Chronological and Geochemical Characteristics of a Newly Discovered Biotite Granite Porphyry in the Zhuxi W-Cu Polymetallic Deposit, Jiangxi Province, South China: Implications for Cu Mineralization
Abstract
:1. Introduction
2. Regional Geology and Sample Description
2.1. Geological Background
2.2. Sample Description
3. Methodology
3.1. LA-ICP-MS Zircon U-Pb Dating
3.2. Whole-Rock Geochemical Analysis
4. Results
4.1. Zircon U-Pb Dating
4.2. Characteristics of Major Elements
4.3. Characteristics of Rare-Earth Elements
5. Discussions
5.1. Sources of Diorite Porphyrite, Biotite Quartz Monzonite Porphyry, and Biotite Granite Porphyry
5.2. Characteristics of the Magmatic Source
5.3. Implications for Copper Mineralization in the Zhuxi District
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Defant, M.J.; Drummond, M.S. Derivation of some modern arcmagmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Defant, M.J.; Maury, R.C.; Ripley, E.M.; Feigenson, M.D.; Jacques, D. An example of island-arc petrogenesis: Geochemistry and petrology of the southern Luzon Arc, Philippines. J. Petrol. 1991, 32, 455–500. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, J.F.; Wang, Y.; Xiao, L.; Liu, H.T.; Wang, Y.L. Diversity of adakite. Geol. Bull. China 2004, 23, 959–965. [Google Scholar]
- Cai, L.M.; Huang, S.S.; Yang, Y.B.; Wang, L.J. On the adakite-like features of Zhoutieqiao rock mass in Yixing-Liyang area of eastern China. J. Geol. 2017, 41, 548–554. [Google Scholar]
- Wang, Q.; Xu, J.F.; Wang, J.X.; Zhao, Z.H.; Wang, R.J.; Qiu, J.X.; Xiong, X.L.; Sang, L.K.; Peng, L.H. Determination of adakite type gray gneiss in the North Dabie Mountains and its relationship with ultra-high pressure metamorphism. Chin. Sci. Bull. 2000, 45, 1017–1024. [Google Scholar]
- Wang, Q.; Xu, J.F.; Zhao, Z.H. The summary and comment on research on a new kind of igneous rock: Adakite. Adv. Earth Sci. 2001, 16, 201–208. [Google Scholar]
- Zhang, Q.; Qian, Q.; Wang, E.Q.; Wang, Y.; Zhao, T.P.; Hao, J.; Guo, G.J. An east China plateau in Mid-Late Yanshanian period: Implication from adakites. Chin. J. Geol. 2001, 36, 248–255. [Google Scholar]
- Zhang, Q.; Wang, Y.; Qian, Q.; Yang, J.H.; Wang, Y.L.; Zhao, T.P.; Guo, G.J. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China. Acta Petrol. Sin. 2001, 17, 236–244. [Google Scholar]
- Leng, C.B.; Zhang, X.C.; Chen, Y.J.; Wang, S.X.; Gou, T.Z.; Chen, W. Discussion on the relationship between Chinese porphyry copper deposits and adakitic rocks. Earth Sci. Front. 2007, 14, 199–210. [Google Scholar]
- Li, Y.; Ling, M.X.; Ding, X.; Liu, J.; Han, F.; Sun, W.D. Adakites or adakitic rocks and associated metallogenesis in eastern China. Geotecton. Metallog. 2009, 33, 448–464. [Google Scholar]
- Liu, H.T.; Zhang, Q.; Liu, J.M.; Ye, J.; Zeng, Q.D.; Yu, C.M. Adakite versus porphyry copper and epithermal gold deposits: A possible metallogenetic specialization of magmatism required in-deep assessment. Acta Petrol. Sin. 2004, 20, 205–218. [Google Scholar]
- Wang, F.Y.; Liu, S.A.; Li, S.G.; He, Y.S. Genesis and metallogenic relationships of early Cretaceous high magnesium adakites in eastern China: A study on zircon O-Hf isotopes and trace elements. Acta Mineral. Sin. 2011, 31, 93. [Google Scholar]
