Analysis Laboratories Ltd., Langfang, China, using an NWR193 laser-ablation microprobe (Electro Scientific Industries New Wave Research Division, Fremont, CA, USA) attached to an Analytikjena PlasmaQuant MS quadrupole ICP-MS (Analytik Jena, Jena, Germany). In this test, the diameter of the ablation spot is 32 μm. Detailed analytical methods were reported by [23]. The data analysis program ICP-MS-DATACAL was used to calculate the isotopic data [42,43]. The ISOPLOT toolkit for Microsoft Excel was used to calculate the weighted average ages and plot the concordia diagram [44].

3.2. Whole-Rock Major and Trace Elements Analyses

Whole-rock major and trace element analyses were conducted at the Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources of China, Jilin University, Changchun, China. Fresh samples were powdered to 200 mesh by an agate ring mill. Major elements were analyzed by a ZSX Primus II X-ray fluorescence (XRF) spectrometer (Rigaku Corporation, Tokyo, Japan). For trace element analyses, samples were digested by HF + HNO3 in Teflon bombs, then analyzed with an Agilent 7500a inductively coupled plasma mass spectrometry (ICP-MS; Agilent Technologies, Santa Clara, CA, USA). The precision for major and trace elements is better than 1% and 5%, respectively.

3.3. Zircon In Situ Lu-Hf Isotope Analyses

Zircon in situ Lu-Hf isotope analysis was carried out at Yanduzhongshi Geological Analysis Laboratories Ltd., Beijing, China, by using an NWR193 laser-ablation microprobe (Electro Scientific Industries New Wave Research Division, Fremont, CA, USA) attached to a Neptune multi-collector ICP-MS (Thermo Fisher Scientific, Waltham, MA, USA). The size of the laser beam spot was 38 μm in diameter. The in situ Hf isotope analyses were on the same spots as the U-Pb dating. Detailed analytical and data processing methods are presented by [23,45].

4. Results

4.1. Zircon U-Pb Dating

Zircon crystals from samples MG (18XSG1) and QP (18XSG2) exhibit transparent, light brown and euhedral morphologies (80–200 μm) with well-developed prismatic faces and oscillatory zoning in CL images (Figure 3c,f). High Th/U ratios (0.28–5.39) confirm their magmatic origin [46]. The zircon U-Pb isotopic data are presented in Table 1. Zircon U-Pb concordia 206Pb/238U ages of MG and QP are 254.7 ± 0.57 Ma (MSWD = 0.31, n = 26, error ellipses are at 1 sigma and age errors are at 68% confidence) (Figure 3a) and 254.3 ± 0.57 Ma (MSWD = 0.038, n = 26, error ellipses are at 1 sigma and age errors are at 68% confidence) (Figure 3d), respectively. The zircon U-Pb weighted mean 206Pb/238U ages of MG and QP are 254.7 ± 1.1 Ma (MSWD = 0.26, n = 26) (Figure 3b) and 254.3 ± 1.1 Ma (MSWD = 0.116, n = 26) (Figure 3e), respectively. Therefore, the crystallization age of both intrusions is Late Permian.

4.2. Major and Trace Elements

The data of major and trace elements are presented in Table 2.

4.2.1. Monzonitic Granite (MG)

The MG shows a high SiO2 (73–80 wt%) content, but low K2O (0.3–4 wt%), TiO2 (0.1–0.2 wt%), FeOT (FeOT = FeO + Fe2O3 × 0.8998, 1–1.7 wt%), MnO (0.02–0.06 wt%), P2O5 (0.01–0.05 wt%) and MgO (0.1–0.2 wt%) contents, as well as low Mg# (Mg# = 100 × molar MgO/(MgO + FeOT), 13–20) (Figure 4b,c). The value of A/CNK (A/CNK = molar Al2O3/(CaO + Na2O + K2O)) ranges from 0.8 to 1.2 (Figure 4d). All of the above suggest that the MG is a low-K subalkaline metaluminous rock. It is enriched in light rare earth elements (LREEs) with (La/Yb)N ((La/Yb)N = (LaSample/LaCI)/(YbSample/YbCI)) values of 7–49 (Figure 5a) and large ion lithophile elements (LILEs, such as Rb and Th) (Figure 5b). Analyses also show significant negative Eu anomalies (Eu/Eu* = 0.28–0.32, with one outlier at 1.23; Eu/Eu* = (EuSample/EuCI)/{[(SmSample/SmCI) × (GdSample/GdCI)]^(1/2)}) (Figure 5a) and depletion in Ba, K, Sr, P and Ti (Figure 5b).
Figure 4. (a) Diagrams of QAP, after [47]; (b) Na2O + K2O (wt%) vs. SiO2 (wt%), after [48]; (c) K2O vs. SiO2, after [49]; (d) A/CNK vs. SiO2. Published whole-rock major and trace element data on Permian–Triassic granitoids were compiled from various sources in the EKOB: (1) subducted oceanic plate with overlying sediments [26,30], (2) lower crust [12], (3) juvenile mafic crust [33], (4) enriched mantle [34]. Q: quartz, A: alkaline feldspar, P: plagioclase. Previously published whole-rock major elements data on granites in the EKOB are presented in Supplementary Table S1.
Figure 4. (a) Diagrams of QAP, after [47]; (b) Na2O + K2O (wt%) vs. SiO2 (wt%), after [48]; (c) K2O vs. SiO2, after [49]; (d) A/CNK vs. SiO2. Published whole-rock major and trace element data on Permian–Triassic granitoids were compiled from various sources in the EKOB: (1) subducted oceanic plate with overlying sediments [26,30], (2) lower crust [12], (3) juvenile mafic crust [33], (4) enriched mantle [34]. Q: quartz, A: alkaline feldspar, P: plagioclase. Previously published whole-rock major elements data on granites in the EKOB are presented in Supplementary Table S1.
Minerals 15 00381 g004
Figure 5. Chondrite-normalized REEs and primitive mantle-normalized trace elements patterns. (a,b) Monzogranite (18XSG1); (c,d) quartz porphyry (18XSG2). Normalization values are from [50]. Previously published whole-rock trace elements data on granites in the EKOB are presented in Supplementary Table S1.
Figure 5. Chondrite-normalized REEs and primitive mantle-normalized trace elements patterns. (a,b) Monzogranite (18XSG1); (c,d) quartz porphyry (18XSG2). Normalization values are from [50]. Previously published whole-rock trace elements data on granites in the EKOB are presented in Supplementary Table S1.
Minerals 15 00381 g005
Table 2. Major (wt%) and trace elements (ppm) data for Xingshugou monzogranite (18XSG1) and quartz porphyry (18XSG2).
Table 2. Major (wt%) and trace elements (ppm) data for Xingshugou monzogranite (18XSG1) and quartz porphyry (18XSG2).
Rock TypeMonzograniteQuartz Porphyry
Sample No.18XSG1-118XSG1-218XSG1-318XSG1-418XSG1-518XSG2-118XSG2-218XSG2-318XSG2-418XSG2-5
Major elements (wt%)
SiO278.21 73.00 78.29 79.56 79.01 74.32 65.86 66.68 68.91 72.31
TiO20.10 0.21 0.10 0.08 0.10 0.39 0.81 0.58 0.46 0.45
Al2O311.65 14.46 12.17 10.49 11.49 11.22 20.20 14.76 12.92 12.95
Fe2O30.43 1.22 0.40 0.29 0.77 4.00 4.44 2.17 1.67 3.28
FeO0.81 0.64 0.79 0.73 0.79 1.59 1.45 2.94 3.27 1.85
MnO0.03 0.06 0.02 0.03 0.03 0.16 0.20 0.21 0.28 0.16
MgO0.12 0.24 0.11 0.11 0.12 0.78 1.01 1.51 1.69 0.87
CaO1.45 0.76 0.27 2.05 0.34 1.45 1.61 2.02 3.44 1.38
Na2O5.77 4.10 6.24 5.11 5.67 0.29 0.12 0.17 0.16 0.22
K2O0.36 3.97 0.50 0.31 0.61 4.40 2.66 7.56 5.77 5.21
P2O50.02 0.05 0.02 0.02 0.01 0.12 0.20 0.16 0.15 0.15
LOI0.90 1.25 0.70 1.20 0.85 1.20 1.00 1.10 0.80 1.10
Total99.86 99.96 99.61 99.99 99.79 99.92 99.57 99.86 99.51 99.90
FeOT1.21 1.76 1.16 1.01 1.50 5.25 5.53 4.95 4.83 4.85
Mg#15.29 19.99 14.69 16.79 12.71 21.25 25.03 35.66 38.92 24.64
A/CNK0.93 1.16 1.08 0.84 1.08 1.42 3.36 1.21 1.01 1.52
A/NK1.18 1.31 1.13 1.20 1.15 2.14 6.57 1.74 1.98 2.15
Trace elements (ppm)
Li0.25 4.01 2.19 4.02 2.66 21.81 48.51 22.86 14.37 20.46
Be1.96 1.18 1.58 1.32 1.06 0.87 1.54 0.86 0.89 0.93
B11.49 18.19 8.33 9.35 6.57 11.76 19.34 14.52 8.98 12.21
Sc1.09 1.11 2.14 1.81 1.67 7.73 10.27 9.08 7.58 7.56
Ti537.80 1298.00 564.60 421.40 472.20 2275.00 3990.00 3129.00 2380.00 2497.00
V3.22 16.18 2.51 3.06 3.65 59.89 92.46 74.28 58.62 64.67
Cr5.27 6.65 4.08 5.54 3.91 7.70 4.71 4.95 6.34 5.85
Mn154.80 370.20 103.60 139.40 164.50 1171.00 1327.00 1396.00 1823.00 1075.00
Co2.86 4.10 3.16 2.25 3.54 10.41 10.14 7.59 87.14 7.46
Ni2.50 3.13 1.70 2.22 1.32 4.01 3.39 2.77 4.98 3.11
Cu4.01 36.72 4.03 4.08 3.32 152.00 93.74 516.90 280.10 273.20
Zn9.70 63.54 7.41 9.01 8.17 163.90 184.50 157.10 112.20 147.50
Ga7.47 11.05 10.51 10.70 8.87 11.16 17.50 12.54 10.50 11.73
As7.46 9.82 2.73 3.45 2.06 18.23 13.55 6.61 5.41 8.36
Se1.14 1.08 1.25 1.22 1.06 1.70 1.76 1.42 1.47 1.48
Rb17.68 119.50 22.19 15.21 26.93 154.50 127.80 254.90 168.00 182.70
Sr56.41 309.10 63.22 81.85 52.61 55.72 32.52 74.41 103.40 56.50
Y9.83 7.67 13.03 14.79 11.42 12.58 19.36 15.37 14.42 13.64
Zr63.48 165.60 62.83 59.17 55.76 109.10 194.90 149.40 113.30 120.00
Nb11.56 4.74 12.39 11.46 13.83 4.29 6.95 5.30 4.06 5.01
Mo5.49 1.50 0.50 0.84 3.10 1.42 5.32 0.49 1.24 0.65
Ag0.09 0.17 0.08 0.09 0.06 1.16 0.83 0.98 1.12 0.46
Cd0.44 1.14 0.40 0.39 0.35 0.77 1.43 1.01 0.77 0.90
Sn2.33 1.09 1.10 1.25 1.03 1.40 1.60 1.19 1.71 1.70
Sb132.50 125.60 32.66 60.10 29.31 11.86 35.39 26.90 44.45 638.60
Cs0.55 2.22 0.57 0.73 0.74 2.23 4.00 3.56 1.85 2.90
Ba27.92 1670.00 61.86 49.33 70.10 1186.00 154.40 1466.00 1400.00 1609.00
La21.51 59.99 28.61 35.10 17.11 23.35 36.78 14.84 37.11 17.02
Ce41.25 101.30 51.45 63.35 32.10 41.48 65.29 27.78 61.85 32.34
Pr3.95 10.40 5.14 6.08 3.25 4.42 7.01 2.98 6.43 3.52
Nd12.24 31.03 15.73 17.99 10.02 15.69 23.66 10.91 22.22 12.53
Sm2.04 3.52 2.55 2.99 1.91 2.73 3.73 2.09 3.47 2.33
Eu0.19 1.23 0.25 0.26 0.19 0.80 0.79 0.71 0.94 0.77
Gd1.80 2.70 2.21 2.70 1.88 2.58 3.64 2.35 3.18 2.50
Tb0.27 0.30 0.33 0.39 0.31 0.37 0.51 0.39 0.45 0.39
Dy1.64 1.48 2.06 2.20 1.90 2.20 3.25 2.52 2.65 2.36
Ho0.35 0.30 0.46 0.50 0.42 0.48 0.73 0.57 0.54 0.50
Er1.11 0.89 1.44 1.57 1.33 1.46 2.31 1.73 1.56 1.50
Tm0.18 0.14 0.25 0.26 0.23 0.24 0.36 0.27 0.25 0.23
Yb1.32 0.98 1.75 1.85 1.59 1.66 2.43 1.82 1.57 1.51
Lu0.21 0.16 0.29 0.31 0.27 0.28 0.39 0.29 0.25 0.23
Hf3.94 6.29 3.87 3.67 3.48 4.30 7.83 6.02 4.54 4.82
Ta1.27 0.37 1.17 1.22 1.05 0.32 0.54 0.42 0.33 0.40
W31.53 29.66 28.61 30.77 22.49 21.76 15.94 18.53 15.19 93.29
Tl0.20 1.12 0.22 0.19 0.23 1.45 1.01 2.35 1.71 1.68
Pb5.03 23.05 2.62 5.55 3.04 277.10 59.12 17.47 37.36 15.90
Bi0.20 0.52 0.15 0.20 0.10 0.14 0.09 0.07 0.12 0.08
Th23.37 16.39 34.20 28.95 27.73 8.32 12.60 9.97 7.68 8.21
U1.98 4.34 2.07 3.76 2.25 1.78 2.76 2.37 1.57 1.61
ΣREEs88.06 214.41 112.52 135.54 72.50 97.74 150.88 69.27 142.46 77.72
ΣLREEs81.17 207.47 103.73 125.77 64.58 88.47 137.26 59.31 132.02 68.51
ΣHREEs6.89 6.94 8.79 9.77 7.92 9.27 13.62 9.96 10.44 9.22
(La/Yb)N11.71 43.94 11.71 13.59 7.70 10.08 10.87 5.85 16.94 8.11
Eu/Eu*0.30 1.23 0.32 0.28 0.31 0.92 0.66 0.99 0.87 0.98
TZr (°C)647.73 761.73 666.20 630.77 658.52 753.40 889.96 748.40 698.63 767.19
LOI = loss on ignition; FeOT = FeO + Fe2O3 × 0.8998; Mg# = 100 × molar MgO/(MgO + FeOT); A/CNK = molar Al2O3/(CaO + Na2O + K2O); A/NK = molar Al2O3/(Na2O + K2O); (La/Yb)N = (LaSample/LaCI)/(YbSample/YbCI); Eu/Eu* = (EuSample/EuCI)/{[(SmSample/SmCI) × (GdSample/GdCI)]^(1/2)}; TZr (°C) (zirconium saturation temperature) is calculated by [51]. Normalization values are from [50].