- Wang, Q.; Tang, G.J.; Jia, X.H.; Zi, F.; Jiang, Z.Q.; Xu, J.F.; Zhao, Z.H. The metalliferous mineralization associatied with adakitic rocks. Geol. J. China Univ. 2008, 14, 350–364. [Google Scholar]
- Wang, Q.; Xu, J.F.; Zhao, Z.H. Intermediate-acid igneous rocks strongly depleted in heavy rare earth elements (or adakitic rocks) and copper-gold metallogenesis. Earth Sci. Front. 2003, 10, 561–572. [Google Scholar]
- Wang, Q.; Xu, J.F.; Zhao, Z.H.; Zi, F.; Tang, G.J.; Jia, X.H.; Jiang, Z.Q. Adakites or adakite rocks and associated metal metallogenesis in China. Bull. Mineral. Petrol. Geochem. 2007, 26, 336–349. [Google Scholar]
- Wang, Y.; Cheng, S.H. Discussion on the relationship between C-type adakite and Mesozoic metal mineralization in eastern China. Acta Mineral. Sin. 2009, S1, 27–28. [Google Scholar]
- Wang, Y.L.; Zhang, Q.; Wang, Q.; Liu, H.T.; Wang, Y. Study on adakitic rock and Cu-Au mineralization. Acta Petrol. Sin. 2003, 19, 543–550. [Google Scholar]
- Hou, Z.Q.; Meng, X.J.; Qu, X.M.; Gao, Y.F. Copper ore potential of adakitic intrusives in Gangdese porphyry copper belt: Constrains from rock phase and deep melting process. Miner. Depos. 2005, 24, 108–121. [Google Scholar]
- Wang, Q.; Xu, J.F.; Jian, P.; Bao, Z.W.; Zhao, Z.H.; Li, C.F.; Xiong, X.L.; Ma, J.L. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. J. Petrol. 2006, 47, 119–144. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Z.H.; Jian, P.; Xu, J.F.; Bao, Z.W.; Ma, J.L. SHRIMP zircon geochronology and Nd-Sr isotopic eochemistry of the Dexing granodiorite porphyries. Acta Petrol. Sin. 2004, 20, 315–324. [Google Scholar]
- Zhang, J.F.; Li, Z.T.; Jin, C.Z. Adakites in northeastern China and their mineralized implications. Acta Petrol. Sin. 2004, 20, 361–368. [Google Scholar]
- Wang, X.G.; Ouyang, Y.P.; Chen, G.H.; Liu, J.G.; Wei, J.; Rao, J.F. W-Cu Deposit in Zhuxi, Jiangxi Province; Geological Publishing House: Beijing, China, 2022. [Google Scholar]
- Chen, G.H.; Shu, L.S.; Shu, L.M.; Zhang, C.; Ouyang, Y.P. Geological characteristics and mineralization setting of the Zhuxi tungsten (copper) polymetallic deposit in the Eastern Jiangnan Orogen. Sci. China Earth Sci. 2016, 59, 803–823. [Google Scholar] [CrossRef]
- Chen, G.H.; Wan, H.Z.; Shu, L.S.; Zhang, C.; Kang, C. An analysis on ore-controlling conditions and geological features of the Cu-W polymetallic ore deposit in the Zhuxi area of Jingdezhen, Jiangxi Province. Acta Petrol. Sin. 2012, 28, 3901–3914. [Google Scholar]
- Liu, M.; Song, S.W.; Cui, Y.R.; Chen, G.H.; Rao, J.F.; Ouyang, Y.P. In-situ U-Pb geochronology and trace element analysis for the scheelite and apatite from the deep seated stratiform-like W(Cu) ore of the Zhuxi tungsten deposit, northeastern Jiangxi Province. Acta Petrol. Sin. 2021, 37, 717–732. [Google Scholar]
- He, X.L. Geological Characteristics and Origin Discussion of the Zhuxi Tungsten-Copper Deposit. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2017. [Google Scholar]
- He, X.L.; Zhang, D.; Wu, G.G.; Di, Y.J.; Zhang, Z.H.; Li, F.; Hu, B.J.; Huo, H.L.; Li, N.; Zhang, X.M.; et al. Control of interaction between stress and fluid in tectonic transition background on metallogenesis of giant Zhuxi W-Cu deposit, South China. Miner. Depos. 2021, 40, 1135–1159. [Google Scholar]
- Hu, Z.H. The Formation Conditions and Matallogenic Regularity of Zhuxi Tungsten Polymentallic Deposit in Northeast of Jiangxi Province. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2015. [Google Scholar]