4.2.2. Quartz Porphyry (QP)

The QP shows high SiO2 (66–74 wt%) and K2O (2.7–7.6 wt%) contents, but low Na2O (0.1–0.3 wt%), FeOT (5–6 wt%), MnO (0.2–0.3 wt%), TiO2 (0.4–0.8 wt%) and P2O5 (0.1–0.2 wt%) contents, as well as low Mg# (21–39). The A/CNK value ranges from 1 to 3 (Figure 4d). All of the above suggest that the QP is a high-K subalkaline peraluminous rock. It is enriched in LREEs with an (La/Yb)N of 6–17 (Figure 5c) and LILEs (Figure 5d). It also shows slightly negative Eu anomalies (0.9–0.97) (Figure 5c) and depletion in Nb, Sr, P and Ti (Figure 5d).

4.3. In Situ Zircon Hf Isotope

The data are presented in Table 3. The initial 176Hf/177Hf ratios of MG (18XSG1) and QP (18XSG2), which were calculated back to 254 Ma, range from 0.282576 to 0.282693 and 0.282495 to 0.282665, respectively. The εHf(t) values range from −1.6 to 2.6 and −4.4 to 1.5, respectively (Figure 6). The two-stage model ages (TDM2) range from 1003 to 1301 Ma and 947 to 1161 Ma, respectively.

5. Discussion

5.1. Petrogenesis of the XSG Granitoids

I-, S-, M- and A-type granites have been defined according to different geochemical characteristics [1,2]. While I- S- and A- granites have been documented in the EKOB [11,26,27,33,55], our integrated analyses constrain the petrogenetic affinity of the XSG intrusions.
The absence of alkaline dark minerals in both MG and QP, coupled with depletion in HFSEs (Figure 5b,d) and a low zircon saturation temperature (TZr = 694–800 °C for MG, 752–880 °C for QP) [51,56], as well as subdued values of 10,000 Ga/Al ratios (1.2–1.9) and Zr + Nb + Ce + Y contents (113–286 ppm) below the threshold for typical A-type granite (Figure 7e–h), collectively preclude an A-type affinity [1]. Furthermore, the scarcity of voluminous coeval mafic intrusions in the study area [38], the absence of aluminum minerals (e.g., muscovite, garnet and cordierite) and the negative relationship between P2O5 and SiO2 in the samples (Figure 7d) confirm an I-type granite classification [2,5,57].
The MG shows a high SiO2 content (73–79 wt%) but low TiO2 (0.1–0.2 wt%), MgO (0.1–0.2 wt%), FeOT (1–2 wt%), P2O5 (0.01–0.05 wt%) and MnO (0.02–0.06 wt%) contents (Figure 7a–c), as well as a depletion in Eu (Eu/Eu* = 0.28–0.32, one outlier at 1.23), Ba and Sr (Figure 5a,b). The MG shows higher FeOT/MgO ratios (7–12) and (K2O + Na2O)/CaO ratios (3–19) than the QP (3–7, 2–4, respectively), and it plots into the FG (fractionated granites) field in the diagrams of FeOT/MgO vs. Zr + Nb + Ce + Y and (K2O + Na2O)/CaO vs. Zr + Nb + Ce + Y (Figure 7e,f). All of the above indicate that the MG underwent a higher degree of fractional crystallization than QP. The samples of MG show significant fractional crystallization of K-feldspar and plagioclase on the Ba/Sr–Sr and Ba–Sr diagrams (Figure 8a,b) coupled with highly depleted Eu for the MG (Figure 5a). The Rb/Sr ratios of the MG are positively correlated with Sr (Figure 8c), which implies the fractional crystallization of biotite. The (La/Yb)N–La diagram shows significant fractional crystallization of titanite and apatite for the MG (Figure 8d). These features collectively support the classification of the MG as metaluminous to weakly peraluminous, low-K calc-alkaline I-type granite that underwent extensive fractional crystallization (Figure 4b–d, Figure 7 and Figure 8), contrasting with the less-differentiated high-K calc-alkaline I-type QP (Figure 4b–d, Figure 7 and Figure 8) [2,58].
I-type granite genesis typically involves three principal mechanisms: (1) the mixing of crustal and mantle-derived melts [59,60], (2) assimilation-fractional crystallization (AFC) of mantle-derived basaltic magma during ascent through the continental crust [54,61], (3) partial melting of the lower crust [62,63,64,65].
The absence of mafic microgranular enclaves (MMEs) in MG and QP (Figure 2) and the restricted zircon εHf(t) values (−1.6 to 2.6 for MG, −4.4 to 1.5 for QP) (Figure 6) preclude magma mixing as a viable mechanism, because such a process should produce scattered isotopic signatures (Δε > 10 units) [63,66].
The high SiO2 contents (exceeding 55 wt%) and low concentrations of compatible element contents, such as Cr (4–7 ppm for MG, 5–8 ppm for QP), Ni (1–3 ppm for MG, 3–5 ppm for QP) and Co (2–4 ppm for MG, 7–87 ppm for QP), suggest that they are not derived from the mantle [67]. According to the relative incompatibility of Nb, Th, Ta and U (DNb ≈ DTh < DTa ≈ DU), Nb* (=[Nb/Th]Sample/[Nb/Th]PM) and Ta* (=[Ta/U]Sample/[Ta/U]PM) ratios are normally inherited from the source region and remain constant during the subsequent differentiation [68]. The lower Nb* and Ta* ratios compared to those of the Bulk Continental Crust (BCC) (Figure 9a) further suggest that they were not derived from the mantle. To produce one volume of granite requires more than three volumes of basaltic magma [54], but voluminous coeval mafic magma has not been found in the EKOB [32,69,70]. Consequently, we rule out the mechanism involving the fractionation of mantle-derived magma.
The Nb/Ta ratios of the MG and QP samples range from 9 to 13 and 12 to 13, respectively (Figure 9b). These ratios cluster near BCC values (11.4), deviating markedly from the primitive mantle (PM) values (17.5), indicating a crustal affinity (Figure 9b) [50,74,75]. The MG exhibits high (Na2O + K2O)/(Fe2O3 + MgO + TiO2) and Al2O3/(Fe2O3 + MgO + TiO2) ratios, whereas the QP shows low ratios (Figure 9c,d). We believe that the MG should also plot into the amphibolites field (Figure 9c,d), as it has undergone some degree of fractional crystallization, leading to a decrease in Fe, Mg and Ti contents. Therefore, we propose that the MG and QP are derived from the mafic lower crust [71,72]. The εHf(t) values are mostly positive (Figure 6), which indicates a mantle origin. The two-stage Hf model ages of the MG and QP range from 1.0 to 1.3 Ga and 0.9 to 1.1 Ga, respectively. The MG and QP display higher Ba/Th ratios but lower La/Sm ratios (Figure 9e), which implies that the source was modified by fluids released from a subducted slab. The intense mantle–crustal magma interaction has been identified in the EKOB, as evidenced by widespread coeval MMEs within granitoids during the Late Permian–Middle Triassic [26,34,40].
In summary, we propose that the MG and QP originated from the partial melting of the metasomatized Meso- to Neo-Proterozoic juvenile lower crust. This process was triggered by the underplating of mantle-derived mafic magma at the boundary between the lithospheric mantle and the lower crust. Additionally, fractional crystallization occurred in the MG during magmatic evolution.