- Ouyang, Y.P.; Zeng, R.L.; Shu, L.M.; Deng, Y.G.; Rao, J.F.; Wei, J. Genesis and geological significance of quartz vein-type wolframite in the deep of Zhuxi W-Cu deposit. J. Guilin Univ. Technol. 2023, 43, 184–192. [Google Scholar]
- Ouyang, Y.P.; Wei, J.; Lu, Y.; Zhang, W.; Yao, Z.Y.; Rao, J.F.; Chen, J.; Pan, X. Muscovite 40Ar–39Ar age and its geological significance in Zhuxi W(Cu) deposit, northeastern Jiangxi. J. Cent. South Univ. 2019, 26, 3488–3501. [Google Scholar] [CrossRef]
- Ouyang, Y.P.; Rao, J.F.; Liao, S.P.; He, X.R.; Hu, Q.H.; Wei, J.; Yang, M.G. Rock- and ore-controlling structure in the Zhuxi ore concentration area in the northeastern Jiangxi Province. Geol. China 2019, 46, 878–893. [Google Scholar]
- Pan, X.F.; Hou, Z.Q.; Li, Y.; Chen, G.H.; Zhao, M.; Zhang, T.F.; Zhang, C.; Wei, J.; Kang, C. Dating the giant Zhuxi W–Cu deposit (Taqian–Fuchun Ore Belt) in South China using molybdenite Re–Os and muscovite Ar–Ar system. Ore Geol. Rev. 2017, 86, 719–733. [Google Scholar] [CrossRef]
- Pan, X.F.; Hou, Z.Q.; Zhao, M.; Chen, G.H.; Rao, J.F.; Li, Y.; Wei, J.; Ouyang, Y.P. Geochronology and geochemistry of the granites from the Zhuxi W-Cu ore deposit in South China: Implication for petrogenesis, geodynamical setting and mineralization. Lithos 2018, 304–307, 155–179. [Google Scholar] [CrossRef]
- Pan, X.F.; Hou, Z.Q.; Zhao, M.; Li, Y.; Ouyang, Y.P.; Wei, J.; Yang, Y.S. Fluid inclusion and stable isotope constraints on the genesis of the world-class Zhuxi W(Cu) skarn deposit in South China. J. Asian Earth Sci. 2020, 190, 104192. [Google Scholar] [CrossRef]
- Pan, X.F.; Ren, Y.F.; Hou, Z.Q.; Ouyang, Y.P.; Gong, X.J.; Li, Q.Y.; Yang, Y.S. Petrogenesis and geodynamic implications of a newly discovered basanite dike in Zaolin, Jingdezhen City, South China. Lithosphere 2021, 1, 9732167. [Google Scholar] [CrossRef]
- Song, S.W.; Mao, J.W.; Zhu, Y.F.; Yao, Z.Y.; Chen, G.H.; Rao, J.F.; Ouyang, Y. Partial-melting of fertile metasedimentary rocks controlling the ore formation in the Jiangnan porphyry-skarn tungsten belt, south China: A case study at the giant Zhuxi W-Cu skarn deposit. Lithos 2018, 304–307, 180–199. [Google Scholar] [CrossRef]
- Romer, R.L.; Kroner, U. Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res. 2016, 31, 60–95. [Google Scholar] [CrossRef]
- Romer, R.L.; Kroner, U. Sediment and weathering control on the distribution of Paleozoic magmatic tin-tungsten mineralization. Miner. Depos. 2015, 50, 327–338. [Google Scholar] [CrossRef]
- Richards, J.P. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos 2015, 233, 27–45. [Google Scholar] [CrossRef]
- Richards, J.P. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geol. Rev. 2015, 70, 323–345. [Google Scholar] [CrossRef]
- Mungall, J.E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 2002, 30, 915–918. [Google Scholar] [CrossRef]
- Rao, J.F.; Ouyang, Y.P.; Chen, Q.; Wei, J.; Chen, G.H.; Zeng, X.H. Geochronology of the diorite porphyrites in Zhuxi W-Cu deposit and its metallogenic significances. China Tungsten Ind. 2020, 35, 43–52. [Google Scholar]
- Yang, M.G.; Wang, G.H.; Xu, G.M.; Hu, Q.H. Basic characteristics of the Marina Pacific tectonic activities in Jiangxi Province and its adjacent areas. East China Geol. 2016, 37, 10–18. [Google Scholar]