5.2. Geochronology and Tectonic Implications

Zircon U-Pb geochronology constrains the crystallization ages of the MG and QP to 254.7 ± 1.1 Ma (MSWD = 0.26, Figure 3b) and 254.3 ± 1.1 Ma (MSWD = 0.116, Figure 3e), respectively. Their magmatic origins are confirmed by well-developed oscillatory zoning textures (Figure 3c,f) and elevated Th/U ratios (0.3 to 5, Table 1) [46]. These Late Permian granitoids record critical magmatic activity during the Paleo-Tethyan evolution of the EKOB, displaying diagnostic arc-related geochemical signatures, including LILE enrichment and HFSE depletion (Figure 5). They systematically cluster within the volcanic arc granite (VAG) field on the tectonic discrimination diagrams (e.g., Nb vs. Y and Ta vs. Yb, Figure 10) [76]. Their coherent spatial–temporal distribution and subduction-related geochemical fingerprints collectively affirm generation in an active continental margin setting, associated with northward Paleo-Tethyan oceanic slab subduction.
The tectonic evolution of the Buqingshan-A’nyemaqing Ocean (BAO), a Paleo-Tethys branch, has been progressively constrained though decades of multidisciplinary research. The current consensus recognizes oceanic opening prior to the Early Carboniferous, evidenced by ophiolitic suites, such as Haerguole gabbro (ca. 332 Ma [21]) and Dur’ngoi basalts (ca. 308 Ma [19]; ca. 345 Ma [20]). Northeastward subduction initiation at ca. 278 Ma is well documented by the Xiaomiao mafic dike swarm [22], yet persistent controversies surround the timing and mechanisms of the subduction-to-collision transition. Three principal models have emerged: (1) A dominant view advocates continuous subduction until ca. 240 Ma followed by Late Triassic collision (240 Ma to 225 Ma) and a post-collisional stage [10,25,39,77]. (2) Alternative interpretations propose prolonged subduction through the Late Triassic with Jurassic collision onset [28,29,78]. (3) Contrasting models posit collision before the Late Permian [26,27,30]. These discrepancies arise from methodological limitations in using granitoid geochemistry for tectonic discrimination [33,38,69], compounded by evolving interpretations of expanding geochemical and geological datasets [16,17,18,37,79,80,81]. To reconcile these conflicts, we propose an integrated geodynamic model synthesizing stratigraphic records, petrogenetic constraints, metallogenic patterns and regional tectonics, augmented by recent high-resolution geochronological and isotopic datasets.
The first stage (345–278 Ma): The tectonic evolution of the BAO initiated with oceanic opening prior to ca. 345 Ma, as evidenced by Haerguole and Dur’ngoi ophiolites [20]. During the Carboniferous, shallow-marine sequences dominated by clastic-carbonate strata reflect a passive continental margin [82] without arc-magmatism (Figure 11 and Figure 12a,b).
The second stage (278–240 Ma): Northward subduction commenced by ca. 278 Ma, marked by the Xiaomiao mafic dike swarm [22] and further corroborated by an angular unconformity between the Upper Permian Gequ Formation and underlying units [82]. Progressive subduction is recorded in the Upper Permian Gequ Formation, Lower Triassic Hongshuichuan Formation and Middle Triassic Naocangjiangou Formation [84]. Initially, a low-angle slab (278–263 Ma) resulted in limited magmatism, which then transitioned to intense mantle–crust interaction during 263–240 Ma (Figure 11 and Figure 12c,d). This magmatic flare-up was characterized by diverse magmatic rocks, including I-/A2-type granite, adakitic volcanic rocks and mafic rocks (e.g., Yingzhuagou olivine gabbro-norite: 263 ± 4 Ma [85]; Kengdenongshe granite porphyry: 257.0 ± 2.0 Ma [55]; Xiahe area tuff and andesite: 257–245 Ma [18]). The flare-up coincided with asthenospheric upwelling induced by slab rollback. Mantle sources varied from enriched [70] to hybrid depleted-enriched compositions [85], while crustal melts were derived from the lower crust [86], juvenile mafic lower crust [87] and subducted slab and overlying sediments [26]. Additionally, Cu-Ni mineralized mafic–ultramafic complexes (257–250 Ma) [88] further attest to an extensional regime, where rollback-driven lithospheric thinning facilitated large-scale magma generation and crustal recycling through mantle–crust hybridization (Figure 11 and Figure 12e,f).
The third stage (240–230 Ma): The incipient collision phase is evidenced by a micro-angular unconformity between the Middle Triassic Xilikete and Naocangjiangou Formations, signaling initial collision between the Bayanhar Block and the EKOB [82]. Some studies suggest slab break-off in the EKOB [89], but the conspicuous magmatic quiescence during this interval (Figure 11 and Figure 12g,h) provides stronger evidence for syn-collisional compressional tectonics, as evidenced by the localized deposition of the Xilikete Formation in uplifted terranes [82].
The fourth stage (230–195 Ma): The pronounced angular unconformity between the Upper Triassic Babaoshan Formation and underlying strata reflects large-scale collision during this period [82]. Geophysical constraints reveal lower crustal thinning [90,91], attributed to eclogitization-driven lithospheric delamination that triggered asthenospheric upwelling and renewed magmatic flare-up (Figure 11 and Figure 12i,j). This stage generated voluminous A2-type and adakitic magmas [27,33,77,92], with emplacement facilitated by the gravitational instability of densified lithospheric roots.
Synthesizing multidisciplinary evidence, we reconstruct the BAO evolutionary sequence as follows: (1) The BAO opened before the Early Carboniferous (ca. 345 Ma); (2) the oceanic subduction commenced before 278 Ma; (3) then it evolved into low-angle subduction during 278–263 Ma and high-angle subduction driven by slab rollback during 263–240 Ma; (4) the EKOB and Bayanhar collided between 240–230 Ma; (5) finally, the EKOB evolved into a post-collisional setting at 230–195 Ma.

6. Conclusions

(1) Zircon U-Pb geochronology constrains the emplacement of the monzogranite and quartz porphyry to ca. 254 Ma. They are classified as a low-K calc-alkaline I-type granite, which underwent highly fractional crystallization, and a high-K calc-alkaline I-type granite, respectively.
(2) Petrogenetic modeling indicates that these granitoids originated through partial melting of the juvenile mafic lower crust, a process initiated by mantle-derived magma underplating.
(3) The integrated geodynamic evolution of the Buqingshan-A’nyemaqing Ocean (a branch of the Paleo-Tethys Ocean) has been established as follows: (1) oceanic spreading began before ca. 345 Ma, (2) the low-angle subduction stage ranged from ca. 278 to 263 Ma, (3) the slab rollback stage lasted from ca. 263 to 240 Ma, (4) the syn-collisional stage ranged from ca. 240 to 230 Ma, (5) the post-collisional stage spanned from 230 to 195 Ma.

Supplementary Materials

The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/min15040381/s1, Table S1. Summary of the published whole-rock major (wt%) and trace elements (ppm) data of granites in the EKOB. Table S2: Summary of the published zircon Hf isotopic data of granites in the EKOB. Table S3: Summary of ages of the Permian–Triassic igneous rocks in the eastern of the East Kunlun Orogenic Belt. References [93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149] are cited in Supplementary materials.

Author Contributions

Conceptualization, C.H. and F.S.; Formal analysis, T.Y.; Funding acquisition, T.W., Y.Y. and Y.C.; Investigation, Y.Y., B.L., X.C., C.L. and X.Z.; Methodology, C.H.; Project administration, D.D.; Software, B.S.; Supervision, F.S.; Validation, J.Y.; Visualization, Y.Z., Y.W., Z.W., H.L. and R.S.; Writing—original draft, C.H.; Writing—review and editing, F.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Qinghai Geological Survey Project and Technology Innovation Center for Exploration and Exploitation of Strategic Mineral Resources in Plateau Desert Region, Ministry of Natural Resources Project, grant numbers 2021074005ky005, 2023085029ky004, No. 2022012005ky005 and No. 2023085026ky001.

Data Availability Statement

The original contributions presented in this study are included in the article/Supplementary Materials.

Acknowledgments

We would like to thank the Electron Microscope Center, Jilin University, the Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources of China, Jilin University, Langfang Tuoxuan Rock and Mineral Testing Service Co., Ltd., for helping in the analyses. We thank all the editors and anonymous reviewers for their constructive comments to improve this manuscript.

Conflicts of Interest

Tao Yu is employee of Northeast Oli & Gas Branch of SINOPEC. The paper reflects the views of the scientists and not the company. Other authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
EKOBEast Kunlun Orogenic Belt
BAOBuqingshan-A’nyemaqing Ocean
AOBA’nyemaqen Ophiolitic Belt
NKBCaledonian back-arc basin of Northern East Kunlun Orogenic Belt
CKBuplifted granitic basement of Central East Kunlun Orogenic Belt
SKBcomposite accretion of the Southern East Kunlun Orogenic Belt
NEKFNorthern East Kunlun fault
CEKFCentral East Kunlun fault
SEKFSouthern East Kunlun fault
ATFAltyn Tagh strike-slip fault
WWFWenquangou–Wahongshan fault
XSGXingshugou
MGmonzogranite
Qtzquartz
Plplagioclase
Kfspotassium feldspar
Zirzircon
QPquartz porphyry
CLcathodoluminescence
LREEslight rare earth elements
TDM2two-stage model age

References

  1. Whalen, J.B.; Currue, K.L.; Chappell, B.W. A-type granites: Geochemical characteritics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
  2. Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489. [Google Scholar] [CrossRef]
  3. Chappell, B.W.; White, A.J.R. Two contrasting granite type. Pac. Geol. 1974, 18, 173–174. [Google Scholar]
  4. Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 2011, 83, 1–26. [Google Scholar] [CrossRef]
  5. Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
  6. White, A.J.R.; Chappell, B.W. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. In Circum-Pacific Plutonic Terranes; Roddick, J.A., Ed.; Geological Society of America: Boulder, CO, USA, 1983; Volume 159, pp. 21–24. [Google Scholar]
  7. White, A.J.R. Sources of Granite Magmas; Geological Society of America: Boulder, CO, USA, 1979; p. 539. [Google Scholar]
  8. Loiselle, M.C.; Wones, D.R. Characteristics and origin of anorogenic granites. Geol. Soc. Am. 1979, 11, 468. [Google Scholar]
  9. Bian, Q.T.; Li, D.H.; Pospelov, I.; Yin, L.M.; Li, H.S.; Zhao, D.S.; Chang, C.F.; Luo, X.Q.; Gao, S.L.; Astrakhantsev, O.; et al. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. J. Asian Earth Sci. 2004, 23, 577–596. [Google Scholar] [CrossRef]
  10. Dong, Y.P.; He, D.F.; Sun, S.S.; Liu, X.M.; Zhou, X.H.; Zhang, F.F.; Yang, Z.; Cheng, B.; Zhao, G.C.; Li, J.H. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Sci. Rev. 2018, 186, 231–261. [Google Scholar] [CrossRef]
  11. Li, R.; Pei, X.; Pei, L.; Li, Z.; Chen, G.; Chen, Y.; Liu, C.; Wang, M. The Early Triassic Andean-type Halagatu granitoids pluton in the East Kunlun orogen, northern Tibet Plateau: Response to the northward subduction of the Paleo-Tethys Ocean. Gondwana Res. 2018, 62, 212–226. [Google Scholar] [CrossRef]
  12. Li, Z.C.; Pei, X.Z.; Bons, P.D.; Li, R.B.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wang, M.; Zhao, S.W.; et al. Petrogenesis and tectonic setting of the early-middle triassic subduction-related granite in the eastern segment of East Kunlun: Evidences from petrology, geochemistry, and zircon U-Pb-Hf isotopes. Int. Geol. Rev. 2021, 64, 698–721. [Google Scholar] [CrossRef]
  13. Wu, D.Q.; Sun, F.Y.; Pan, Z.C.; Tian, N. Geochronology, geochemistry, and Hf isotopic compositions of Triassic igneous rocks in the easternmost segment of the East Kunlun Orogenic Belt, NW China: Implications for magmatism and tectonic evolution. Int. Geol. Rev. 2020, 63, 1011–1029. [Google Scholar] [CrossRef]
  14. Xue, H.R.; Sun, F.Y.; Li, L.; Xin, W. Geochronology, geochemistry, and Sr–Nd–Hf isotopes of the Late Permian–Early Triassic granitoids in Eastern Kunlun Orogen, Northwest China: Petrogenesis and implications for geodynamic setting. Int. Geol. Rev. 2020, 63, 696–716. [Google Scholar] [CrossRef]
  15. Pan, Z.C.; Sun, F.Y.; Cong, Z.C. Petrogenesis, Sources, and Tectonic Settings of Triassic Volcanic Rocks in the Ela Mountain Area of the East Kunlun Orogen: Insights from Geochronology, Geochemistry and Hf Isotopic Compositions. Minerals 2022, 12, 1085. [Google Scholar] [CrossRef]
  16. Xu, Q.L.; Sun, Y.G.; Mao, G.Z.; Xin, W.; Yang, Y.Q. Petrogenesis of the Ore-Related Intrusions of the Aikengdelesite Mo (–Cu) and Halongxiuma Mo Deposits: Implication for Geodynamic Evolution and Mineralization in the East Kunlun Orogen, Northwest China. Minerals 2023, 13, 447. [Google Scholar] [CrossRef]
  17. Zhang, B.; Dong, Y.; Sun, S.; He, D.; Hui, B.; Yue, Y.; Ren, X.; He, W. Late Triassic extension of thickened lithosphere of the East Kunlun orogenic Belt, northern Tibetan Plateau: Evidence from the geochemistry and geochronology of mafic magmatism. Gondwana Res. 2025, 137, 99–116. [Google Scholar] [CrossRef]
  18. Li, H.R.; Qiao, J.F.; Sun, F.Y.; Qian, Y.; Wang, Y.Z.; Bakht, S.; Liu, H.T.; Gu, Y. Three episodes of Triassic volcanism in the Eastern Kunlun Orogen, NW China: Constraints for evolution of the Paleo-Tethys Ocean. Int. Geol. Rev. 2024, 66, 1815–1837. [Google Scholar] [CrossRef]
  19. Yang, J.S.; Shi, R.D.; Wu, C.L.; Wang, X.B.; Robinson, P.T. Dur’ngoi ophiolite in East Kunlun, Northeast Tibetan plateau: Evidence for paleo-Tethyan suture in Northwest China. J. Earth Sci. 2009, 20, 303–331. [Google Scholar] [CrossRef]
  20. Chen, L.; Sun, Y.; Pei, X.Z.; Gao, M. Northernmost paleo-tethyan oceanic basin in Tibet:Geo-chronological evidence from ~(40)Ar/~(39)Ar age dating of Dur’ngoi ophiolite. Chin. Sci. Bull. 2001, 46, 1203–1205. [Google Scholar] [CrossRef]
  21. Liu, Z.Q.; Pei, X.Z.; Liu, R.B.; Li, Z.C.; Zhang, X.F.; Liu, Z.G.; Chen, G.C.; Chen, Y.X.; Ding, S.P.; Guo, J.F. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A’nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta GeoloGICA Sin. 2011, 85, 185–194, (In Chinese with English Abstract). [Google Scholar]
  22. Liu, B.; Ma, C.Q.; Zhang, J.Y.; Xiong, F.H.; Huang, J.; Jiang, H.A. 40Ar–39Ar age and geochemistry of subduction-related mafic dikes in northern Tibet, China: Petrogenesis and tectonic implications. Int. Geol. Rev. 2014, 56, 57–73. [Google Scholar] [CrossRef]
  23. Pan, Z.C.; Sun, F.U.; Cong, Z.H.; Tian, N.; Xin, W.; Wang, L.; Zhang, Y.J.; Wu, D.Q. Petrogenesis and Tectonic Implications of the Triassic Granitoids in the Ela Mountain Area of the East Kunlun Orogenic Belt. Minerals 2022, 12, 880. [Google Scholar] [CrossRef]
  24. Zhao, X.; Fu, L.B.; Wei, J.H.; Bagas, L.; Santosh, M.; Liu, Y.; Zhang, D.H.; Zhou, H.Z. Late Permian back-arc extension of the eastern Paleo-Tethys Ocean: Evidence from the East Kunlun Orogen, Northern Tibetan Plateau. Lithos 2019, 340–341, 34–48. [Google Scholar] [CrossRef]
  25. Xia, R.; Deng, J.; Qing, M.; Li, W.L.; Guo, X.D.; Zeng, G.Z. Petrogenesis of ca. 240 Ma intermediate and felsic intrusions in the Nan’getan: Implications for crust–mantle interaction and geodynamic process of the East Kunlun Orogen. Ore Geol. Rev. 2017, 90, 1099–1117. [Google Scholar] [CrossRef]
  26. Huang, H.; Niu, Y.L.; Nowell, G.; Zhao, Z.D.; Yu, X.H.; Zhu, D.C.; Mo, X.X.; Ding, S. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chem. Geol. 2014, 370, 1–18. [Google Scholar] [CrossRef]
  27. Kong, J.J.; Niu, Y.L.; Hu, Y.; Zhang, Y.; Shao, F.L. Petrogenesis of the Triassic granitoids from the East Kunlun Orogenic Belt, NW China: Implications for continental crust growth from syn-collisional to post-collisional setting. Lithos 2020, 364–365, 105513. [Google Scholar] [CrossRef]
  28. Yuan, C.; Sun, M.; Xiao, W.; Wilde, S.; Li, X.; Liu, X.; Long, X.; Xia, X.; Ye, K.; Li, J. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for adakite and magmas from the MASH Zone. Int. J. Earth Sci. 2009, 98, 1489–1510. [Google Scholar] [CrossRef]
  29. Wang, Q.; Li, Z.X.; Chung, S.L.; Wyman, D.A.; Sun, Y.L.; Zhao, Z.H.; Zhu, Y.T.; Qiu, H.N. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos 2011, 126, 54–67. [Google Scholar] [CrossRef]
  30. Shao, F.L.; Niu, Y.L.; Liu, Y.; Chen, S.; Kong, J.J.; Duan, M. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 2017, 282–283, 33–44. [Google Scholar] [CrossRef]
  31. Kamaunji, V.D.; Wang, L.X.; Ma, C.Q.; Liu, J.; Zhu, Y.X. Petrogenesis and tectonic implication of the Permian-Triassic syenogranites from the eastern segment of the East Kunlun Orogen, China. Lithos 2021, 402–403, 105932. [Google Scholar] [CrossRef]
  32. Yao, L.; Dong, S.Y.; Lü, Z.C.; Zhao, C.S.; Pang, Z.S.; Yu, X.F.; Xue, J.L.; Geng, L.; Zhang, Z.H.; Liu, Y. Origin of the Late Permian gabbros and Middle Triassic granodiorites and their mafic microgranular enclaves from the Eastern Kunlun Orogen Belt: Implications for the subduction of the Palaeo-Tethys Ocean and continent–continent collision. Geol. J. 2018, 55, 147–172. [Google Scholar] [CrossRef]
  33. Ding, Q.F.; Jiang, S.; Sun, F.Y. Zircon U–Pb geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: Petrogenesis and tectonic implications. Lithos 2014, 205, 266–283. [Google Scholar] [CrossRef]
  34. Xia, R.; Wang, C.M.; Qing, M.; Li, W.L.; Carranza, E.J.M.; Guo, X.D.; Ge, L.S.; Zeng, G.Z. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan’getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys. Lithos 2015, 234–235, 47–60. [Google Scholar] [CrossRef]
  35. Yin, S.; Ma, C.q.; Xu, J.n. Geochronology, geochemical and Sr–Nd–Hf-Pb isotopic compositions of the granitoids in the Yemaquan orefield, East Kunlun orogenic belt, northern Qinghai-Tibet Plateau: Implications for magmatic fractional crystallization and sub-solidus hydrothermal alteration. Lithos 2017, 294–295, 339–355. [Google Scholar] [CrossRef]
  36. Qu, H.Y.; Friehauf, K.; Santosh, M.; Pei, R.F.; Li, D.X.; Liu, J.N.; Zhou, S.M.; Wang, H. Middle–Late Triassic magmatism in the Hutouya Fe–Cu–Pb–Zn deposit, East Kunlun Orogenic Belt, NW China: Implications for geodynamic setting and polymetallic mineralization. Ore Geol. Rev. 2019, 113, 103088. [Google Scholar] [CrossRef]
  37. Yin, S.; Ma, C.Q.; Xu, J.N.; Fu, J.L.; Zhang, X.N. The role of crystal mush in porphyry systems: A case study from the Baishiya ore field, East Kunlun orogenic belt, northern Qinghai-Tibet plateau. Ore Geol. Rev. 2022, 146, 104962. [Google Scholar] [CrossRef]
  38. Mo, X.X.; Luo, Z.H.; Deng, J.F.; Yu, X.H.; Liu, C.D.; CHen, H.W.; Yuan, W.M.; Liu, Y.H. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geol. J. China Univ. 2007, 13, 403–414, (In Chinese with English Abstract). [Google Scholar]
  39. Sun, F.Y.; (Geological Survey Institute of Jilin University, Changchun, China); Li, B.L.; (Geological Survey Institute of Jilin University, Changchun, China). Research on Major Prospecting Challenges in the East Kunlun Metallogenic Belt. Unpublished work. 2009. (In Chineses) [Google Scholar]
  40. Xiong, F.; Ma, C.; Zhang, J. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for magma mixing during subduction of Paleo-Tethyan Lithosphere. Mineral. Petrol. 2012, 104, 211–224. [Google Scholar] [CrossRef]
  41. Yuan, C.; Zhou, M.F.; Sun, M.; Zhao, Y.J.; Wilde, S.; Long, X.P.; Yan, D.P. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth Planet. Sci. Lett. 2010, 290, 481–492. [Google Scholar] [CrossRef]
  42. Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
  43. Liu, Y.S.; Hu, Z.h.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
  44. Ludwig, K.R. User’s Manual for Isoplot 3.00—A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; Volume 4, pp. 1–4. [Google Scholar]
  45. Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
  46. Hoskin, P.W.O. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
  47. Streckeisen, A.L. To each plutonic rock its proper name. Earth-Sci. Rev. 1976, 12, 1–33. [Google Scholar]
  48. Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
  49. Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