- Yang, M.G.; Zhu, P.J.; Wang, G.H. Division of tectonic-metallogenetic units in South China. Shanghai Land Resour. 2018, 39, 13–24. [Google Scholar]
- Ouyang, Y.P.; Zeng, R.L.; Wei, J.; Chen, Q.; Rao, J.F.; Chen, G.H.; Zeng, X.H.; Xu, Y.X.; Deng, Y.G.; Luo, L.C.; et al. Research Report of the Supernormal Enrichment Mechanism and Deep Prospecting Technology of the Zhuxi Tungsten-Copper Deposit in Northeast Jiangxi Province; The Tenth Geological Brigade of Jiangxi Geological Bureau: Yingtan, China, 2023. [Google Scholar]
- Ouyang, Y.P.; Rao, J.F. Using the catchment-based fractal model to delineate geochemical anomalies associated with Cu-W polymetallic deposits in the Zhuxi, Jiangxi Province. Arab. J. Geosci. 2018, 11, 797. [Google Scholar] [CrossRef]
- Rao, J.F.; Yao, Z.Y.; Ouyang, Y.P. Tectonization-magmation-mineralization of the Taqian-Fuchun W-Cu polymetallic mineralization concentration area. Adv. Geosci. 2017, 7, 632–644. [Google Scholar] [CrossRef]
- Hou, K.J.; Li, Y.H.; Tian, Y.R. In situ U-Pb zircon dating using Laser Ablation-multi Ion Counting-ICP-MS. Miner. Depos. 2009, 28, 481–492. [Google Scholar]
- Ludwig, K.R. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel; Geochronology Center Special Publication: Berkeley, CA, USA, 2003. [Google Scholar]
- Rubatto, D. Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism. Chem. Geol. 2002, 184, 123–138. [Google Scholar] [CrossRef]
- Wan, H.Z.; Liu, X.L.; Liu, Z.Q.; Liu, S.B.; Chen, Y.C.; Wang, C.H.; Chen, G.H.; Liang, L.J.; Li, S.S.; Zhang, S.D.; et al. LA-ICP-MS zircon U-Pb dating of granodioritic porphyry located Zhuxi copper-tungsten mine in Northeast Jiangxi and its geological significance. Rock Miner. Anal. 2015, 34, 494–502. [Google Scholar]
- Li, Y.H.; Tang, W.; Chen, Q.; Zou, J.; Rao, J.F.; Ouyang, Y.P.; Wu, B. Geochronological and geochemical characteristics of biotite quartz monzonite porphyry in Zhuxi ore concentration area, and its geological implications. Miner. Depos. 2021, 40, 1285–1298. [Google Scholar]
- Peccerillo, A.; Taylor, S.R. Geochemistry of eocene calc–alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Sun, S.S.; Mcdonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes; Geological Society Special Publications: London, UK, 1989. [Google Scholar]
- Defant, M.J.; Xu, J.F.; Kepezhinskas, P.; Wang, Q.; Zhang, Q.; Xiao, L. Adakites: Some variations on a theme. Acta Petrol. Sin. 2002, 18, 129–142. [Google Scholar]
- Hou, T.; Zhang, Z.C.; Santosh, M.; Encarnacion, J.; Wang, M. The Cihai diabase in the Beishan region, NW China: Isotope geochronology, geochemistry and implications for Cornwall-style iron mineralization. J. Asian Earth Sci. 2013, 70–71, 231–249. [Google Scholar] [CrossRef]
- Chen, B.; Jahn, B.M.; Suzuki, K. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: Tectonic implications. Geology 2013, 41, 91–94. [Google Scholar] [CrossRef]
- Martin, H.; Smithies, R.H.; Rapp, R.; Moyen, J.-F.; Champion, D. An overview of adakite, tonalite trondhjemite granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Moyen, J.F.; Martin, H. Forty years of TTG research. Lithos 2012, 148, 312–336. [Google Scholar] [CrossRef]
- Rapp, R.P.; Shimizu, N.; Norman, M.D.; Applegate, G.S. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem. Geol. 1999, 160, 335–356. [Google Scholar] [CrossRef]
- Atherton, M.P.; Petford, N. Generation of sodium-rich magmasfrom newly underplated basaltic crust. Nature 1993, 362, 144–146. [Google Scholar] [CrossRef]
- Gao, S.; Rudnick, R.L.; Yuan, H.L.; Liu, X.M.; Liu, Y.S.; Xu, W.L.; Ling, W.L.; Ayers, J.; Wang, X.C.; Wang, Q.H. Recycling lower continental crust in the North China Craton. Nature 2004, 432, 892–897. [Google Scholar] [CrossRef]
- Xu, J.F.; Shinjo, R.; Defant, M.J.; Wang, Q.; Rapp, R.P. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology 2002, 30, 1111–1114. [Google Scholar] [CrossRef]
- Barth, M.G.; Mcdonough, W.F.; Rudnick, R.L. Tracking thebudget of Nb and Ta in the continental crust. Chem. Geol. 2000, 165, 197–213. [Google Scholar] [CrossRef]
- Green, T.H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol. 1995, 120, 347–359. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publication: Oxford, UK, 1985. [Google Scholar]
- Frost, C.D.; Frost, B.R.; Bell, J.M.; Chamberlain, K.R. The relationship between A-type granites and residual magmas from anorthosite: Evidence from the northern Sherman batholith, Laramie Mountains, Wyoming, USA. Precambrian Res. 2002, 119, 45–71. [Google Scholar] [CrossRef]
- Bao, B.; Jiang, J.S.; Yu, Y.S.; Qin, Z.W.; Zheng, Z.C.; Liu, X.; Shan, L.; Dong, Y.Y.; Li, F.L. Petrogenesis and metallogeny significance of quartz diorite porphyries from the Dexing porphyry Cu deposit, Jiangxi Province. Acta Petrol. Mineral. 2023, 42, 483–501. [Google Scholar]
- Yang, Z.M.; Lu, Y.J.; Hou, Z.Q.; Chang, Z.S. High-Mg diorite from Qulong in Southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. J. Petrol. 2015, 56, 227–254. [Google Scholar] [CrossRef]
- Prouteau, G.; Scaillet, B.; Pichavant, M.; Maury, R.C. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 2001, 410, 197–200. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Lo, C.H.; Tsai, C.H. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern dabie complex, Central China. Chem. Geol. 1999, 157, 119–146. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Harris, N.B.W.; Pearce, J.A.; Tindle, A.G. Geochemical characteristics of collision-zone magmatism. Geol. Soc. Lond. Spec. Publ. 1986, 19, 67–81. [Google Scholar] [CrossRef]
- Huang, A.J.; Wen, Z.G.; Liu, S.B.; Liu, X.Q.; Liu, X.M.; Zhang, J.J.; Shi, H.G.; Liu, Z.Q. Re-Os isotopic dating of molybdenite from the Taqian W-Mo deposit in Leping County, Jiangxi Province and its geological implications. Acta Petrol. Mineral. 2013, 32, 496–504. [Google Scholar]
- Reich, M.; Parada, M.A.; Palacios, C.; Dietrich, A.; Schultz, F.; Lehmann, B. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of Central Chile: Metallogenic implications. Miner. Depos. 2003, 38, 876–885. [Google Scholar] [CrossRef]
- Fan, J.J.; Wang, Q.; Li, J.; Wei, G.J.; Wyman, D.; Zhao, Z.H.; Liu, Y.; Ma, J.L.; Zhang, L.; Wang, Z.L. Molybdenum and boron isotopic compositions of porphyry Cu mineralization-related adakitic rocks in central-eastern China: New insights into their petrogenesis and crust-mantle interaction. J. Geophys. Res. Solid Earth 2020, 125, e2020JB020474. [Google Scholar] [CrossRef]
No. | Content (ppm) | Th/U | Isotope Ratio | Isotope Age (Ma) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
206Pb | 232Th | 238U | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 206Pb/238U | 1σ | ||
1 | 22.7 | 77.4 | 806 | 0.10 | 0.0525 | 0.0016 | 0.1801 | 0.0056 | 0.0248 | 0.0003 | 158 | 2 |
2 | 77.1 | 152 | 647 | 0.23 | 0.0669 | 0.0016 | 0.9271 | 0.0285 | 0.1001 | 0.0022 | 615 | 13 |
3 | 27.0 | 52.7 | 949 | 0.06 | 0.0532 | 0.0019 | 0.1901 | 0.0067 | 0.0259 | 0.0004 | 165 | 2 |
4 | 7.56 | 152 | 223 | 0.68 | 0.0498 | 0.0037 | 0.1769 | 0.0129 | 0.0259 | 0.0005 | 165 | 3 |
5 | 11.1 | 228 | 325 | 0.70 | 0.0498 | 0.0029 | 0.1755 | 0.0101 | 0.0256 | 0.0003 | 163 | 2 |
6 | 29.5 | 192 | 996 | 0.19 | 0.0518 | 0.0017 | 0.1827 | 0.0062 | 0.0255 | 0.0004 | 162 | 2 |
7 | 61.3 | 99.9 | 2207 | 0.05 | 0.0493 | 0.0012 | 0.1715 | 0.0044 | 0.0250 | 0.0002 | 159 | 1 |
8 | 65.7 | 132 | 504 | 0.26 | 0.0659 | 0.0015 | 0.9962 | 0.0272 | 0.1093 | 0.0022 | 669 | 13 |
9 | 20.4 | 82.8 | 689 | 0.12 | 0.0526 | 0.0020 | 0.1861 | 0.0076 | 0.0255 | 0.0004 | 162 | 3 |
10 | 154 | 311 | 858 | 0.36 | 0.0669 | 0.0014 | 1.3558 | 0.0319 | 0.1460 | 0.0017 | 879 | 10 |
11 | 72.7 | 371 | 471 | 0.79 | 0.0657 | 0.0016 | 0.9971 | 0.0301 | 0.1093 | 0.0021 | 669 | 12 |
12 | 14.4 | 444 | 385 | 1.15 | 0.0499 | 0.0019 | 0.1753 | 0.0066 | 0.0257 | 0.0004 | 163 | 2 |
13 | 103 | 133 | 875 | 0.15 | 0.0654 | 0.0013 | 0.8958 | 0.0264 | 0.0985 | 0.0021 | 606 | 12 |
14 | 75.0 | 351 | 2456 | 0.14 | 0.0512 | 0.0013 | 0.1843 | 0.0057 | 0.0259 | 0.0005 | 165 | 3 |
Elements | ZK2105-2-1 | ZK2105-2-2 | ZK2105-1-5 | ZK2105-2-4 | ZK2105-2-5 | ZX15-01 | ZX15-02 | ZX15-03 | ZX15-04 | ZX15-06 | ZL-YQ11 | ZL-YQ12 | ZL-YQ13 | ZL-YQ14 | ZL-YQ15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 68.58 | 69.66 | 67.72 | 67.83 | 68.5 | 58.66 | 58.08 | 60.3 | 59.89 | 58.73 | 65.2 | 65.04 | 64.7 | 65.12 | 64.48 |
Al2O3 | 14.77 | 14.77 | 14.86 | 15.16 | 15.11 | 15.46 | 15.25 | 15.83 | 15.25 | 15.52 | 14.85 | 15.67 | 15.11 | 15.37 | 15.39 |
TiO2 | 0.4 | 0.41 | 0.41 | 0.41 | 0.41 | 0.63 | 0.62 | 0.65 | 0.59 | 0.63 | 0.35 | 0.35 | 0.33 | 0.32 | 0.31 |
TFe2O3 | 2.33 | 2.35 | 2.46 | 2.38 | 2.4 | 4.51 | 4.52 | 4.56 | 4.26 | 4.6 | 2.5 | 2.52 | 2.53 | 2.49 | 2.45 |
MgO | 0.95 | 0.94 | 0.96 | 0.99 | 0.96 | 4.19 | 4.34 | 4.32 | 3.97 | 4.29 | 1.81 | 1.95 | 1.97 | 1.94 | 1.85 |
MnO | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.08 | 0.07 | 0.08 | 0.08 | 0.08 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
CaO | 2.55 | 2.18 | 2.84 | 2.58 | 2.43 | 5.68 | 5.88 | 4.93 | 5.31 | 6.13 | 3.89 | 3.66 | 3.84 | 3.73 | 3.87 |
Na2O | 3.59 | 3.59 | 3.7 | 3.38 | 3.64 | 3.37 | 1.63 | 3.62 | 3.25 | 2.21 | 1.84 | 1.75 | 1.77 | 1.74 | 1.7 |
K2O | 2.88 | 2.91 | 2.67 | 3.16 | 2.86 | 0.9 | 2.91 | 1.36 | 1.75 | 2.78 | 3.47 | 3.59 | 3.65 | 3.65 | 3.61 |
P2O5 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.2 | 0.2 | 0.21 | 0.19 | 0.2 | 0.1 | 0.1 | 0.1 | 0.12 | 0.08 |
LOI | 3.42 | 2.75 | 3.94 | 3.57 | 3.48 | 4.86 | 4.91 | 2.89 | 4.05 | 3.43 | 3.11 | 2.48 | 3.08 | 2.64 | 3.4 |
Li | 88.5 | 69.3 | 84.5 | 79.7 | 69.4 | 202 | 165 | 116 | 137 | 92.4 | 10.92 | 9.79 | 9.45 | 11.53 | 9.68 |
Be | 2.85 | 2.82 | 2.78 | 2.86 | 2.86 | 2.8 | 3.08 | 2.47 | 2.73 | 2.4 | 4.63 | 2.75 | 2.69 | 4.19 | 3.27 |
Sc | 5.58 | 5.73 | 5.83 | 5.32 | 5.32 | 17 | 182 | 18 | 16.1 | 17.6 | 5.27 | 5.97 | 5.77 | 5.68 | 5.71 |
V | 45.8 | 45.5 | 48.8 | 44 | 44.3 | 136 | 135 | 140 | 121 | 136 | 54.98 | 56.36 | 57.02 | 55.58 | 53.01 |
Cr | 17.4 | 15.7 | 16.7 | 16.1 | 13.3 | 182 | 184 | 198 | 180 | 188 | 14.92 | 16.98 | 18.37 | 18.7 | 12.28 |
Co | 5.95 | 5.81 | 6.64 | 5.75 | 5.59 | 21.8 | 21.3 | 21.3 | 19.3 | 20.5 | 6.77 | 7.09 | 6.68 | 6.55 | 5.97 |
Ni | 8.23 | 5.61 | 5.4 | 5.88 | 4.87 | 73.8 | 74.7 | 783 | 71 | 75.8 | 7.09 | 7.08 | 6.55 | 6.24 | 4.71 |
Cu | 6.97 | 8.09 | 13.9 | 4.79 | 10.1 | 22 | 20.3 | 25.2 | 25.4 | 21.7 | 4.78 | 5.79 | 6.74 | 2.47 | 1.98 |
Zn | 137 | 43.7 | 62.6 | 59.2 | 59.9 | 74.5 | 79.1 | 69.5 | 90.5 | 80.3 | 66.37 | 70.4 | 64.5 | 57.01 | 50.43 |
Ga | 23.1 | 22.8 | 24.4 | 21.9 | 22.3 | 22.6 | 23.1 | 23.8 | 23.3 | 22.9 | 22.87 | 23.57 | 23.38 | 23.51 | 22.4 |
As | 22.1 | 4.74 | 40.3 | 29.9 | 184 | 229 | 354 | 91.9 | 159 | 138 | 2.6 | 12.6 | 3.01 | 6.9 | 7.54 |
Rb | 139 | 134 | 141 | 144 | 130 | 74.3 | 238 | 104 | 121 | 185 | 129.9 | 138.6 | 142.3 | 143.8 | 133.6 |
Sr | 513 | 401 | 468 | 464 | 483 | 1164 | 437 | 1238 | 856 | 630 | 474.16 | 366.05 | 437.88 | 408.94 | 383.67 |
Y | 7.68 | 7.57 | 8.12 | 6.97 | 7.42 | 14.9 | 14.6 | 14.8 | 13.9 | 142 | 8.89 | 7.46 | 7.55 | 7.26 | 8 |
Zr | 194 | 200 | 186 | 187 | 184 | 182 | 183 | 184 | 179 | 178 | 306 | 314 | 303 | 317 | 278 |
Nb | 7.15 | 7.07 | 7.5 | 7.62 | 7.12 | 9.6 | 9.78 | 9.91 | 9.5 | 953 | 12.15 | 11.42 | 11.42 | 11.04 | 9.55 |
Cs | 36.5 | 33.2 | 49 | 41.4 | 33.8 | 93.1 | 254 | 95.3 | 112 | 167 | 17.32 | 19.11 | 18.43 | 18.59 | 18.02 |
Ba | 719 | 628 | 572 | 896 | 680 | 378 | 398 | 658 | 659 | 591 | 999 | 855 | 1150 | 974 | 1099 |
Hf | 4.89 | 4.76 | 4.61 | 4.61 | 4.53 | 5.03 | 4.99 | 4.96 | 4.99 | 5 | 7.91 | 7.7 | 7.88 | 7.76 | 7.19 |
Ta | 0.662 | 0.656 | 0.639 | 0.628 | 0.622 | 0.6 | 0.59 | 0.58 | 0.58 | 0.59 | 1.75 | 1.59 | 1.95 | 0.69 | 0.56 |
Pb | 42 | 16.8 | 38.3 | 37.6 | 32.5 | 20 | 17.7 | 222 | 392 | 323 | 35.57 | 32.98 | 34.01 | 31.85 | 27.02 |
Th | 18.7 | 18 | 18.4 | 17.7 | 17.4 | 17.7 | 17.2 | 18.1 | 17.7 | 17.4 | 17.86 | 18.12 | 19.02 | 19.24 | 17.89 |
U | 4.17 | 4.09 | 3.93 | 3.75 | 3.83 | 2.94 | 2.86 | 3.01 | 2.95 | 2.91 | 4 | 4.17 | 4.21 | 4.17 | 4 |
Mo | - | - | 0.225 | - | - | 0.23 | 0.5 | 0.19 | 0.22 | 0.12 | 0.75 | 8.46 | 0.78 | 0.42 | 0.37 |
Sb | 2.52 | 2.09 | 2.91 | 2.26 | 1.91 | 3.68 | 15.4 | 4.5 | 15.9 | 11.3 | 0.53 | 1.14 | 0.92 | 0.82 | 0.7 |
W | 0.213 | 0.37 | 0.516 | 0.847 | 0.12 | 1.45 | 2.24 | 1.43 | 0.85 | 0.6 | 1.55 | 1.74 | 1.74 | 1.89 | 1.25 |
Bi | 0.174 | 0.085 | 0.051 | 0.0419 | 0.204 | 0.14 | 0.24 | 0.12 | 0.54 | 0.16 | 0.45 | 0.38 | 0.46 | 0.09 | 0.06 |
La | 42.5 | 38.3 | 45.1 | 41.8 | 38.8 | 50 | 47.2 | 49.2 | 49.1 | 46.8 | 50.16 | 50.1 | 48.68 | 49.33 | 52.03 |
Ce | 83.4 | 84.1 | 87.1 | 81.7 | 78.5 | 91.6 | 86 | 92 | 89.1 | 86.5 | 93.24 | 94.38 | 95.24 | 93.25 | 95.7 |
Pr | 7.88 | 7.41 | 8.24 | 7.45 | 7.33 | 10.1 | 9.62 | 9.95 | 9.79 | 9.46 | 9.83 | 9.88 | 10.21 | 9.7 | 10.2 |
Nd | 28.7 | 28.3 | 31.4 | 27.1 | 27.8 | 37.6 | 35.1 | 37.4 | 36.4 | 34.7 | 37.2 | 37.5 | 37.89 | 36.47 | 37.93 |
Sm | 4.54 | 4.54 | 4.76 | 4.53 | 4.31 | 6.31 | 5.87 | 6.4 | 6.2 | 6.06 | 5.68 | 5.63 | 6.01 | 5.58 | 5.9 |
Eu | 1.05 | 1.02 | 1.1 | 1.03 | 1.01 | 1.53 | 1.55 | 1.5 | 1.56 | 1.49 | 1.48 | 1.4 | 1.39 | 1.38 | 1.5 |
Gd | 3.19 | 3.24 | 3.33 | 3 | 3.08 | 4.32 | 4.32 | 4.24 | 4.34 | 431 | 5.39 | 5.17 | 5.32 | 5.13 | 5.33 |
Tb | 0.402 | 0.402 | 0.425 | 0.385 | 0.387 | 0.57 | 0.55 | 0.59 | 0.56 | 0.56 | 0.57 | 0.53 | 0.54 | 0.53 | 0.54 |
Dy | 1.56 | 1.59 | 1.54 | 1.54 | 1.55 | 3.1 | 2.87 | 3.18 | 3.01 | 3.07 | 2.21 | 1.94 | 2 | 1.98 | 2.01 |
Ho | 0.26 | 0.247 | 0.259 | 0.245 | 0.241 | 0.52 | 0.48 | 0.51 | 0.49 | 0.5 | 0.35 | 0.3 | 0.3 | 0.3 | 0.32 |
Er | 0.793 | 0.717 | 0.711 | 0.695 | 0.697 | 1.57 | 1.56 | 1.64 | 1.56 | 1.65 | 0.88 | 0.74 | 0.75 | 0.74 | 0.78 |
Tm | 0.0859 | 0.087 | 0.0857 | 0.0792 | 0.0803 | 0.2 | 0.19 | 0.19 | 0.19 | 0.2 | 0.111 | 0.093 | 0.09 | 0.094 | 0.099 |
Yb | 0.562 | 0.568 | 0.582 | 0.526 | 0.536 | 1.21 | 1.2 | 1.26 | 1.19 | 1.2 | 0.73 | 0.64 | 0.62 | 0.65 | 0.68 |
Lu | 0.0842 | 0.0809 | 0.0825 | 0.0794 | 0.0764 | 0.19 | 0.18 | 0.19 | 0.17 | 0.18 | 0.107 | 0.091 | 0.091 | 0.087 | 0.097 |
ΣREE | 175.01 | 170.60 | 184.72 | 170.16 | 164.40 | 208.82 | 196.69 | 208.25 | 203.66 | 196.68 | 207.94 | 208.39 | 209.13 | 205.22 | 213.12 |
ΣLREE | 168.07 | 163.67 | 177.70 | 163.61 | 157.75 | 197.14 | 185.34 | 196.45 | 192.15 | 185.01 | 197.59 | 198.89 | 199.42 | 195.71 | 203.26 |
ΣHREE | 6.94 | 6.93 | 7.02 | 6.55 | 6.65 | 11.68 | 11.35 | 11.80 | 11.51 | 11.67 | 10.35 | 9.50 | 9.71 | 9.51 | 9.86 |
ΣLREE/ΣHREE | 24.23 | 23.61 | 25.33 | 24.98 | 23.73 | 16.88 | 16.33 | 16.65 | 16.69 | 15.85 | 19.09 | 20.93 | 20.54 | 20.58 | 20.62 |
δEu | 0.80 | 0.77 | 0.80 | 0.80 | 0.81 | 0.85 | 0.90 | 0.83 | 0.87 | 0.85 | 0.81 | 0.78 | 0.74 | 0.77 | 0.80 |
Sr/Y | 66.80 | 52.97 | 57.64 | 66.57 | 65.09 | 78.12 | 29.93 | 83.65 | 61.58 | 4.44 | 53.34 | 49.07 | 58.00 | 56.33 | 47.96 |
Rb/Sr | 0.27 | 0.33 | 0.30 | 0.31 | 0.27 | 0.06 | 0.54 | 0.08 | 0.14 | 0.29 | 0.27 | 0.38 | 0.32 | 0.35 | 0.35 |
Nb/Ta | 10.80 | 10.78 | 11.74 | 12.13 | 11.45 | 16.00 | 16.58 | 17.09 | 16.38 | 16.15 | 6.94 | 7.18 | 5.86 | 16.00 | 17.05 |
Zr/Hf | 39.67 | 42.02 | 40.35 | 40.56 | 40.62 | 36.18 | 36.67 | 37.10 | 35.87 | 35.60 | 38.69 | 40.78 | 38.45 | 40.85 | 38.66 |
Nb/U | 1.71 | 1.73 | 1.91 | 2.03 | 1.86 | 3.27 | 3.42 | 3.29 | 3.22 | 3.27 | 3.04 | 2.74 | 2.71 | 2.65 | 2.39 |
Data sources | Data analyzed in this paper | Data from paper [42] | Data from paper [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Y.; Chen, Q.; Zeng, R.; Li, T. Chronological and Geochemical Characteristics of a Newly Discovered Biotite Granite Porphyry in the Zhuxi W-Cu Polymetallic Deposit, Jiangxi Province, South China: Implications for Cu Mineralization. Minerals 2025, 15, 624. https://doi.org/10.3390/min15060624
Ouyang Y, Chen Q, Zeng R, Li T. Chronological and Geochemical Characteristics of a Newly Discovered Biotite Granite Porphyry in the Zhuxi W-Cu Polymetallic Deposit, Jiangxi Province, South China: Implications for Cu Mineralization. Minerals. 2025; 15(6):624. https://doi.org/10.3390/min15060624
Chicago/Turabian StyleOuyang, Yongpeng, Qi Chen, Runling Zeng, and Tongfei Li. 2025. "Chronological and Geochemical Characteristics of a Newly Discovered Biotite Granite Porphyry in the Zhuxi W-Cu Polymetallic Deposit, Jiangxi Province, South China: Implications for Cu Mineralization" Minerals 15, no. 6: 624. https://doi.org/10.3390/min15060624
APA StyleOuyang, Y., Chen, Q., Zeng, R., & Li, T. (2025). Chronological and Geochemical Characteristics of a Newly Discovered Biotite Granite Porphyry in the Zhuxi W-Cu Polymetallic Deposit, Jiangxi Province, South China: Implications for Cu Mineralization. Minerals, 15(6), 624. https://doi.org/10.3390/min15060624