  50. Sun, S.s.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
  51. Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites: Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar]
  52. Blichert-Toft, J.; Chauvel, C.; Albarède, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol. 1997, 127, 248–260. [Google Scholar] [CrossRef]
  53. Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
  54. Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol. 2004, 148, 635–661. [Google Scholar] [CrossRef]
  55. Zhao, X.; Wei, J.; Fu, L.; Huizenga, J.M.; Santosh, M.; Chen, J.; Wang, D.; Li, A. Multi-stage crustal melting from Late Permian back-arc extension through Middle Triassic continental collision to Late Triassic post-collisional extension in the East Kunlun Orogen. Lithos 2020, 360–361, 105446. [Google Scholar] [CrossRef]
  56. Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon saturation re-revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
  57. Chappell, B.W.; Bryant, C.J.; Wyborn, D. Peraluminous I-type granites. Lithos 2012, 153, 142–153. [Google Scholar] [CrossRef]
  58. Wu, F.; Liu, X.; Ji, W.; Wan, J.; Yang, L. Highly fractionated granites: Recognition and research. Sci. China Earth Sci. 2017, 60, 1201–1219. [Google Scholar] [CrossRef]
  59. Collins, W.J. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: Implications for crustal architecture and tectonic models. Aust. J. Earth Sci. 1998, 45, 483–500. [Google Scholar] [CrossRef]
  60. Gray, C.M.; Kemp, A.I.S. The two-component model for the genesis of granitic rocks in southeastern Australia—Nature of the metasedimentary-derived and basaltic end members. Lithos 2009, 111, 113–124. [Google Scholar] [CrossRef]
  61. Clemens, J.D.; Darbyshire, D.P.F.; Flinders, J. Sources of post-orogenic calcalkaline magmas: The Arrochar and Garabal Hill–Glen Fyne complexes, Scotland. Lithos 2009, 112, 524–542. [Google Scholar] [CrossRef]
  62. Gao, P.; Zheng, Y.F.; Zhao, Z.F. Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis. Lithos 2016, 266–267, 133–157. [Google Scholar] [CrossRef]
  63. Kemp, A.I.S.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Gray, C.M.; Whitehouse, M.J. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science 2007, 315, 980–983. [Google Scholar]
  64. Roberts, M.P.; Clemens, J.D. Origin of high-potassium, calc-alkaline I-type granitoids. Geology 1993, 21, 825–828. [Google Scholar]
  65. Wu, F.Y.; Jahn, B.-m.; Wilde, S.A.; Lo, C.H.; Yui, T.F.; Lin, Q.; Ge, W.C.; Sun, D.Y. Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 2003, 67, 191–204. [Google Scholar] [CrossRef]
  66. Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE Chian: In-suit analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar]
  67. Baker, M.B.; Hirschmann, M.M.; Ghiorso, M.S.; Stolper, E.M. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 1993, 375, 308–311. [Google Scholar]
  68. Niu, Y.; Batiza, R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Planet. Sci. Lett. 1997, 148, 471–483. [Google Scholar] [CrossRef]
  69. Hu, Y.; Niu, Y.; Li, J.; Ye, L.; Kong, J.; Chen, S.; Zhang, Y.; Zhang, G. Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos 2016, 245, 205–222. [Google Scholar] [CrossRef]
  70. Xiong, F.H.; Ma, C.Q.; Chen, B.; Ducea, M.N.; Hou, M.C.; Ni, S.J. Intermediate-mafic dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A window into paleo-arc magma feeding system. Lithos 2019, 340–341, 152–165. [Google Scholar] [CrossRef]
  71. Rapp, R.P.; Watson, E.B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
  72. Rapp, R.P.; Watson, E.B.; Miller, C.F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res. 1991, 51, 1–25. [Google Scholar] [CrossRef]
  73. Fu, L.B.; Bagas, L.; Wei, J.H.; Chen, Y.; Chen, J.; Zhao, X.; Zhao, Z.X.; Li, A.B.; Zhang, W.K. Growth of early Paleozoic continental crust linked to the Proto-Tethys subduction and continental collision in the East Kunlun Orogen, northern Tibetan Plateau. GSA Bull. 2023, 135, 1709–1733. [Google Scholar] [CrossRef]
  74. Rudnick, R.L.; Gao, S. 3.01—Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, England, 2003; pp. 1–64. [Google Scholar] [CrossRef]
  75. Green, T.H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol. 1995, 120, 347–359. [Google Scholar]
  76. Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
  77. Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B.; Jiang, H.A. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau. J. Geol. Soc. 2014, 171, 847–863. [Google Scholar] [CrossRef]
  78. Liu, H.T. Petrology, geochemistry and geochronology of late Triassic volcanics, Kunlun orogenic belt, western China: Implications for tectonic setting and petrogenesis. Geochem. J. 2005, 39, 1–20. [Google Scholar] [CrossRef]
  79. Liu, B.; Zhou, Q.; Jarquín, E.; Sha, H.; Wang, R. Late Cretaceous-Palaeocene arc magmatism in Bumeicun, Gangdese, southern Tibet: Products of slab rollback of Neo-Tethyan Ocean? Geol. J. 2023, 58, 2526–2554. [Google Scholar] [CrossRef]
  80. Zhang, J.Y.; Chai, J.X.; Zhang, L.X.; Huang, Q.; Wang, Q.L.; Pan, L.; Ma, C.Q.; Li, J.W.; Pan, Y.M. Lower crustal copper enrichment and mobilization indicated by Late Permian amphibole gabbros and granodiorites in the eastern Kunlun Orogen, northern Tibet. Lithos 2024, 482–483, 107740. [Google Scholar] [CrossRef]
  81. Zhang, M.D.; Tan, S.C.; Ruan, M.F.; Li, L.; Yan, Q.H. Petrogenesis and tectonic implication of the Triassic monzogranite from the central segment of the East Kunlun Orogen, NW China. J. Asian Earth Sci. 2024, 276, 106341. [Google Scholar] [CrossRef]
  82. Li, R.B.; Pei, X.Z.; Li, Z.C.; Liu, Z.Q.; Chen, G.C.; Chen, Y.X.; Wei, F.H.; Gao, J.M.; Liu, C.J.; Pei, L. Geological characteristics of Late Paleozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun. Earth Sci. Front. 2012, 19, 244–254, (In Chinese with English Abstract). [Google Scholar]
  83. Abdelfadil, K.M.; Mansour, S.; Asran, A.M.; Younis, M.H.; Lentz, D.R.; Fowler, A.R.; Fnais, M.S.; Abdelrahman, K.; Radwan, A. Composite Granitic Plutonism in the Southern Part of the Wadi Hodein Shear Zone, South Eastern Desert, Egypt: Implications for Neoproterozoic Dioritic and Highly Evolved Magma Mingling during Volcanic Arc Assembly. Minerals 2024, 14, 1002. [Google Scholar] [CrossRef]
  84. Yan, Z.; Bian, Q.T.; Oleg, A.K.; Igor, I.P.; Li, J.; Wang, Z. Provenance of Early Triassic Hongshuichuan Formation in the southern margin of the East Kunlun Mountains: Constrains from detrital framework, heavy mineral analysis and geochemistry. Acta Petrol. Sin. 2008, 24, 1068–1078, (In Chinese with English Abstract). [Google Scholar]
  85. Hu, C.B.; Li, M.; Zha, X.F.; Gao, X.F.; Li, T. Genesis and Geological Signigicance of Late Paleozoic Mantle-Derived Magmatism in Qimantag, East Kunlun: A Case Study of Intrusion in YingZhuagou. Earth Sci. 2018, 43, 4334–4349, (In Chinese with English Abstract). [Google Scholar]
  86. Ren, X.; Dong, Y.; He, D.; Sun, S.; Hauzenberger, C.A.; Zhou, B.; Yue, Y.; Hui, B.; Zhang, B. Petrogenesis and tectonic implications of Late Permian S-type granites in the South Kunlun Belt, northern Tibetan Plateau. J. Asian Earth Sci. 2022, 230, 105204. [Google Scholar] [CrossRef]
  87. Chen, X.D.; Li, B.; Sun, C.B.; Zhou, H.B. Protracted Storage for Calc-Alkaline Andesitic Magma in Magma Chambers: Perspective from the Nageng Andesite, East Kunlun Orogen, NW China. Minerals 2021, 11, 198. [Google Scholar] [CrossRef]
  88. Zhang, J.D.; Yu, M.; Wang, H.; Li, B.; Feng, C.Y.; Dick, J.M.; Li, J.C.; Kong, H.L.; Zhao, Z.Y. Geodynamic Setting and Cu-Ni Potential of Late Permian Xiwanggou Mafic-Ultramafic Rocks, East Kunlun Orogenic Belt, NW China. Front. Earth Sci. 2021, 9, 666967. [Google Scholar] [CrossRef]
  89. Xin, W.; Sun, F.Y.; Zhang, Y.T.; Fan, X.Z.; Wang, Y.C.; Li, L. Mafic–intermediate igneous rocks in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic. Lithos 2019, 346–347, 105159. [Google Scholar] [CrossRef]
  90. Xu, Z.Q.; Jiang, M.; Yang, J.S.; Xue, G.Q.; Su, H.P.; Li, H.B.; Cui, J.W.; Wu, C.L.; Liang, F.H. Mantle structure of Qinghai-Tibet Plateau: Mantle plume, mantle shear zone and delamination of lithospheric slab. Earth Sci. Front. 2004, 11, 329–343, (In Chinese with English Abstract). [Google Scholar]
  91. Deng, J.; Wu, Z.; Yang, J.; Zhao, H.; Liu, H.; Lai, S.; Di, Y. Crust-mantle petrological strcucture and deep processes along the Golmud–Ejin Qi geoscience section. Acta Geophys. Sin. 1995, 38, 130–144, (In Chinese with English Abstract). [Google Scholar]
  92. Yu, M.; Feng, C.Y.; Zhao, Y.M.; Li, D.X. Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China. Lithos 2015, 239, 45–59. [Google Scholar] [CrossRef]
  93. Liu, W.D. Study on rock age and formation mechanism of intrusive rocks in Early Triassic in Xiangride Area in East Kunlun Orogenic. Shandong Land Resour. 2014, 32, 1–7, (in Chinese with English abstract). [Google Scholar]
  94. Kong, H.L.; Li, Y.Z.; Li, Y.Z.; Jia, Q.Z.; Guo, X.Z.; Zhang, B. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Xiwanggou olivine pyroxenolite in East Kunlun. J. Geomech. 2019, 25, 440452, (in Chinese with English abstract). [Google Scholar]
  95. Ni, J.Y. Zircon U-Pb age and tectonic setting of Permian-Triassic Volcanic Rock in East Kunlun Orogenic Belt. Master’s Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2010; pp. 1–65. [Google Scholar]
  96. Luo, M.; Mo, X.; Yu, X.; Li, X.; Huang, X. Zircon U-Pb geochronology, petrogenesis and implication of the Late Permian granodiorite from the Wulonggou area in East Kunlun, Qinghai Province. Earth Sci. Front. 2015, 22, 182–195, (in Chinese with English abstract). [Google Scholar]
  97. Peng, B.; Li, B.; Zhao, T.; Wang, C.; Chang, J.; Wang, G.; Yang, W. Identification of A-type granite in the southeastern Kunlun Orogen, Qinghai Province, China: Implications for the tectonic framework of the Eastern Kunlun Orogen. Geol. J. 2017, 52, 454–469. [Google Scholar] [CrossRef]
  98. Chen, X.; Gehrels, G.; Yin, A.; Li, L.; Jiang, R. Paleozoic and Mesozoic Basement Magmatism of Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau: LA-ICP-MS Zircon U-Pb Geochronology and its Geological Significance. Acta Geol. Sin. 2012, 86, 350–369. [Google Scholar]
  99. Sun, Y.; Pei, X.Z.; Ding, S.P.; Li, R.B.; Feng, J.Y.; Zhang, Y.F.; Chen, G.C. Halagatu magma mixing granite in the East Kunlun Mountains—Evidence from zircon U-Pb dating. Acta Geol. Sin. 2009, 83, 1000–1010. [Google Scholar]
  100. Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, C.J.; Chen, Y.X.; Li, X.B. Triassic magma mixing and mingling at the the eastern section of Eastern Kunlun: A case study from Xiangjiananshan granitic batholith. Acta Petrol. Sin. 2018, 34, 2441–2480. [Google Scholar]
  101. Zhang, J.Y.; Ma, C.Q.; Xiong, F.H.; Liu, B. Petrogenesis and tectonic significance of the Late Permian–Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China. Geol. Mag. 2012, 149, 892–908. [Google Scholar]
  102. Ren, H.D.; Wang, T.; Zhang, L.; Wang, X.X.; Huang, H.; Feng, C.Y.; Teschner, C.; Song, P. Age, Sources and Tectonic Setting of the Triassic Igneous Rocks in the Easternmost Segment of the East Kunlun Orogen, Central China. Acta Geol. Sin. 2016, 90, 641–668. [Google Scholar]
  103. Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt. Acta Petrol. Sin. 2011, 27, 3350–3364. [Google Scholar]
  104. Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B.; Jiang, H.A.; Huang, J. Zircon LA-ICP-MS U-Pb dating of Bairiqili gabbro pluton in East Kunlun orogenic belt and its geological significance. Geol. Bull. China 2011, 30, 1196–1202, (in Chinese with English abstract). [Google Scholar]
  105. Gao, H.; Sun, F. Middle to Late Triassic granitic magmatism in the East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for a transition from subduction to post-collision setting of the Palaeo-Tethys Ocean. Geol. J. 2021, 56, 3378–3395. [Google Scholar]
  106. Song, K.; Ding, Q.F.; Zhang, Q.; Cheng, L.; Han Yu Liu, F. Zircon U–Pb geochronology, Hf isotopes, and whole-rock geochemistry of Hongshuihe Early to Middle Triassic quartz diorites and granites in the Eastern Kunlun Orogen, NW China: Implication for petrogenesis and geodynamics. Geol. J. 2019, 55, 1507–1528. [Google Scholar] [CrossRef]
  107. Li, X.W.; Huang, X.F.; Luo, M.F.; Dong, G.C.; Mo, X.X. Petrogenesis and geodynamic implications of the Mid-Triassic lavas from East Kunlun, northern Tibetan Plateau. J. Asian Earth Sci. 2015, 105, 32–47. [Google Scholar] [CrossRef]
  108. Tian, N.; Sun, F.-Y.; Pan, Z.-C.; Li, L.; Gu, Y.; Wu, D.-Q.; Deng, J.-F.; Liu, Z.-D.; Wang, L.; Zhang, Y.-J. Triassic igneous activities in the east flank of the East Kunlun orogenic belt: The Daheba complex example. Int. Geol. Rev. 2023, 65, 1077–1104. [Google Scholar] [CrossRef]
  109. Wang, K.; Wang, L.X.; Ma, C.Q.; Zhu, Y.X.; Gao, L.Y. Petrogenesis and Geological Implications of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun. Earth Sci. 2020, 45, 400–418. [Google Scholar] [CrossRef]
  110. Xu, Q.L.; Sun, F.Y.; Li, B.L.; Qian, Y.; Li, L.; Yang, Y.Q. Geochronological dating, geochemical characteristics and tectonic setting of the granite-porphyry in the Mohexiala silver polymetallic deposit, Eastern Kunlun Orogenic Belt. Geotecton. Metallog. 2014, 38, 421–433, (in Chinese with English abstract). [Google Scholar]
  111. Tian, N.; Sun, F.; Pan, Z.; Li, L.; Yan, J.; Wu, D.; Gu, Y.; Deng, J.; Liu, Z.; Wang, L.; et al. Petrogenesis and tectonic setting of Mid-Triassic volcanic rocks in the East Kunlun orogenic belt, NW China: Insights from geochemistry, zircon U–Pb dating, and Hf isotopes. Geol. J. 2021, 56, 3257–3274. [Google Scholar] [CrossRef]
  112. Chen, G.; Pei, X.Z.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Liu, C.J.; Chen, G.C.; Wang, X.B.; Sang, J.Z.; Yang, S.; et al. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, East Kunlun Mountains. Geol. Bull. China 2016, 35, 1990–2005. [Google Scholar]
  113. Zhang, Y.; Pei, X.Z.; Li, R.B.; Liu, C.J.; Chen, Y.X.; Li, Z.u.o.C.; Wang, X.; Hu, C.G. Zircon U-Pb geochronology, geochemistry of the Alasimu gabbro in eastern section of East Kunlun Mountains and the closing time of Paleoocean basin. Geol. China 2017, 44, 526–540, (in Chinese with English abstract). [Google Scholar]
  114. Yao, X.G.; Zhou, S.A.; Jia, Q.Z.; Li, J.C.; Kong, H.L.; Guo, X.Z.; Wang, Y. Zircon U-Pb dating and geological characteritics of Monzogranite in the Shengli Iron-Copper deposit from East Kunlun Mountains and its prospecting significance. Geol. Sci. Technol. Inf. 2018, 37, 11–20, (in Chinese with English abstract). [Google Scholar]
  115. Deng, W.B.; Pei, X.Z.; Liu, C.J.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Chen, G.C.; Yang, S.; Chen, G.; Sang, J.Z.; et al. LA-ICP-MS zircon U-Pb dating of the Chahantaolegai syenogranites in Xiangride area of East Kunlun and its geological significance. Geol. Bull. China 2016, 35, 687–699. [Google Scholar]
  116. Guo, X.Z.; Jia, Q.; Li, J.; Kong, H.; Yao, X.; Li, Y. Geochronology and geochemical characteristics of syenogranites from Zhamaxiuma area in east Kunlun and their tectonic significance. Acta Geol. Sin. 2019, 93, 830–842. (In Chinese) [Google Scholar]
  117. He, C.; Wang, L.Y.; Tian, L.M.; Xu, J. Petrogenesis and geological implications of granitoids from Halasen, East Kunlun. Earth Sci. 2018, 4, 1207–1217, (in Chinese with English abstract). [Google Scholar]
  118. Li, H.; Qian, Y.; Sun, F.; Li, L. Geochemistry, zircon geochronology, and isotopic systematics of the Zhanbuzhale granites in the East Kunlun, Qinghai Province, NW China: Implications for the tectonic setting. Can. J. Earth Sci. 2019, 57, 275–291. [Google Scholar] [CrossRef]
  119. Xiong, F.; Ma, C.; Jiang, H.; Zhang, H. Geochronology and petrogenesis of Triassic high-K calc-alkaline granodiorites in the East Kunlun orogen, West China: Juvenile lower crustal melting during post-collisional extension. J. Earth Sci. 2016, 27, 474–490. [Google Scholar] [CrossRef]
  120. Xia, R.; Qin, Y.; Wang, C.M.; Li, W.L. The genesis of the Ore-bearing porphyry of the Tuoketuo porphyry Cu-Au-(Mo) deposit in the East Kunlun, Qinghai Province: Constraints from zircon U-Pb geochronological and geochemistry. J. Jilin Univ. Earth Sci. Ed. 2014, 44, 1502–1524. [Google Scholar] [CrossRef]
  121. Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Li, X.B. Age and lithogenesis of Keri syenogranite from eastern part of East Kunlun Orogenic Belt: Constraint on the Middle Triassic tectonic evolution of East Kunlun. Acta Petrol. Sin. 2018, 34, 567–585, (In Chinese with English abstract). [Google Scholar]
  122. Shao, F.; Niu, Y.; Kong, J.; Liu, Y.; Wang, G.; Zhang, Y. Petrogenesis and tectonic implications of the Triassic rhyolites in the East Kunlun Orogenic Belt, northern Tibetan Plateau. Geosci. Front. 2021, 12, 101243. [Google Scholar] [CrossRef]
  123. Wu, Z.N.; Ji, W.H.; He, S.P.; Chen, S.J.; Yu, P.S.; Shi, C.; Chen, F.N.; Zhang, H.S.; Peng, Y. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of granodiorite in Rilonggou area, Xinghai County, Qinghai Province. Geol. Bull. China 2015, 34, 1677–1688. [Google Scholar]
  124. Fan, X.; Sun, F.; Xu, C.; Wu, D.; Yu, L.; Wang, L.; Yan, C.; Bakht, S. Volcanic rocks of the Elashan Formation in the Dulan-Xiangride Basin, East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for Late Triassic geodynamic evolution. Int. Geol. Rev. 2021, 64, 1–24. [Google Scholar] [CrossRef]
  125. Xin, W.; Ding Z-j Meng Y-k Bo J-w Li, L.; Mao, G.-z. Late Triassic granites with mafic microenclaves in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for continental crust evolution and geodynamic evolution. Can. J. Earth Sci. 2023, 60, 672–691. [Google Scholar] [CrossRef]
  126. Wen, G.; Sun, G.-C.; Zhao, Z.-F.; Dai, L.-Q.; Zhou, Y. Post-collisional reworking of juvenile mafic lower crust for the petrogenesis of late Triassic adakitic rocks in the East Kunlun Orogen. Lithos 2024, 482, 107730. [Google Scholar] [CrossRef]
  127. Zhao, F.F. Metallogenesis of Precious-Nonferrous metal deposits in Gerizhuotuo area, Dulan Qinghai Province. Ph.D. Thesis, University of Jilin, Changchun, China, 2017; pp. 1–151. [Google Scholar]
  128. Zhang, Y.; Zhang, D.M.; Liu, G.Y.; Li, Z.F.; Zhao, Y.L.; Li, H.H.; Wang, S.M. Zircon U-Pb dating of porphyroid monzonitic granite in the Kaerqueka copper polymetallic deposit of East Kunlun Mountains and its geological significance. Geol. Bull. China 2017, 36, 270–274. [Google Scholar]
  129. Li, Z.C.; Pei, X.Z.; Liu, Z.Q.; Li, R.B.; Pei, L.; Chen, G.C.; Wu, S.K. Geochronology and geochemistry of the Gerizhuotuo diorites from the Buqingshan Tectonic Mélange Belt in the southern margin of East Kunlun and their geologic implications. Acta Geol. Sin. 2013, 87, 1089–1103. [Google Scholar]
  130. Chen, G.; Pei, Z.; Li, R.; Li, Z.; Lei, P.; Liu, Z.; Chen, Y.; Liu, C.; Gao, J.; Wei, F. Geochronology and Genesis of the Helegang Xilikete Granitic Plutons from Southern Margin of the Eastern Kunlun Orogenic Belt and Their Tectonic Significance. Acta Geol. Sin. 2013, 87, 1526–1540. [Google Scholar]
  131. Zhou, H.; Zhang, D.; Wei, J.; Wang, D.; Santosh, M.; Shi, W.; Chen, J.; Zhao, X. Petrogenesis of Late Triassic mafic enclaves and host granodiorite in the Eastern Kunlun Orogenic Belt, China: Implications for the reworking of juvenile crust by delamination-induced asthenosphere upwelling. Gondwana Res. 2020, 84, 52–70. [Google Scholar] [CrossRef]
  132. Luo, M.; Mo, X.; Yu, X.; Huang, X.; Yu, J. Zircon LA-ICP-MS dating, petrogenesis and tectonic implications of the Late Triassic granites from Xiangride area, East Kunlun. Acta Petrol. Sin. 2014, 30, 3229–3241, (in Chinese with English abstract). [Google Scholar]
  133. Xia, R.; Wang, C.; Deng, J.; Carranza, E.J.M.; Li, W.; Qing, M. Crustal thickening to 220 Ma in the East Kunlun Orogenic Belt: Insights from Late Triassic granitoids in the Xiao-Nuomuhong pluton. J. Asian Earth Sci. 2014, 93, 193–210. [Google Scholar]
  134. Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Zhang, Y. Age and petrogenesis of Jialuhe basic–intermediate pluton in Xiangjia’nanshan granite batholith in the eastern part of East Kunlun Orogenic Belt, and its geological significance. Geotecton. Metallog. 2017, 41, 1097–1115. [Google Scholar]
  135. Yu, J.Z.; Zheng, Y.Y.; Xu, R.K.; Hou, W.D.; Cai, P.J. Zircon U-Pb Chronology, Geochemistry of Jiangjunmu Ore-Bearing Pluton, Eastern Part of East Kunlun and Their Geological Significance. Earth Sci. 2020, 45, 1151–1167, (in Chinese with English abstract). [Google Scholar] [CrossRef]
  136. Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, Z.Q.; Wei, F.H. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Cocoe along quartz diorites body from the Hongshuichuan area in East Kunlun. Acta Geol. Sin 2013, 87, 178–196, (in Chinese with English abstract). [Google Scholar]
  137. Guo, X.; Jia, Q.; Lü, X.; Li, J.; Kong, H.; Yao, X. The Permian Sn metallogenic event and its geodynamic setting in East Kunlun, NW China: Evidence from zircon and cassiterite geochronology, geochemistry, and Sr–Nd–Hf isotopes of the Xiaowolong skarn Sn deposit. Ore Geol. Rev. 2020, 118, 103370. [Google Scholar]
  138. Ding, S.; Huang, H.; Niu, Y.L.; Zhao, Z.D.; Yu, X.H.; Mo, X.X. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites. Acta Petrol. Sin. 2011, 27, 3603–3614. [Google Scholar]
  139. Yan, D.; Zhou, H.; Li, C.; Zhang, X.; Ma, C.; Hou, M.; Huang, H.; Wang, W.; Xiong, F. Petrogenesis of Late Triassic adakitic plutons in the East Kunlun Orogen, Northern Tibet: Geodynamic implications for the Paleo-Tethyan orogeny and crustal evolution. J. Asian Earth Sci. 2024, 268, 106165. [Google Scholar]
  140. Zhang, Z.C.; Zhang, X.J.; Gao, W.L.; Hu, D.G.; Lu, L. Evidence of zircon U-Pb ages for the formation time of the East Kunlun left-lateral ductile shear belt. J. Geomech. 2010, 16, 51–58, (in Chinese with English abstract). [Google Scholar]
  141. Feng, L.Q.; Gu, X.X.; Zhang, Y.M.; He, G.; Kang, J.Z. Age and structural deformation of ductile shear zones on the southern margin of the East Kunlun Mountains. Geol. Bull. China 2017, 36, 987–1000, (in Chinese with English abstract). [Google Scholar]
  142. Yan, J.M.; Sun, F.Y.; Qian, Y.; Tian, N.; Yan, Z.P.; Zhang, Y.S.; Yang, X.M. Petrogenesis and tectonic implications of the Late Triassic Nangou granodiorite porphyry in the Eastern Kunlun Orogenic Belt, northern Tibetan Plateau. Can. J. Earth Sci. 2020, 57, 801–813. [Google Scholar] [CrossRef]
  143. Zhu, Y.X.; Wang, L.X.; Ma, C.Q.; He, Z.X.; Deng, X.; Tian, Y. Petrogenesis and tectonic implication of the Late Triassic A1-type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China). Lithos 2022, 412, 106595. [Google Scholar] [CrossRef]
  144. Xu, B.; Li, H.B.; Nan, Y.Y.; Wang, C.Y.; Yue, T.; Zhao, M.F. LA-MC-ICP-MS zircon U-Pb ages, geochemical characteristics and tectonic significance of the Late Triassic igneous rocks in Ageteng area, Qimantagh Mountains. Geol. Rev. 2019, 65, 353–369, (In Chinese with English abstract). [Google Scholar]
  145. Wang, P.; Zhao, G.C.; Liu, Q.; Yao, J.L.; Han, Y.G. Evolution of the Paleo-Tethys Ocean in Eastern Kunlun, North Tibetan Plateau: From continental rift-drift to final closure. Lithos 2022, 422, 106717. [Google Scholar] [CrossRef]
  146. Gan, J.; Xiong, F.H.; Xiao, Q.R.; Wang, W.; Yan, D.D. Petrogenesis and geodynamic implications of Late Triassic Mogetong adakitic pluton in East Kunlun Orogen, Northern Tibet: Constraints from zircon U–Pb–Hf isotopes and whole-rock geochemistry. Front. Earth Sci. 2022, 10, 845763. [Google Scholar]
  147. Yang, X.M.; Sun, F.Y.; Zhao, T.F.; Liu, J.L.; Peng, B. Zircon U-Pb dating, geochemistry and tectonic implications of Akechukesai gabbro in East Kunlun orogenic belt. Geol. Bull. China 2018, 37, 1842–1852, (in Chinese with English abstract). [Google Scholar]
  148. Li, Z.; Pei, X.; Pei, L.; Liu, C.; Xu, L.; Li, R.; Lin, H.; Wang, M.; Ji, S.; Qin, L.; et al. Petrogenesis and Geochronology of A1-Type Rhyolites in the Late Late Triassic of the East Kunlun Orogenic Belt: Constraints on the End of the Paleo-Tethys Orogenic Event. Minerals 2023, 13, 290. [Google Scholar] [CrossRef]
  149. Ren, X.; Dong, Y.; He, D.; Sun, S.; Zhang, B.; Zhou, B.; Hui, B.; Yue, Y. Late Triassic magmatic rocks in the southern East Kunlun Orogenic Belt, northern Tibetan Plateau: Petrogenesis and tectonic implications. Int. Geol. Rev. 2023, 65, 1–24. [Google Scholar]
Figure 1. (a) Simplified tectonic map of China (after [41]). (b) Outline of tectonic map of the EKOB showing the three major faults and tectonic belts (modified from [10,39]). (c) Geological map of Xingshugou area and sample location. ATF: Altyn Tagh strike-slip fault, WWF: Wenquangou–Wahongshan fault, NEKF: Northern East Kunlun fault, CEKF: Central East Kunlun fault, SEKF: Southern East Kunlun fault, NKB: Caledonian back-arc basin of Northern East Kunlun Belt, CKB: uplifted granitic basement of Central East Kunlun Belt, SKB: composite accretion of the Southern East Kunlun Belt, AOB: A’nyemaqen Ophiolitic Belt.
Figure 1. (a) Simplified tectonic map of China (after [41]). (b) Outline of tectonic map of the EKOB showing the three major faults and tectonic belts (modified from [10,39]). (c) Geological map of Xingshugou area and sample location. ATF: Altyn Tagh strike-slip fault, WWF: Wenquangou–Wahongshan fault, NEKF: Northern East Kunlun fault, CEKF: Central East Kunlun fault, SEKF: Southern East Kunlun fault, NKB: Caledonian back-arc basin of Northern East Kunlun Belt, CKB: uplifted granitic basement of Central East Kunlun Belt, SKB: composite accretion of the Southern East Kunlun Belt, AOB: A’nyemaqen Ophiolitic Belt.
Minerals 15 00381 g001
Figure 2. Field photographs and photomicrographs of Xingshugou granitoids. (a) A field photograph of monzogranite drill cores arranged in core trays of monzogranite (field photo). (b) Monzogranite (cross-polarized light). (c) A field photograph of quartz porphyry outcrop. (d) Quartz porphyry (plane-polarized light). Qtz: quartz; Pl: plagioclase; Kfs: K-feldspar; Zrn: zircon.
Figure 2. Field photographs and photomicrographs of Xingshugou granitoids. (a) A field photograph of monzogranite drill cores arranged in core trays of monzogranite (field photo). (b) Monzogranite (cross-polarized light). (c) A field photograph of quartz porphyry outcrop. (d) Quartz porphyry (plane-polarized light). Qtz: quartz; Pl: plagioclase; Kfs: K-feldspar; Zrn: zircon.
Minerals 15 00381 g002
Figure 3. Zircon U-Pb concordia diagrams, weighted mean age diagrams and representative zircon CL images for samples. (a,b,e) Monzogranite (18XSG1); (c,d,f) quartz porphyry (18XSG2).
Figure 3. Zircon U-Pb concordia diagrams, weighted mean age diagrams and representative zircon CL images for samples. (a,b,e) Monzogranite (18XSG1); (c,d,f) quartz porphyry (18XSG2).
Minerals 15 00381 g003
Figure 6. Diagrams of εHf (t) vs. U-Pb age. Previously published zircon Hf isotopic data on granites in the EKOB [12,26,30,33,34] are presented in Supplementary Table S2.
Figure 6. Diagrams of εHf (t) vs. U-Pb age. Previously published zircon Hf isotopic data on granites in the EKOB [12,26,30,33,34] are presented in Supplementary Table S2.
Minerals 15 00381 g006
Figure 7. Diagrams of (a) TiO2 (wt%) vs. SiO2 (wt%); (b) MgO (wt%) vs. SiO2 (wt%); (c) FeOT (wt%) vs. SiO2 (wt%); (d) P2O5 (wt%) vs. SiO2 (wt%); (e) FeOT/MgO vs. Zr + Nb + Ce + Y (ppm); (f) (K2O + Na2O)/CaO vs. Zr + Nb + Ce + Y (ppm); (g) Nb (ppm) vs. 10,000 Ga/Al; (h) Ce (ppm) vs. 10,000 Ga/Al. (eh) are from [1]. FT = fractionated granites. OGT = unfractionated granites. The grey arrows in a–c mean fractional crystallization trend, the Light yellow arrows in d mean the I/S type trend.
Figure 7. Diagrams of (a) TiO2 (wt%) vs. SiO2 (wt%); (b) MgO (wt%) vs. SiO2 (wt%); (c) FeOT (wt%) vs. SiO2 (wt%); (d) P2O5 (wt%) vs. SiO2 (wt%); (e) FeOT/MgO vs. Zr + Nb + Ce + Y (ppm); (f) (K2O + Na2O)/CaO vs. Zr + Nb + Ce + Y (ppm); (g) Nb (ppm) vs. 10,000 Ga/Al; (h) Ce (ppm) vs. 10,000 Ga/Al. (eh) are from [1]. FT = fractionated granites. OGT = unfractionated granites. The grey arrows in a–c mean fractional crystallization trend, the Light yellow arrows in d mean the I/S type trend.
Minerals 15 00381 g007
Figure 8. Diagrams of (a) Ba/Sr vs. Sr (ppm); (b) Ba (ppm) vs. Sr (ppm); (c) Rb/Sr vs. Sr (ppm); (d) (La/Yb)N vs. La (ppm). Pl = plagioclase; Kfs = K-feldspar; Bi = biotite; Amp = amphibole; Ms = muscovite; Cpx = clinopyroxene; Opx = orthopyroxene; Aln = allanite; Mon = monazite; Ap = apatite; Tit = titanite; Zr = zircon.
Figure 8. Diagrams of (a) Ba/Sr vs. Sr (ppm); (b) Ba (ppm) vs. Sr (ppm); (c) Rb/Sr vs. Sr (ppm); (d) (La/Yb)N vs. La (ppm). Pl = plagioclase; Kfs = K-feldspar; Bi = biotite; Amp = amphibole; Ms = muscovite; Cpx = clinopyroxene; Opx = orthopyroxene; Aln = allanite; Mon = monazite; Ap = apatite; Tit = titanite; Zr = zircon.
Minerals 15 00381 g008
Figure 9. Diagrams of magmatic source discrimination. (a) Nb* vs. Ta* [68]; (b) SiO2 vs. Nb/Ta; (c) Al2O3/(Fe2O3 + MgO + TiO2) vs. Al2O3 + Fe2O3 + MgO + TiO2 (wt%) [71,72]; (d) (Na2O + K2O)/(Fe2O3 + MgO + TiO2) vs. Na2O + K2O + Fe2O3 + MgO + TiO2 (wt%) [71,72]; (e) La/Sm vs. Ba/Th [73]. Data of primitive mantle and average oceanic basalts (OIB, E-MORB, N-MORB) are from [50]; crust composition (BCC, LCC, UCC) are from [74]. Nb* (=[Nb/Th]Sample/[Nb/Th]PM) and Ta* (=[Ta/U]Sample/[Ta/U]PM). The red and green dots represent the MG and QP, respectively.
Figure 9. Diagrams of magmatic source discrimination. (a) Nb* vs. Ta* [68]; (b) SiO2 vs. Nb/Ta; (c) Al2O3/(Fe2O3 + MgO + TiO2) vs. Al2O3 + Fe2O3 + MgO + TiO2 (wt%) [71,72]; (d) (Na2O + K2O)/(Fe2O3 + MgO + TiO2) vs. Na2O + K2O + Fe2O3 + MgO + TiO2 (wt%) [71,72]; (e) La/Sm vs. Ba/Th [73]. Data of primitive mantle and average oceanic basalts (OIB, E-MORB, N-MORB) are from [50]; crust composition (BCC, LCC, UCC) are from [74]. Nb* (=[Nb/Th]Sample/[Nb/Th]PM) and Ta* (=[Ta/U]Sample/[Ta/U]PM). The red and green dots represent the MG and QP, respectively.
Minerals 15 00381 g009
Figure 10. Diagrams of granite tectonic discrimination [76] (a) Nb vs. Y; (b) Ta vs. Yb. The red and green dots represent the MG and QP, respectively.
Figure 10. Diagrams of granite tectonic discrimination [76] (a) Nb vs. Y; (b) Ta vs. Yb. The red and green dots represent the MG and QP, respectively.
Minerals 15 00381 g010
Figure 11. Histograms of zircon U-Pb ages of the Carboniferous–Triassic magmatic rocks in the EKOB. Published ages are presented in Supplementary Table S3.
Figure 11. Histograms of zircon U-Pb ages of the Carboniferous–Triassic magmatic rocks in the EKOB. Published ages are presented in Supplementary Table S3.
Minerals 15 00381 g011
Figure 12. A schematic diagram illustrating the five-stage tectonic model for the evolution of the BAO in the EKOB (modified from [83]). (a,b) Oceanic initiation; (c,d) low-angle subduction; (e,f) slab rollback; (g,h) syn-collisional compression; (i,j) post-collisional extension. BHSG: Bayan Har–Songpan Ganzi; BAO: Buqingshan-A’nyemaqing Ocean; NKB: Caledonian back-arc basin belt of Northern East Kunlun; CKB: uplifted granitic basement of Central East Kunlun; SKB: composite accretion belt of the Southern East Kunlun; QTB: Qiangtang Block; EKOB: East Kunlun Orogenic Belt.
Figure 12. A schematic diagram illustrating the five-stage tectonic model for the evolution of the BAO in the EKOB (modified from [83]). (a,b) Oceanic initiation; (c,d) low-angle subduction; (e,f) slab rollback; (g,h) syn-collisional compression; (i,j) post-collisional extension. BHSG: Bayan Har–Songpan Ganzi; BAO: Buqingshan-A’nyemaqing Ocean; NKB: Caledonian back-arc basin belt of Northern East Kunlun; CKB: uplifted granitic basement of Central East Kunlun; SKB: composite accretion belt of the Southern East Kunlun; QTB: Qiangtang Block; EKOB: East Kunlun Orogenic Belt.
Minerals 15 00381 g012
Table 1. LA-ICP-MS U-Pb isotopic data for zircons for Xingshugou monzogranite (18XSG1) and quartz porphyry (18XSG2).
Table 1. LA-ICP-MS U-Pb isotopic data for zircons for Xingshugou monzogranite (18XSG1) and quartz porphyry (18XSG2).
Sample NameContent (ppm) Isotopic RatiosIsotopic Ages (Ma)
UThPbTh/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
18XSG1—monzogranite, weighted mean age: 254.7 ± 1.1 Ma, MSWD = 0.26
18XSG11-1136 169 8 1.25 0.05140 0.00192 0.27890 0.01040 0.03956 0.00049 258.71648 85.75895 249.78293 8.25463 250.10093 3.06022
18XSG11-2272 309 15 1.14 0.05199 0.00109 0.28480 0.00581 0.03989 0.00033 284.81419 47.85650 254.45604 4.59370 252.12208 2.01725
18XSG11-3250 302 14 1.21 0.05211 0.00190 0.28639 0.01016 0.04016 0.00055 290.31512 83.26791 255.71640 8.01661 253.84337 3.42558
18XSG11-4245 298 14 1.22 0.05164 0.00128 0.28393 0.00657 0.04020 0.00040 269.32848 56.90187 253.77020 5.19438 254.04809 2.50053
18XSG11-5433 478 24 1.10 0.05084 0.00117 0.28095 0.00696 0.04021 0.00053 233.45662 53.10910 251.41094 5.51512 254.15459 3.29228
18XSG11-6377 377 20 1.00 0.05193 0.00107 0.28701 0.00624 0.04021 0.00043 282.41105 47.03537 256.20248 4.92545 254.15973 2.65871
18XSG11-7216 222 12 1.03 0.05150 0.00165 0.28270 0.00820 0.04023 0.00049 263.41689 73.36666 252.79409 6.48970 254.27459 3.05476
18XSG11-8363 429 20 1.18 0.05153 0.00112 0.28503 0.00600 0.04027 0.00039 264.59209 49.92739 254.63626 4.73928 254.53441 2.39550
18XSG11-9311 381 18 1.23 0.05163 0.00115 0.28569 0.00593 0.04028 0.00034 269.21598 51.21303 255.16324 4.68715 254.56553 2.09772
18XSG11-10351 363 18 1.03 0.05048 0.00180 0.28014 0.01045 0.04028 0.00058 217.07634 82.60975 250.76554 8.28831 254.58830 3.57059
18XSG11-11322 448 19 1.39 0.05149 0.00104 0.28413 0.00549 0.04029 0.00034 262.61823 46.40960 253.92821 4.34425 254.60255 2.09825
18XSG11-12347 491 21 1.42 0.05102 0.00100 0.28297 0.00570 0.04033 0.00035 241.61252 45.39917 253.00693 4.50891 254.85231 2.16833
18XSG11-13303 303 16 1.00 0.05172 0.00129 0.28600 0.00688 0.04033 0.00052 273.23716 57.01755 255.40424 5.43600 254.86556 3.22598
18XSG11-14277 271 15 0.98 0.05060 0.00141 0.28129 0.00866 0.04035 0.00058 222.55786 64.31826 251.68285 6.86413 254.99052 3.61131
18XSG11-15432 531 24 1.23 0.05167 0.00123 0.28679 0.00699 0.04036 0.00044 270.91240 54.51252 256.03325 5.51555 255.07438 2.70824
18XSG11-16219 256 12 1.17 0.05085 0.00271 0.28257 0.01494 0.04039 0.00060 233.94178 122.80923 252.69145 11.83102 255.23405 3.69472
18XSG11-17266 332 15 1.25 0.05170 0.00220 0.28728 0.01208 0.04046 0.00065 272.18221 97.36731 256.41435 9.52978 255.69555 3.99674
18XSG11-182214 1479 112 0.67 0.05077 0.00118 0.28405 0.00706 0.04048 0.00063 230.32009 53.50437 253.86754 5.58259 255.82961 3.90924
18XSG11-19258 308 14 1.19 0.05059 0.00171 0.28314 0.01071 0.04048 0.00065 222.30992 77.94628 253.14426 8.47522 255.83191 4.03556
18XSG11-20284 334 16 1.18 0.05119 0.00099 0.28513 0.00504 0.04049 0.00035 249.51167 44.49065 254.71927 3.98139 255.89568 2.18967
18XSG11-21270 275 15 1.02 0.05173 0.00128 0.28864 0.00750 0.04051 0.00054 273.27247 56.80927 257.48545 5.91149 256.01441 3.33372
18XSG11-22247 279 14 1.13 0.05180 0.00171 0.28863 0.00978 0.04054 0.00058 276.62797 75.54745 257.47784 7.70645 256.20665 3.57857
18XSG11-23192 216 11 1.13 0.05169 0.00142 0.28860 0.00783 0.04055 0.00041 271.84486 63.17471 257.45876 6.16958 256.26289 2.55778
18XSG11-24237 242 13 1.02 0.05031 0.00146 0.27965 0.00791 0.04057 0.00058 209.12693 67.14474 250.37762 6.27272 256.36658 3.59743
18XSG11-25253 342 14 1.35 0.05013 0.00220 0.27987 0.01161 0.04065 0.00083 200.79700 101.82341 250.55223 9.21420 256.88298 5.15797
18XSG11-26339 520 21 1.53 0.05086 0.00163 0.28376 0.00878 0.04065 0.00046 234.69723 74.06923 253.63532 6.94197 256.88476 2.82308
18XSG2—quartz porphyry, weighted mean age: 254.3 ± 1.1 Ma, MSWD = 0.116
18XSG21-1622 315 29 0.51 0.05108 0.00082 0.28144 0.00490 0.03996 0.00034 244.62329 37.16388 251.79940 3.88583 252.56887 2.10306
18XSG21-2404 558 24 1.38 0.05184 0.00155 0.28623 0.00814 0.04008 0.00040 278.41178 68.55784 255.59015 6.42689 253.35592 2.46419
18XSG21-3796 518 40 0.65 0.05098 0.00087 0.28212 0.00444 0.04011 0.00039 240.00655 39.54202 252.33405 3.51374 253.51168 2.42252
18XSG21-4322 229 16 0.71 0.05155 0.00121 0.28455 0.00654 0.04011 0.00040 265.71394 53.95271 254.25664 5.17224 253.53616 2.50892
18XSG21-5411 326 21 0.79 0.05088 0.00138 0.28126 0.00792 0.04012 0.00046 235.20489 62.51900 251.65580 6.27676 253.55114 2.87919
18XSG21-6653 501 34 0.77 0.05240 0.00101 0.29010 0.00568 0.04014 0.00039 302.95284 44.07263 258.64185 4.47002 253.67520 2.40100
18XSG21-7495 481 26 0.97 0.05156 0.00084 0.28509 0.00482 0.04014 0.00037 265.73063 37.57581 254.68690 3.80942 253.71665 2.27398
18XSG21-8548 155 25 0.28 0.05132 0.00087 0.28504 0.00544 0.04016 0.00037 255.37216 38.99096 254.64898 4.29857 253.83307 2.31534
18XSG21-9399 294 21 0.74 0.05114 0.00156 0.28403 0.00892 0.04019 0.00043 247.17875 70.42622 253.84980 7.05674 254.00163 2.67342
18XSG21-10491 431 25 0.88 0.05169 0.00125 0.28724 0.00721 0.04020 0.00054 271.71940 55.27211 256.38561 5.68736 254.06274 3.32777
18XSG21-11570 528 31 0.93 0.05137 0.00081 0.28510 0.00507 0.04029 0.00035 257.53897 36.37910 254.69304 4.00320 254.61519 2.13993
18XSG21-12169 108 8 0.64 0.05172 0.00162 0.28464 0.00923 0.04031 0.00047 273.25698 71.91713 254.32936 7.29228 254.73663 2.91313
18XSG21-13406 370 22 0.91 0.05126 0.00109 0.28449 0.00603 0.04031 0.00037 252.75751 48.75249 254.21339 4.76385 254.77976 2.29346
18XSG21-14479 523 27 1.09 0.05148 0.00137 0.28600 0.00760 0.04033 0.00046 262.20087 60.97490 255.40573 6.00082 254.85345 2.83598
18XSG21-15374 285 19 0.76 0.05098 0.00107 0.28395 0.00654 0.04034 0.00043 239.75846 48.33665 253.78688 5.16854 254.94869 2.65390
18XSG21-16266 158 13 0.60 0.05093 0.00143 0.28384 0.00832 0.04036 0.00055 237.65258 64.53973 253.70299 6.58242 255.07761 3.41664
18XSG21-17837 540 42 0.65 0.05114 0.00073 0.28510 0.00417 0.04037 0.00046 247.32116 33.06678 254.69482 3.29436 255.12577 2.84464
18XSG21-18603 468 31 0.78 0.05114 0.00086 0.28604 0.00587 0.04040 0.00037 247.13819 38.88435 255.43923 4.63591 255.29862 2.31669
18XSG21-19277 289 15 1.04 0.05160 0.00153 0.28690 0.00883 0.04041 0.00045 267.91562 67.81175 256.11619 6.96804 255.39846 2.81089
18XSG21-2067 62 4 0.92 0.05213 0.00282 0.28623 0.01467 0.04043 0.00066 291.01991 123.70139 255.58632 11.57792 255.50768 4.11349
18XSG21-21361 298 19 0.82 0.05114 0.00120 0.28502 0.00688 0.04046 0.00043 247.08752 54.01408 254.63222 5.43348 255.70845 2.67330
18XSG21-2245 241 5 5.39 0.05249 0.00310 0.28681 0.01701 0.04054 0.00083 306.83536 134.44840 256.04430 13.42563 256.20864 5.12164
Table 3. Zircon in situ Lu-Hf isotopic data for Xingshugou monzogranite (18XSG1) and quartz porphyry (18XSG2).
Table 3. Zircon in situ Lu-Hf isotopic data for Xingshugou monzogranite (18XSG1) and quartz porphyry (18XSG2).
Sample Namet (Ma)176Yb/177Hf176Lu/177Hf 176Hf/177HfεHf(0)εHf(t)TDM1TDM2fLu/Hf
18XSG1-monzogranite
18XSG11-12540.034836 0.000313 0.001295 0.000010 0.282638 0.000018 −4.7 0.6 0.6 876 1238 −0.96
18XSG11-22540.050784 0.001333 0.001922 0.000038 0.282665 0.000020 −3.8 1.5 0.7 853 1186 −0.94
18XSG11-32540.043135 0.000270 0.001606 0.000003 0.282639 0.000025 −4.7 0.6 0.9 882 1239 −0.95
18XSG11-42540.065785 0.000262 0.002489 0.000020 0.282606 0.000018 −5.9 −0.7 0.6 952 1324 −0.93
18XSG11-52540.041405 0.000424 0.001573 0.000009 0.282617 0.000017 −5.5 −0.2 0.6 913 1290 −0.95
18XSG11-62540.029869 0.000413 0.001132 0.000018 0.282660 0.000018 −4.0 1.4 0.6 842 1189 −0.97
18XSG11-72540.038559 0.000794 0.001436 0.000019 0.282590 0.000016 −6.4 −1.1 0.6 948 1349 −0.96
18XSG11-82540.039654 0.000854 0.001438 0.000041 0.282615 0.000026 −5.6 −0.2 0.9 912 1292 −0.96
18XSG11-92540.046882 0.000158 0.001802 0.000017 0.282618 0.000018 −5.4 −0.2 0.6 917 1289 −0.95
18XSG11-102540.039331 0.000520 0.001508 0.000024 0.282616 0.000018 −5.5 −0.2 0.6 913 1292 −0.95
18XSG11-112540.043702 0.001075 0.001638 0.000054 0.282498 0.000017 −9.7 −4.4 0.6 1084 1556 −0.95
18XSG11-122540.043832 0.000219 0.001601 0.000015 0.282573 0.000023 −7.1 −1.7 0.8 977 1389 −0.95
18XSG11-132540.050955 0.000358 0.001969 0.000009 0.282617 0.000019 −5.5 −0.2 0.7 922 1293 −0.94
18XSG11-142540.038604 0.000614 0.001469 0.000029 0.282609 0.000017 −5.8 −0.4 0.6 922 1306 −0.96
18XSG11-152540.033969 0.000432 0.001268 0.000020 0.282641 0.000016 −4.6 0.7 0.6 872 1233 −0.96
18XSG2-quartz porphyry
18XSG21-12540.035607 0.000158 0.001366 0.000014 0.282686 0.000022 −3.0 2.3 0.8 809 1132 −0.96
18XSG21-22540.036748 0.000397 0.001443 0.000010 0.282630 0.000025 −5.0 0.3 0.9 892 1260 −0.96
18XSG21-32540.033863 0.000710 0.001309 0.000020 0.282693 0.000022 −2.8 2.6 0.8 798 1116 −0.96
18XSG21-42540.037836 0.000151 0.001444 0.000006 0.282623 0.000026 −5.3 0.1 0.9 902 1275 −0.96
18XSG21-52540.046779 0.000269 0.001818 0.000006 0.282652 0.000019 −4.3 1.0 0.7 869 1214 −0.95
18XSG21-62540.039969 0.000349 0.001492 0.000011 0.282631 0.000023 −5.0 0.4 0.8 891 1256 −0.96
18XSG21-72540.040807 0.000935 0.001567 0.000027 0.282634 0.000021 −4.9 0.4 0.7 888 1251 −0.95
18XSG21-82540.038238 0.000165 0.001481 0.000013 0.282660 0.000029 −4.0 1.4 1.0 850 1192 −0.96
18XSG21-92540.032690 0.000530 0.001213 0.000012 0.282682 0.000022 −3.2 2.2 0.8 812 1140 −0.96
18XSG21-102540.043326 0.000585 0.001721 0.000033 0.282618 0.000029 −5.4 −0.2 1.0 915 1289 −0.95
18XSG21-112540.041520 0.000398 0.001574 0.000013 0.282644 0.000025 −4.5 0.8 0.9 875 1230 −0.95
18XSG21-122540.036700 0.000303 0.001430 0.000014 0.282665 0.000025 −3.8 1.6 0.9 841 1180 −0.96
18XSG21-132540.032437 0.000125 0.001222 0.000003 0.282646 0.000025 −4.5 0.9 0.9 863 1221 −0.96
18XSG21-142540.040993 0.001448 0.001493 0.000048 0.282623 0.000024 −5.3 0.0 0.8 903 1276 −0.96
18XSG21-152540.042193 0.000783 0.001620 0.000032 0.282576 0.000025 −6.9 −1.6 0.9 973 1382 −0.95
The parameters used in our calculations: (176Lu/177Hf)CHUR = 0.0332, (176Hf/177Hf)CHUR = 0.282772 [52]; (176Lu/177Hf)DM = 0.0384, (176Hf/177Hf)DM = 0.28325 [53]; λ (176Lu) = 1.867 × 10−11 a−1 [54]. 176Lu/177Hf (C) = 0.015 [53]. t = 254 Ma.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Hui, C.; Sun, F.; Wang, T.; Yang, Y.; Chai, Y.; Yan, J.; Shahzad, B.; Li, B.; Zhang, Y.; Yu, T.; et al. Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes. Minerals 2025, 15, 381. https://doi.org/10.3390/min15040381

AMA Style

Hui C, Sun F, Wang T, Yang Y, Chai Y, Yan J, Shahzad B, Li B, Zhang Y, Yu T, et al. Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes. Minerals. 2025; 15(4):381. https://doi.org/10.3390/min15040381

Chicago/Turabian Style

Hui, Chao, Fengyue Sun, Tao Wang, Yanqian Yang, Yun Chai, Jiaming Yan, Bakht Shahzad, Bile Li, Yajing Zhang, Tao Yu, and et al. 2025. "Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes" Minerals 15, no. 4: 381. https://doi.org/10.3390/min15040381

APA Style

Hui, C., Sun, F., Wang, T., Yang, Y., Chai, Y., Yan, J., Shahzad, B., Li, B., Zhang, Y., Yu, T., Chen, X., Liu, C., Zhu, X., Wang, Y., Wang, Z., Li, H., Song, R., & Dou, D. (2025). Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes. Minerals, 15(4), 381. https://doi.org/10.3390/min15040381

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop