Petrogenesis, Geochemistry, and Geological Significance of the Kongco Granitic Porphyry Dykes in the Northern Part of the Central Lhasa Microblock, Tibet
Abstract
:1. Introduction
2. Geology
3. Granitic Porphyry Dykes and Copper Mineralization
4. Samples and Analysis Methods
5. Results
5.1. Major and Trace Element Analysis
Sample | ZQ01 | ZQ02 | ZQ03 | ZQ04 | ZQ05 | ZQ06 | ZQ07 | ZQ08 | ZQ09 |
---|---|---|---|---|---|---|---|---|---|
SiO2 (wt.%) | 76.61 | 77.45 | 77.90 | 77.64 | 77.44 | 77.51 | 76.22 | 76.31 | 76.73 |
TiO2 (wt.%) | 0.10 | 0.06 | 0.05 | 0.10 | 0.10 | 0.11 | 0.11 | 0.12 | 0.06 |
Al2O3 (wt.%) | 12.23 | 11.93 | 11.96 | 12.21 | 12.42 | 12.45 | 12.19 | 12.00 | 12.04 |
Fe2O3 (wt.%) | 0.70 | 0.35 | 0.38 | 0.48 | 0.26 | 0.21 | 0.42 | 0.62 | 0.48 |
FeO (wt.%) | 0.19 | 0.32 | 0.22 | 0.08 | 0.13 | 0.11 | 0.16 | 0.54 | 0.35 |
MnO (wt.%) | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.02 | 0.02 |
MgO (wt.%) | 0.17 | 0.06 | 0.07 | 0.08 | 0.09 | 0.08 | 0.09 | 0.20 | 0.09 |
CaO (wt.%) | 0.48 | 0.43 | 0.41 | 0.28 | 0.26 | 0.29 | 0.83 | 0.46 | 0.24 |
Na2O (wt.%) | 2.94 | 2.77 | 3.46 | 3.24 | 3.09 | 3.49 | 2.76 | 3.41 | 3.56 |
K2O (wt.%) | 5.13 | 6.21 | 4.99 | 5.09 | 5.37 | 4.98 | 5.94 | 4.97 | 4.98 |
P2O5 (wt.%) | 0.06 | 0.01 | 0.01 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.01 |
Fe2O3T (wt.%) | 0.91 | 0.71 | 0.62 | 0.57 | 0.40 | 0.33 | 0.60 | 1.22 | 0.87 |
FeOT (wt.%) | 0.82 | 0.63 | 0.56 | 0.51 | 0.36 | 0.30 | 0.54 | 1.10 | 0.78 |
LOI (wt.%) | 1.26 | 0.35 | 0.50 | 0.74 | 0.77 | 0.69 | 1.20 | 0.60 | 0.52 |
Total (wt.%) | 99.89 | 99.96 | 99.97 | 99.97 | 99.96 | 99.95 | 99.97 | 99.28 | 99.08 |
A/NK | 1.18 | 1.06 | 1.08 | 1.13 | 1.14 | 1.12 | 1.11 | 1.09 | 1.07 |
A/CNK | 1.09 | 0.99 | 1.01 | 1.08 | 1.09 | 1.07 | 0.98 | 1.01 | 1.03 |
δ43 | 1.93 | 2.34 | 2.04 | 2.00 | 2.07 | 2.08 | 2.27 | 2.10 | 2.15 |
DI | 95.1 | 97.04 | 96.9 | 96.84 | 96.92 | 97.15 | 95.29 | 95.49 | 97.1 |
Q | 38.99 | 36.27 | 37.47 | 38.62 | 38.29 | 37.45 | 35.76 | 36.3 | 36.4 |
Kfs | 53.04 | 58.3 | 55.65 | 55.82 | 56.57 | 57.03 | 55.42 | 55.29 | 58.25 |
Pl | 4.96 | 3.86 | 5.4 | 3.4 | 2.95 | 3.66 | 7.14 | 5.89 | 3.31 |
La (ppm) | / | / | 20.2 | 18.6 | 9.9 | 13.3 | 31.1 | / | / |
Ce (ppm) | / | / | 47.8 | 42.7 | 29.8 | 27.9 | 68.8 | / | / |
Pr (ppm) | / | / | 5.51 | 4.74 | 2.22 | 3.05 | 7.74 | / | / |
Nd (ppm) | / | / | 20.8 | 16.6 | 7.9 | 11.0 | 25.7 | / | / |
Sm (ppm) | / | / | 5.78 | 3.81 | 1.77 | 2.43 | 5.99 | / | / |
Eu (ppm) | / | / | 0.076 | 0.151 | 0.129 | 0.182 | 0.141 | / | / |
Gd (ppm) | / | / | 6.21 | 4.25 | 2.00 | 2.42 | 5.70 | / | / |
Tb (ppm) | / | / | 1.191 | 0.810 | 0.439 | 0.505 | 1.026 | / | / |
Dy (ppm) | / | / | 8.40 | 5.79 | 3.54 | 3.77 | 7.01 | / | / |
Ho (ppm) | / | / | 1.78 | 1.21 | 0.79 | 0.85 | 1.44 | / | / |
Er (ppm) | / | / | 5.44 | 3.86 | 2.63 | 2.82 | 4.46 | / | / |
Tm (ppm) | / | / | 0.918 | 0.669 | 0.484 | 0.485 | 0.715 | / | / |
Yb (ppm) | / | / | 6.13 | 4.42 | 3.20 | 3.30 | 4.95 | / | / |
Lu (ppm) | / | / | 0.903 | 0.665 | 0.483 | 0.497 | 0.697 | / | / |
Y (ppm) | / | / | 56.6 | 39.3 | 26.3 | 28.8 | 45.5 | / | / |
Rb (ppm) | / | / | 270 | 282 | 227 | 249 | 381 | / | / |
Ba (ppm) | / | / | 31 | 84 | 122 | 120 | 56 | / | / |
Th (ppm) | / | / | 44.2 | 39 | 31.4 | 32.9 | 46.3 | / | / |
U (ppm) | / | / | 5.06 | 5.25 | 5.24 | 5.72 | 5.22 | / | / |
Nb (ppm) | / | / | 32.3 | 20.1 | 11.6 | 12.0 | 24.4 | / | / |
Ta (ppm) | / | / | 3.75 | 2.47 | 1.75 | 1.81 | 2.69 | / | / |
Sr (ppm) | / | / | 12.1 | 24.2 | 36.8 | 33.4 | 14.4 | / | / |
Zr (ppm) | / | / | 102 | 112 | 97.1 | 99.0 | 146 | / | / |
Hf (ppm) | / | / | 5.19 | 4.42 | 3.59 | 3.56 | 5.31 | / | / |
Ga (ppm) | / | / | 19.0 | 16.6 | 14.6 | 15.0 | 18.7 | / | / |
Sc (ppm) | / | / | 2.12 | 2.53 | 2.37 | 2.49 | 3.04 | / | / |
Pb (ppm) | / | / | 59.2 | 39.7 | 36.7 | 30.6 | 32.0 | / | / |
ΣREE | / | / | 131 | 108 | 65 | 72 | 165 | / | / |
LREE/HREE | / | / | 3.24 | 4.00 | 3.82 | 3.95 | 5.36 | / | / |
LaN/YbN | / | / | 2.24 | 2.86 | 2.11 | 2.73 | 4.26 | / | / |
δEu | / | / | 0.04 | 0.11 | 0.21 | 0.23 | 0.07 | / | / |
δCe | / | / | 1.08 | 1.08 | 1.48 | 1.03 | 1.05 | / | / |
TZr(°C) | / | / | 884 | 892 | 887 | 889 | 914 | / | / |
5.2. Zircon U-Pb Age and Lu-Hf Isotopic Compositions
5.3. Rb-Sr, Sm-Nd, Pb Isotopes
6. Discussion
6.1. Types of Rocks
6.2. Genesis of the Kongco Granitic Porphyry
6.3. Structural Environment and Major Element Analysis
6.4. Mineralization Analysis
7. Conclusions
- (1)
- The crystallization age of the Kongco granitic porphyry dykes is ~105 Ma, representing a late Early Cretaceous, weakly peraluminous, high-K, calc-alkaline, potassium basalt series of A2 alkaline feldspar granite.
- (2)
- The Kongco granitic porphyry formed during the collision of the Qiangtang–Lhasa Block following the detachment of the subducted slab, inducing a partial melting of the crust due to asthenospheric upwelling. It subsequently underwent significant potassium feldspar- and biotite-dominated fractional crystallization.
- (3)
- The close spatial relationship between this vein and mineralization suggests that the porphyry dykes had a genetic association with primary copper sulfide mineralization. This suggests that the porphyritic bodies exhibit significant mineralization potential and promising prospects for exploration.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.C.; Wang, J.H.; He, Z.H.; Dou, S. Formation of Au-polymetallic ore deposits in alkaline porphyries at Beiya, Yunnan, Southwest China. Ore Geol. Rev. 2016, 73, 241–252. [Google Scholar] [CrossRef]
- Li, W.C.; Yu, H.J.; Gao, X.; Liu, X.L.; Wang, J.H. Review of Mesozoic multiple magmatism and porphyry Cu–Mo (W) mineralization in the Yidun Arc, eastern Tibet Plateau. Ore Geol. Rev. 2017, 90, 795–812. [Google Scholar] [CrossRef]
- Li, W.C.; Jiang, X.J. The Cenozoic tectono-magmatism-mineralization effect of the intracontinental tectonic transformation system in the western margin of Yangtze Block. Earth Sci. Front. 2020, 27, 151–164, (In Chinese with English Abstract). [Google Scholar]
- Li, W.C.; Pan, G.T.; Zhang, X.F.; Wang, L.Q.; Zhou, J.X. Tectonic evolution and multi–episodic metallogenesis of the Sanjiang Paleo-Tethys multi-arc-basin-terrane system, SW Tibetan Plateau. J. Asian Earth Sci. 2021, 221, 104932. [Google Scholar] [CrossRef]
- Mo, X.X. Growth and evolution of crust of Tibetan Plateau from perspective of magmatic rocks. Earth Sci. 2020, 45, 2245–2257, (In Chinese with English Abstract). [Google Scholar]
- Pan, G.T.; Wang, L.Q.; Li, X.Z.; Wang, J.M.; Xu, Q. The tectonic framework and spatial allocation of the archipelagic arc-basin systems on the Qinghai-Xizang Plateau. Sediment. Geol. Tethyan Geol. 2001, 21, 1–26, (In Chinese with English Abstract). [Google Scholar]
- Pan, G.T.; Zhu, D.C.; Wang, L.Q.; Liao, Z.L.; Geng, Q.R.; Jiang, X.S. Bangong Lake-Nu River suture zone-the northern boundary of Gondwanaland: Evidence from geology and geophysics. Earth Sci. Front. 2004, 11, 371–382, (In Chinese with English Abstract). [Google Scholar]
- Pan, G.T.; Wang, L.Q.; Geng, Q.R.; Yin, F.G.; Wang, B.D.; Peng, Z.M.; Ren, F. Space-time structure of the Bangonghu-Shuanghu-Nujiang-Changning-Menglian Mega-suture zone: A discussion on geology and evolution of the Tethys Ocean. Sediment. Geol. Tethyan Geol. 2020, 40, 1–19, (In Chinese with English Abstract). [Google Scholar]
- Zheng, Y.Y.; Ci, Q.; Gao, S.B.; Wu, S.; Jiang, X.J.; Chen, X. The Ag-Sn-Cu polymetallic minerogenetic series and prospecting direction in the western Gangdese belt, Tibet. Earth Sci. Front. 2021, 28, 379–402, (In Chinese with English Abstract). [Google Scholar]
- Cai, Q.L.; Zheng, Z.W.; He, J. Age of zircon U-Pb and its geological significance of granite from western Gandese in Tibet. J. East China Inst. Technol. Nat. Sci. Ed. 2015, 38, 49–57, (In Chinese with English Abstract). [Google Scholar]
- Cao, H.-W.; Li, G.-M.; Zhang, Z.; Zhang, L.-K.; Dong, S.-L.; Xia, X.-B.; Liang, W.; Fu, J.-G.; Huang, Y.; Xiang, A.-P.; et al. Miocene Sn polymetallic mineralization in the Tethyan Himalaya, southeastern Tibet: A case study of the Cuonadong deposit. Ore Geol. Rev. 2020, 119, 103403. [Google Scholar] [CrossRef]
- Cao, H.W.; Li, G.M.; Zhang, R.Q.; Zhang, Y.H.; Zhang, L.K.; Dai, Z.W.; Zhang, Z.; Liang, W.; Dong, S.L.; Xia, X.B. Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: Evidence from geology, geochronology, fluid inclusions and multiple isotopes. Gondwana Res. 2021, 92, 72–101. [Google Scholar] [CrossRef]
- Geng, Q.R.; Mao, X.C.; Zhang, Z.; Peng, Z.M.; Guan, J.L. New understanding in the middle and west part of Bangong Lake-Nujiang River metallogenic belt and its lmplication for prospecting. Geol. Surv. China 2015, 2, 1–11, (In Chinese with English Abstract). [Google Scholar]
- Grimes, C.B.; John, B.E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, M.J.; Hanghøj, K.; Schwartz, J.J. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 2007, 35, 643–646. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Song, Y.C.; Li, Z.; Wang, Z.L.; Yang, Z.M.; Yang, Z.S.; Liu, Y.C.; Tian, S.H.; He, L.Q.; Chen, K.X.; et al. Thrust-controlled, sediments-hosted Pb-Zn-Ag-Cu deposits in eastern and northern margins of Tibetan orogenic belt: Geological features and tectonic model. Miner. Depos. 2008, 27, 123–144, (In Chinese with English Abstract). [Google Scholar]
- Hou, Z.Q.; Yang, Z.M.; Lu, Y.J.; Kemp, A.; Zheng, Y.C.; Li, Q.Y.; Tang, J.X.; Yang, Z.S.; Duan, L.F. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology 2015, 43, 247–250. [Google Scholar] [CrossRef]
- Huang, Y.; Li, G.M.; Ding, J.; Dai, J.; Yan, G.Q.; Dong, S.L.; Huang, H.X. Origin of the newly discovered Zhunuo porphyry Cu-Mo-Au deposit in the western part of the Gangdese porphyry copper belt in the southern Tibetan Plateau, SW China. Acta Geol. Sin. Engl. Ed. 2017, 91, 109–134. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, H.W.; Li, G.M.; Brueckner, S.M.; Zhang, Z.; Dong, L.; Dai, Z.W.; Lu, L.; Li, Y.B. Middle—Late Triassic bimodal intrusive rocks from the Tethyan Himalaya in South Tibet: Geochronology, petrogenesis and tectonic implications. Lithos 2018, 318–319, 78–90. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, M.H.; Jowitt, S.M.; Li, G.M.; Fu, J.G.; Zhang, Z.; Lang, X.H.; Liu, H.; Zhang, L. Middle Triassic arc magmatism in the southern Lhasa terrane: Geochronology, petrogenesis and tectonic setting. Lithos 2021, 380–381, 105857. [Google Scholar] [CrossRef]
- Li, G.M.; Duan, Z.M.; Liu, B.; Zhang, H.; Dong, S.L.; Zhang, L. The discovery of Jurassic accretionary complexes in Duolong area, northern Bangong Co-Nujiang suture zone, Tibet, and its geologic significance. Geol. Bull. China 2011, 30, 1256–1260, (In Chinese with English Abstract). [Google Scholar]
- Li, G.M.; Qin, K.Z.; Li, J.X.; Evans, N.J.; Zhao, J.X.; Cao, M.J.; Zhang, X.N. Cretaceous magmatism and metallogeny in the Bangong-Nujiang metallogenic belt, central Tibet: Evidence from petrogeochemistry, zircon U-Pb ages, and Hf-O isotopic compositions. Gondwana Res. 2017, 41, 110–127. [Google Scholar] [CrossRef]
- Li, G.M.; Zhang, L.K.; Xia, X.B.; Liang, W.; Hou, C.Q. New exploration progresses, resource potentials and prospecting targets of strategic minerals in the southern Qinghai-Tibet Plateau. Sediment. Geol. Tethyan Geol. 2021, 41, 351–360, (In Chinese with English Abstract). [Google Scholar]
- Li, W.C.; Zeng, P.S.; Hou, Z.Q.; White, N.C. The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan province, southwest China. Econ. Geol. 2011, 106, 79–92. [Google Scholar]
- Liu, H.; Huang, H.X.; Li, G.M.; Xiao, W.F.; Zhang, Z.L.; Liu, B.; Ma, D.F.; Dong, L.; Ma, D. Factor analysis in geochemical survey of the Shangxu gold deposit, northern Tibet. Geol. China 2015, 42, 1126–1136, (In Chinese with English Abstract). [Google Scholar]
- Liu, H.; Li, G.M.; Huang, H.X.; Zhang, Z.L.; Xiao, W.F.; Jiao, Y.J.; Liang, S.X.; Guo, J.; Lan, S.S. Prospecting potential analysis of deep No. III ore section in the shangxu orogenic Gold deposit, bangong Co-Nujiang metallogenic belt, Tibet. Acta Geol. Sin. 2017, 91, 1245–1258, (In Chinese with English Abstract). [Google Scholar]
- Liu, H.; Li, G.M.; Huang, H.X.; Cao, H.W.; Yuan, Q.; Li, Y.X.; Ouyang, Y.; Lan, S.S.; Lü, M.H.; Yan, G.Q. Petrogenesis of Late Cretaceous Jiangla’angzong I-Type granite in Central Lhasa Terrane, Tibet, China: Constraints from whole-rock geochemistry, zircon U-Pb geochronology, and Sr-Nd-Pb-Hf isotopes. Acta Geol. Sin. Engl. Ed. 2018, 92, 1396–1414. [Google Scholar] [CrossRef]
- Song, Y.; Qu, X.M.; Xin, H.B.; Wang, Z.Y.; Du, D.D. The crustal carbon cycling in the Late Cretaceous extension of Bangong Lake arc zone in the Xizang (Tibetan) Plateau. Geol. Rev. 2013, 59, 225–233, (In Chinese with English Abstract). [Google Scholar]
- Tang, J.X. Mineral resources base investigation and research status of the Tibet Plateau and its adjacent major metallogenic belts. Acta Petrol. Sin. 2019, 35, 617–624, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.; Lang, X.; Klemd, R.; Deng, Y.; Tang, J. Subduction initiation of the Neo-Tethys oceanic lithosphere by collision-induced subduction transference. Gondwana Res. 2022, 104, 54–69. [Google Scholar] [CrossRef]
- Yang, Z.M.; Hou, Z.Q.; Xia, D.X.; Song, Y.C.; Li, Z. Relationship between Western Porphyry and mineralization in Qulong copper deposit of Tibet and its enlightenment to further exploration. Miner. Depos. 2008, 27, 28–36, (In Chinese with English Abstract). [Google Scholar]
- Yang, Z.M.; Hou, Z.Q.; Jiang, Y.F.; Zhang, H.R.; Song, Y.C. Sr-Nd-Pb and zircon Hf isotopic constraints on petrogenesis of the Late Jurassic granitic porphyry at Qulong, Tibet. Acta Petrol. Sin. 2011, 27, 2003–2010, (In Chinese with English Abstract). [Google Scholar]
- Zhang, K.X.; He, W.H.; Xu, Y.D.; Zhang, X.H.; Song, B.W.; Kou, X.H.; Wang, G.C. Reconstruction of main types for oceanic plate strata in the subduction-accretionary complex and feature of sequence for each type: An example from the Qinghai-Tibet Tethyan Permian strata. Sediment. Geol. Tethyan Geol. 2021, 41, 137–151, (In Chinese with English Abstract). [Google Scholar]
- Zhao, L.X.; Gong, C.; He, J.; Peng, J.H.; Huang, S.C.; Yang, Z.L. Discovery of porphyry copper deposit and its significance of Dajiacuo in Cuoqin County, Tibet. J. East China Inst. Technol. Nat. Sci. Ed. 2013, 36, 13–20, (In Chinese with English Abstract). [Google Scholar]
- Ding, L.; Lai, Q.Z. New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision. Chin. Sci. Bull. 2003, 48, 1604–1610. [Google Scholar] [CrossRef]
- Guynn, J.; Tropper, P.; Kapp, P.; Gehrels, G.E. Metamorphism of the amdo metamorphic complex, Tibet: Implications for the Jurassic tectonic evolution of the bangong suture zone. J. Metamorph. Geol. 2013, 31, 705–727. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, M.H.; Liang, W.; Li, G.M.; Heilbronn, K.; Dai, Z.W.; Wang, Y.Y.; Zhang, L. Origin of the Oligocene Tuolangla porphyry—Skarn Cu-W-Mo deposit in Lhasa terrane, southern Tibet. China Geol. 2020, 3, 369–384. [Google Scholar]
- Liu, H.; Zhang, L.K.; Huang, H.X.; Li, G.M.; Ouyang, Y.; Yu, H.; Liang, W.; Zhang, H.M.; Chen, X.P. Evolution of ore-forming fluids in the Luobuzhen epithermal gold-silver deposit in western Gangdisi: Fluid inclusion and H-O isotope evidence. Earth Sci. Front. 2020, 27, 49–65, (In Chinese with English Abstract). [Google Scholar]
- Pan, G.T.; Xiao, Q.H.; Lu, S.N.; Deng, J.F.; Feng, Y.M.; Zhang, K.X.; Zhang, Z.Y.; Wang, W.G.; Xing, G.F.; Hao, G.J.; et al. Subdivision of tectonic units in China. Geol. China 2009, 36, 1–28, (In Chinese with English Abstract). [Google Scholar]
- Wu, H.; Li, C.; Hu, P.Y.; Zhang, H.Y.; Li, J. The discovery of Early Cretaceous bimodal volcanic rocks in the Dachagou area of Tibet and its significance. Geol. Bull. China 2014, 33, 1804–1814, (In Chinese with English Abstract). [Google Scholar]
- Xu, Z.Q.; Yang, J.S.; Li, W.C.; Li, H.Q.; Cai, Z.H.; Yan, Z.; Ma, C.Q. Paleo-tethys system and accretionary orogen in the Tibet Plateau. Acta Petrol. Sin. 2013, 29, 1847–1860, (In Chinese with English Abstract). [Google Scholar]
- Yang, J.S.; Xu, Z.Q.; Li, T.F.; Li, H.Q.; Li, Z.L.; Ren, Y.F.; Xu, X.Z.; Chen, S.Y. Oceanic subduction-type eclogite in the Lhasa block, Tibet, China: Remains of the Paleo-Tethys ocean basin? Geol. Bull. China 2007, 26, 1277–1287, (In Chinese with English Abstract). [Google Scholar]
- Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.H.; Ji, W.H.; Yin, F.G.; Zhang, W.P.; Wang, B.D. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 2012, 53, 3–14. [Google Scholar] [CrossRef]
- Pan, G.T.; Mo, X.X.; Hou, Z.Q.; Zhu, D.C.; Wang, L.Q.; Li, G.M.; Zhao, Z.D.; Geng, Q.R.; Liao, Z.L. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrol. Sin. 2006, 22, 521–533, (In Chinese with English Abstract). [Google Scholar]
- Murphy, M.A.; Yin, A.; Harrison, T.M.; Dürr, S.B.; Chen, Z.; Ryerson, F.J.; Kidd, W.S.F.; Wang, X.; Zhou, X. Did the Indo-Asian collision alone create the Tibetan Plateau? Geology 1997, 25, 719–722. [Google Scholar] [CrossRef]
- Tapponnier, P.; Xu, Z.Q.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J.S. Oblique stepwise rise and growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Li, G.M.; Huang, H.X.; Xiao, W.F.; You, Q.; Ma, D.F.; Zhang, H.; Zhang, H. Petrogenesis of the early cretaceous Qingcaoshan strongly peraluminous S-type granitic pluton, southern Qiangtang, northern Tibet: Constraints from whole-rock geochemistry and zircon U-Pb geochronology. Acta Sci. Nat. Univ. Pekin. 2016, 52, 848–860, (In Chinese with English Abstract). [Google Scholar]
- Liu, H.; Zhang, L.K.; Huang, H.X.; Li, G.M.; Ouyang, Y.; Lü, M.H.; Liu, H.; Lan, S.S.; Yan, G.Q. Petrogenesis of Late Triassic Luerma Monzodiorite in western Gangdise, Tibet, China. Earth Sci. 2019, 44, 2339–2352, (In Chinese with English Abstract). [Google Scholar]
- Shi, S.F.; Xiao, Y.F.; Yuan, H.W.; Wei, Y.F.; Qiu, C.Y.; Jiang, X.Q. Geochronology and geochemical characteristics of A-type granites in Boguorize area, the northern margin of Gangdese Belt, Tibet, China and their geological significance. J. Earth Sci. Environ. 2019, 41, 644–657, (In Chinese with English Abstract). [Google Scholar]
- Xu, Z.Q.; Dilek, Y.; Cao, H.; Yang, J.S.; Robinson, P.; Ma, C.Q.; Li, H.Q.; Jolivet, M.; Roger, F.; Chen, X.J. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides. J. Asian Earth Sci. 2015, 105, 320–337. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Zhu, D.C.; Li, S.M.; Cawood, P.A.; Wang, Q.; Zhao, Z.D.; Liu, S.A.; Wang, L.Q. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 2016, 245, 7–17. [Google Scholar] [CrossRef]
- Liu, H.; Huang, H.X.; Zhang, L.K.; Li, G.M.; Ouyang, Y.; Huang, Y.; Lu, M.H. Luerma, a newly discovered Late Triassic porphyry copper-gold ore spot in the western Gangdise metallogenic belt, Tibet. Sediment. Geol. Tethyan Geol. 2021, 40, 3502–3515, (In Chinese with English Abstract). [Google Scholar]
- Cao, H.W.; Zhang, Y.H.; Santosh, M.; Li, G.M.; Hollis, S.P.; Zhang, L.K.; Pei, Q.M.; Tang, L.; Duan, Z.M. Petrogenesis and metallogenic implications of Cretaceous magmatism in Central Lhasa, Tibetan plateau: A case study from the Lunggar Fe skarn deposit and perspective review. Geol. J. 2019, 54, 2323–2346. [Google Scholar] [CrossRef]
- Gao, S.B.; Zheng, Y.Y.; Tian, K.; Chen, X.; Jiang, X.J.; Gu, Y.R. Geochronology of magmatic intrusions and mineralization of lunggar iron deposit in Tibet and its implications for regional multi-stage iron mineralization: Geochemistry, zircon U-Pb and phlogopite Ar-Ar isotopic dating constraints. Earth Sci. 2021, 46, 1941–1959, (In Chinese with English Abstract). [Google Scholar]
- Guo, Z.F.; Wilson, M.; Zhang, M.L.; Cheng, Z.H.; Zhang, L.H. Post-collisional ultrapotassic mafic magmatism in South Tibet: Products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian continental lithosphere slab. J. Petrol. 2015, 56, 1365–1406. [Google Scholar] [CrossRef]
- Huang, F.; Xu, J.; Zeng, Y.; Chen, J.; Wang, B.; Yu, H.; Chen, L.; Huang, W.; Tan, R. Slab breakoff of the Neo-Tethys Ocean in the Lhasa Terrane inferred from contemporaneous melting of the mantle and crust. Geochem. Geophys. Geosystems 2017, 18, 4074–4095. [Google Scholar] [CrossRef]
- Huang, H.X.; Li, G.M.; Dong, S.L.; Liu, B.; Zhang, H.; Zhang, L.; Li, Y.X.; Shi, H.Z. SHRIMP zircon U-Pb age and geochemical characteristics of Qinglung granodiorite in Baingoin area, Tibet. Geol. Bull. China 2012, 31, 852–859, (In Chinese with English Abstract). [Google Scholar]
- Peng, J.H.; Zhao, L.X.; He, J.; Huang, S.C.; Gong, C. Discovery of Indosinian magmatic rocks and its significance in western Gangdise, Tibet. J. East China Inst. Technol. Nat. Sci. Ed. 2013, 36, 21–26, (In Chinese with English Abstract). [Google Scholar]
- Peng, Z.M.; Geng, Q.R.; Liu, S.S.; Zhang, Z.; Guan, J.L.; Cong, F. Zircon U-Pb ages and geochemical features of the diorite por-phyrite in Gajia Formation in the Nagqu area, Tibet. Geol. Bull. China 2015, 34, 354–363, (In Chinese with English Abstract). [Google Scholar]
- Qu, X.M.; Hou, Z.Q.; Guo, L.J.; Xu, W.Y. Source compositions and crustal contaminations of adakitic ore-bearing porphyries in the Gangdise copper belt: Nd, Sr, Pb and O isotope constraints. Acta Geol. Sin. 2004, 78, 813–821, (In Chinese with English Abstract). [Google Scholar]
- Wang, Q.; Zhu, D.C.; Zhao, Z.D.; Liu, S.A.; Chung, S.L.; Li, S.M.; Liu, D.; Dai, J.G.; Wang, L.Q.; Mo, X.X. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone. Lithos 2014, 198–199, 24–37. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, J.L.; Tang, J.X.; Wang, L.Q.; Yao, X.F.; Li, Z.J. Petrogenesis, diagenesis and mineralization ages of Galale Cu-Au deposit, Tibet: Zircon U-Pb age, Hf isotopic composition and molybdenite Re-Os dating. Earth Sci. 2017, 42, 862–880, (In Chinese with English Abstract). [Google Scholar]
- Zheng, Y.Y.; Sun, X.; Gao, S.B.; Wu, S.; Xu, J.; Jiang, J.S.; Chen, X.; Zhao, Z.Y.; Liu, Y. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt. J. Asian Earth Sci. 2015, 103, 23–39. [Google Scholar] [CrossRef]
- Sun, G.; Sinclair, H.D.; Persano, C.; Stuart, F.M.; Hu, X. Late Cretaceous-Eocene exhumation of the northern Lhasa terrane and topographic implications for the Central Tibet. Lithos 2024, 470, 107528. [Google Scholar] [CrossRef]
- Coulon, C.; Maluski, H.; Bollinger, C.; Wang, S. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth Planet. Sci. Lett. 1986, 79, 281–302. [Google Scholar] [CrossRef]
- Li, H.; Wang, M.; Zeng, X.W.; Luo, A.B.; Yu, Y.P.; Zeng, X.J. Slab break-off origin of 105 Ma A-type porphyritic granites in the Asa area of Tibet. Geol. Mag. 2020, 157, 1281–1298. [Google Scholar] [CrossRef]
- Li, J.X.; Qin, K.Z.; Li, G.M.; Richards, J.P.; Zhao, J.X.; Cao, M.J. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet: Petrogenetic and tectonic implications. Lithos 2014, 198–199, 77–91. [Google Scholar] [CrossRef]
- Matte, P. Tectonics of Western Tibet, between the Tarim and the Indus. Earth Planet. Sci. Lett. 1996, 142, 311–330. [Google Scholar] [CrossRef]
- Qin, Z.; Yang, Z.J.; Tang, L.; Wang, M.Z.; She, P.T.; Han, K.; Zhang, D. Geochemical characteristics, zircon U-Pb age and metallogenic significance of Chalong granites in the Gangdise Belt of Tibet. Geol. Bull. China 2019, 38, 231–241, (In Chinese with English Abstract). [Google Scholar]
- Wang, B.D.; Xu, J.F.; Liu, B.M.; Chen, J.L.; Wang, L.Q.; Guo, L.; Wang, D.B.; Zhang, W.P. Geochronology and ore-forming geological background of ~90 Ma porphyry copper deposit in the Lhasa terrane, Tibet Plateau. Acta Geol. Sin. 2013, 87, 71–80, (In Chinese with English Abstract). [Google Scholar]
- Zhao, H.; Zhang, Y.; Xu, Y.; Shao, Y.; Chen, X.; Hao, J.; Zhao, L.; Shen, H.; Wang, X. Machine learning model for deep exploration: Utilizing short wavelength infrared (SWIR) of hydrothermal alteration minerals in the Qianchen gold deposit, Jiaodong Peninsula, Eastern China. Ore Geol. Rev. 2024, 168, 106060. [Google Scholar] [CrossRef]
- Zhu, D.C.; Mo, X.X.; Niu, Y.L.; Zhao, Z.D.; Wang, L.Q.; Liu, Y.S.; Wu, F.Y. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chem. Geol. 2009, 268, 298–312. [Google Scholar] [CrossRef]
- Liu, H.; Li, G.M.; Huang, H.X.; Xiao, W.F.; Yan, G.Q.; Ma, D.F.; Zhang, H.; Zhang, H. Sources of Ore-forming materials in the Shangxu orogenic gold deposit, Northern Xizang (Tibet): Constraints form C, S, and Pb Isotopes. Geol. Rev. 2018, 64, 1285–1301, (In Chinese with English Abstract). [Google Scholar]
- Wang, L.Q.; Wang, B.D.; Li, G.M.; Wang, D.B.; Peng, Z.M. Major progresses of geological survey and research in East Tethys: An overview. Sediment. Geol. Tethyan Geol. 2021, 41, 283–296, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.X.; Yan, G.Q.; Liu, H.; Huang, H.X.; Lai, Y.; Tian, E.Y.; Ouyang, Y. Genesis of Late Cretaceous Qusang’gele granitie in Central Lhasa Block, Tibet: Constraints by geochemistry, zircon U-Pb geochronology, and Sr-Nd-Pb-Hf isotopes. Earth Sci. 2021, 46, 2832–2849, (In Chinese with English Abstract). [Google Scholar]
- Luo, A.B.; Wang, M.; Li, C.; Xie, C.M.; Fan, J.J.; Zhang, T.Y.; Liu, J.H.; Wang, W. Petrogenesis of early Late Cretaceous Asa-intrusive rocks in central Tibet, western China: Post-collisional partial melting of thickened lower crust. Int. J. Earth Sci. 2019, 108, 1979–1999. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, T.; Yang, Z.; Zhang, S.; Wu, H.; Li, H.; Chen, W.; Zhang, J.; Ding, J. Paleomagnetism and U-Pb zircon geochronology of Lower Cretaceous lava flows from the western Lhasa terrane: New constraints on the India-Asia collision process and intracontinental deformation within Asia. J. Geophys. Res. Solid Earth 2014, 119, 7404–7424. [Google Scholar] [CrossRef]
- Zeng, X.W.; Wang, M.; Fan, J.J.; Li, C.; Xie, C.M.; Liu, Y.M.; Zhang, T.Y. Geochemistry and geochronology of gabbros from the Asa Ophiolite, Tibet: Implications for the Early Cretaceous evolution of the Meso-Tethys Ocean. Lithos 2018, 320–321, 192–206. [Google Scholar] [CrossRef]
- Zeng, Y.C.; Xu, J.F.; Huang, F.; Li, M.J.; Chen, Q. Generation of the 105–100 Ma Dagze volcanic rocks in the north Lhasa Terrane by lower crustal melting at different temperature and depth: Implications for tectonic transition. GSA Bull. 2020, 132, 1257–1272. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.Y.; Griffin, W.L.; Meier, M.; Oberli, F.; Von Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Zong, K.Q.; Klemd, R.; Yuan, Y.; He, Z.Y.; Guo, J.L.; Shi, X.L.; Liu, Y.S.; Hu, Z.C.; Zhang, Z.M. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Res. 2017, 290, 32–48. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.L. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Meng, F.Y.; Zhao, Z.D.; Zhu, D.C.; Mo, X.X.; Guan, Q.; Huang, Y.; Dong, G.C.; Zhou, S.; DePaolo, D.J.; Harrison, T.M.; et al. Late Cretaceous magmatism in Mamba area, central Lhasa subterrane: Products of back-arc extension of Neo-Tethyan Ocean? Gondwana Res. 2014, 26, 505–520. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, D.C.; Zhao, Z.D.; Meng, F.Y.; Wang, Q.; Santosh, M.; Wang, L.Q.; Dong, G.C.; Mo, X.X. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Res. 2014, 26, 449–463. [Google Scholar] [CrossRef]
- Qu, X.M.; Wang, R.J.; Xin, H.B.; Jiang, J.H.; Chen, H. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau. Lithos 2012, 146–147, 264–275. [Google Scholar] [CrossRef]
- Xie, L.; Dun, D.; Zhu, L.D.; Ni, M.C.R.; Yang, W.G.; Yao, G.; Li, C.; He, B.; He, Y. Zircon U-Pb geochronology, geochemistry and geological significance of the Zhaduding A-type granites in northern Gangdise, Tibet. Geol. China 2015, 42, 1214–1227, (In Chinese with English Abstract). [Google Scholar]
- Hanchar, J.M.; Watson, E.B. Zircon saturation thermometry. Rev. Mineral. Geochem. 2003, 53, 89–112. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Teixeira, L.F.; Laurent, O.; Troch, J.; Siddoway, C.S.; Tavazzani, L.; Deering, C.; Bachmann, O. Tracking quartz and zircon provenance in sedimentary rocks using Ti distributions: Unlocking the volcanic-plutonic connection in old igneous systems. Earth Planet. Sci. Lett. 2024, 643, 118906. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 2005, 308, 841–844. [Google Scholar] [CrossRef]
- Miller, C.; Schuster, R.; Klötzli, U.; Frank, W.; Purtscheller, F. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J. Petrol. 1999, 40, 1399–1424. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Magmas and Magmatic Rocks; Longman: London, UK, 1985; pp. 1–266. [Google Scholar]
- Peccerillo, R.; Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. In Developments in Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Sun, S.S.; MchDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society: London, UK, 1989; Volume 42, pp. 303–345. [Google Scholar]
- Dai, Z.W.; Huang, H.X.; Li, G.M.; Huizenga, J.M.; Santosh, M.; Cao, H.W.; Huang, C.M.; Ding, J. Formation of Late Cretaceous High-Mg granitoid porphyry in central Lhasa, Tibet: Implications for crustal thickening prior to India-Asia collision. Geol. J. 2020, 55, 6696–6717. [Google Scholar] [CrossRef]
- Liu, H.; Li, G.M.; Li, W.C.; Zhang, J.H.; Li, Y.G.; Zhang, Z.L.; Guang, H.X.; Ouyang, Y.; Zhang, T.J. Epithermal mineralization at Budongla gold deposit in Zhongba county of Tibet: Evidence from fluid inclusions and H-O isotopes. Miner. Depos. 2021, 40, 311–328, (In Chinese with English Abstract). [Google Scholar]
- Ouyang, Y.; Yang, W.N.; Huang, H.X.; Liu, H.; Zhang, J.L.; Zhang, J.H. Metallogenic dynamics background of Ga’erqiong Cu-Au deposit in Tibet, China. Earth Sci. Res. J. 2017, 21, 59–65. [Google Scholar] [CrossRef]
- Yu, H.X.; Chen, J.L.; Xu, J.F.; Wang, B.D.; Wu, J.B.; Liang, H.Y. Geochemistry and origin of Late Cretaceous (~90 Ma) ore-bearing porphyry of Balazha in mid-northern Lhasa terrane, Tibet. Acta Petrol. Sin. 2011, 27, 2011–2022, (In Chinese with English Abstract). [Google Scholar]
- Zhu, T.X.; Feng, X.T.; Wang, X.F.; Zhang, Y.J.; An, X.Y. Summary of the Late Triassic tectonic paleogeography in the Qinghai-Tibetan Plateau, China. Sediment. Geol. Tethyan Geol. 2020, 40, 59–71, (In Chinese with English Abstract). [Google Scholar]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Niu, Y.; O’Hara, M.J. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle. Lithos 2009, 112, 1–17. [Google Scholar] [CrossRef]
- Roy, A.; Sarkar, A.; Jeyakumar, S.; Aggrawal, S.K.; Ebihara, M. Mid-Proterozoic plume-related thermal event in Eastern Indian craton: Evidence from trace elements, REE geochemistry and Sr-Nd isotope systematics of basic-ultrabasic intrusives from Dalma Volcanic Belt. Gondwana Res. 2002, 5, 133–146. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Et Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.S.; Zhou, X.M. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Amelin, Y.; Lee, D.C.; Halliday, A.N.; Pidgeon, R.T. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 1999, 399, 252–255. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220, (In Chinese with English Abstract). [Google Scholar]
- DePaolo, D.J.; Wasserburg, G.J. Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 1976, 3, 249–252. [Google Scholar] [CrossRef]
- Deng, J.F.; Luo, Z.H.; Su, S.G. Petrogenesis, Tectonic Environment and Mineralization; Geological Publishing House: Beijing, China, 2009; pp. 1–381. (In Chinese) [Google Scholar]
- Eby, G.N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 1990, 26, 115–134. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Pan, G.Q.; Li, C.D.; Jin, W.J. Sources of granites: Some crucial questions on granite study (4). Acta Petrol. Sin. 2008, 24, 1193–1204, (In Chinese with English Abstract). [Google Scholar]
- Schiller, D.; Finger, F. Application of Ti-in-zircon thermometry to granite studies: Problems and possible solutions. Contrib. Mineral. Petrol. 2019, 174, 51. [Google Scholar] [CrossRef]
- Dai, J.G.; Wang, C.S.; Zhu, D.C.; Li, Y.L.; Zhong, H.T.; Ge, Y.K. Multi-stage volcanic activities and geodynamic evolution of the Lhasa terrane during the Cretaceous: Insights from the Xigaze forearc basin. Lithos 2015, 218–219, 127–140. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Wu, K.; Luo, J.C.; Zhang, L.P.; Sun, W.D.; Xia, X.P. An A1-type granite that borders A2-type: Insights from the geochemical characteristics of the Zongyang A-type granite in the Lower Yangtze River Belt, China. Int. Geol. Rev. 2020, 62, 2203–2220. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.K.; Huang, H.X.; Li, G.M.; Lü, M.H.; Yan, G.Q.; Huang, Y.; Xie, H.; Lan, S.S. Sources of ore-forming materials of Luerma porphyry copper (gold) deposit, western Gangdise. Miner. Depos. 2019, 38, 631–643, (In Chinese with English Abstract). [Google Scholar]
- Liu, H.; Zhang, L.K.; Huang, H.X.; Li, G.M.; Lü, M.H.; Yan, G.Q.; Huang, Y.; Lan, S.S.; Xie, H. Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper (Gold) Deposit from Western Gangdise. Earth Sci. 2019, 44, 1935–1956, (In Chinese with English Abstract). [Google Scholar]
- Wu, F.Y.; Jahn, B.M.; Wilder, S.A.; Lo, C.H.; Yui, T.F.; Lin, Q.; Ge, W.C.; Sun, D.Y. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos 2003, 66, 241–273. [Google Scholar] [CrossRef]
- Xie, C.M.; Li, C.; Li, G.M.; Zhang, L.K.; Wang, B.; Dong, Y.C.; Hao, Y.J. The research progress and problem of the Sumdo Paleo-Tethys Ocean, Tibet. Sediment. Geol. Tethyan Geol. 2020, 40, 1–13, (In Chinese with English Abstract). [Google Scholar]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wang, L.Q.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Martin, H. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos 1999, 46, 411–429. [Google Scholar] [CrossRef]
- Sun, G.C.; Gao, P.; Zhao, Z.F. Post-collisional reworking of subducted continental crust: Insights from late Paleozoic granites in the North Qaidam orogen, northeastern Tibet. Lithos 2022, 432, 106921. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, H.; Luo, B.; Gao, Z.; Guo, L.; Xu, W. Generation of peraluminous granitic magma in a post-collisional setting: A case study from the eastern Qilian orogen, NE Tibetan Plateau. Gondwana Res. 2016, 36, 28–45. [Google Scholar] [CrossRef]
- Zhang, J.J.; Sun, S.J.; Zhang, L.P.; Deng, J.H.; Li, S.; Sun, W.D. Origin of transitional IA-type syenite and its relationship to A-type intrusions in the Luzong Basin, the Lower Yangtze River Belt: Insights from geochemistry. Chem. Geol. 2023, 626, 121458. [Google Scholar] [CrossRef]
- Chen, J.; Fu, L.; Wei, J.; Selby, D.; Zhang, D.; Zhou, H.; Zhao, X.; Liu, Y. Proto-Tethys magmatic evolution along northern Gondwana: Insights from Late Silurian—Middle Devonian A-type magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China. Lithos 2020, 356, 105304. [Google Scholar] [CrossRef]
- Wang, E.; Zhai, X.; Chen, W.; Wu, L.; Song, G.; Wang, Y.; Guo, Z.; Zhao, J.; Wang, J. Late devonian a-type granites from the beishan, southern central Asia Orogenic Belt: Implications for closure of the Paleo-Asia Ocean. Minerals 2023, 13, 565. [Google Scholar] [CrossRef]
- Whalen, J.B.; Hildebrand, R.S. Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos 2019, 348, 105179. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Boztuğ, D.; Harlavan, Y.; Arehart, G.; Satir, M.; Avci, N. K-Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Divriği-Sivas region, eastern-central Anatolia, Turkey. Lithos 2007, 97, 193–218. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Huppert, H.E.; Sparks, R.S.J. The generation of granitic magmas by intrusion of basalt into continental crust. J. Petrol. 1988, 29, 599–624. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Chung, S.L.; Wilde, S.A.; Chu, M.F. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos 2006, 89, 89–106. [Google Scholar] [CrossRef]
- Skjerlie, K.P.; Johnston, A.D. Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites. Geology 1992, 20, 263–266. [Google Scholar] [CrossRef]
- Wilson, M. Igneous Petrogenesis; Springer: Dordrecht, The Netherlands, 1989; pp. 1–446. [Google Scholar]
- Wu, F.Y.; Sun, D.Y.; Li, H.M.; Jahn, B.M.; Wilde, S. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem. Geol. 2002, 187, 143–173. [Google Scholar] [CrossRef]
- Wu, H.; Qiangba, Z.; Li, C.; Wang, Q.; Gesang, W.; Ciren, O.; Basang, D. Geochronology and geochemistry of Early Cretaceous granitic rocks in the Dongqiao Area, Central Tibet: Implications for magmatic origin and geological evolution. J. Geol. 2018, 126, 249–260. [Google Scholar] [CrossRef]
- Foland, K.A.; Allen, J.C. Magma sources for Mesozoic anorogenic granites of the White Mountain magma series, New England, USA. Contrib. Mineral. Petrol. 1991, 109, 195–211. [Google Scholar] [CrossRef]
- Sparks, R.S.J.; Marshall, L.A. Thermal and mechanical constraints on mixing between mafic and silicic magmas. J. Volcanol. Geotherm. Res. 1986, 29, 99–124. [Google Scholar] [CrossRef]
- Turner, S.; Sandiford, M.; Foden, J. Some geodynamic and compositional constraints on “postorogenic” magmatism. Geology 1992, 20, 931–934. [Google Scholar] [CrossRef]
- Kerr, A.; Fryer, B.J. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chem. Geol. 1993, 104, 39–60. [Google Scholar] [CrossRef]
- Creaser, R.A.; Price, R.C.; Wormald, R.J. A-type granites revisited: Assessment of a residual-source model. Geology 1991, 19, 163–166. [Google Scholar] [CrossRef]
- Dooley, D.F.; Patiño Douce, A.E. Fluid-absent melting of F-rich phlogopite+rutile+quartz. Am. Mineral. 1996, 81, 202–212. [Google Scholar] [CrossRef]
- Wilson, M. Magmatism and the geodynamics of basin formation. Sediment. Geol. 1993, 86, 5–29. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Chung, S.L.; Liu, C.Z. The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet. Lithos 2014, 210, 168–180. [Google Scholar] [CrossRef]
- Zhu, B.Q. Theories and Application of Isotopic System in Geoscience: Crustal and Mantle Evolution in China Continent; Science Press: Beijing, China, 1998; pp. 1–330. (In Chinese) [Google Scholar]
- Shellnutt, J.G.; Zhou, M.F. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume. Chem. Geol. 2007, 243, 286–316. [Google Scholar] [CrossRef]
- Barth, M.G.; Mcdonough, W.F.; Rudnick, R.L. Tracking the budget of nb and ta in the continental crust. Chem. Geol. 2000, 165, 197–213. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Gao, Y.F.; Qu, X.M.; Rui, Z.Y.; Mo, X.X. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet. Sci. Lett. 2004, 220, 139–155. [Google Scholar] [CrossRef]
- Li, S.M.; Wang, Q.; Zhu, D.C.; Stern, R.J.; Cawood, P.A.; Sui, Q.L.; Zhao, Z. One or two Early Cretaceous arc systems in the Lhasa Terrane, southern Tibet. J. Geophys. Res. Solid Earth 2018, 123, 3391–3413. [Google Scholar] [CrossRef]
- Tang, W.L.; Huang, F.; Xu, J.F.; Zeng, Y.C.; Liu, X.J. Cretaceous magmatism in the northern Lhasa Terrane: Implications for the tectonic evolution and crustal growth tempos of central Tibet. Geol. Soc. Am. Bull. 2024, 136, 3440–3456. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, F.; Xu, J.; Zeng, Y.; Hu, P.; Yu, H.; Tian, Y.; Yang, Z.; Yang, X. Petrogenesis and geodynamic mechanisms of the Late Cretaceous magmatic ‘flare-up’ in the southern Lhasa Terrane, Tibet. Lithos 2022, 424, 106766. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.Z.; Xu, Y.; Ji, W.B.; Wang, J.M.; Wu, F.Y.; Liu, T.; Zhang, Z.Y.; Zhang, W.Q. Subduction re-initiation at dying ridge of Neo-Tethys: Insights from mafic and metamafic rocks in Lhaze ophiolitic mélange, Yarlung-Tsangbo Suture Zone. Earth Planet. Sci. Lett. 2019, 523, 115707. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, L.; Xiao, Z.J. Characteristics and tectonic evolution of Bangong Lake serpentinite mélange belt in the western Qinghai-Tibet Plateau. J. East China Inst. Technol. Nat. Sci. Ed. 2007, 30, 107–112, (In Chinese with English Abstract). [Google Scholar]
- Hu, P.Y.; Zhai, Q.G.; Jahn, B.M.; Wang, J.; Li, C.; Chung, S.L.; Lee, H.Y.; Tang, S.H. Late Early Cretaceous magmatic rocks (118–113 Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination. Gondwana Res. 2017, 44, 116–138. [Google Scholar] [CrossRef]
- Hu, X.; Ma, A.; Xue, W.; Garzanti, E.; Cao, Y.; Li, S.-M.; Sun, G.; Lai, W. Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Sci. Rev. 2022, 229, 104031. [Google Scholar] [CrossRef]
- Tang, Y.; Zhai, Q.G.; Hu, P.Y.; Chung, S.L.; Xiao, X.C.; Wang, H.T.; Zhu, Z.C.; Wang, W.; Wu, H.; Lee, H.Y. Southward subduction of the Bangong-Nujiang Tethys Ocean: Insights from ca. 161–129 Ma arc volcanic rocks in the north of Lhasa terrane, Tibet. Int. J. Earth Sci. 2020, 109, 631–647. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Zhai, Q.G.; Xie, C.M.; Hu, P.Y.; Li, C.; Liu, J.H.; Luo, A.B. Transition from oceanic subduction to continental collision recorded in the Bangong-Nujiang suture zone: Insights from Early Cretaceous magmatic rocks in the north-central Tibet. Gondwana Res. 2020, 78, 77–91. [Google Scholar] [CrossRef]
- Chen, S.S.; Shi, R.D.; Gong, X.H.; Liu, D.L.; Huang, Q.S.; Yi, G.D.; Wu, K.; Zou, H.B. A syn-collisional model for Early Cretaceous magmatism in the northern and central Lhasa subterranes. Gondwana Res. 2017, 41, 93–109. [Google Scholar] [CrossRef]
- Sun, M.; Tang, J.-X.; Chen, W.; Ma, X.-D.; Qu, X.-M.; Song, Y.; Li, X.-Y.; Ding, J.-S. Process of lithospheric delamination beneath the Lhasa—Qiangtang collision orogen: Constraints from the geochronology and geochemistry of Late Cretaceous volcanic rocks in the Lhasa terrane, central Tibet. Lithos 2020, 356, 105219. [Google Scholar] [CrossRef]
- Zhang, K.J.; Xia, B.D.; Wang, G.M.; Li, Y.T.; Ye, H.F. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geol. Soc. Am. Bull. 2004, 116, 1202–1222. [Google Scholar] [CrossRef]
- Zhang, K.J.; Zhang, Y.X.; Tang, X.C.; Xia, B. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision. Earth-Sci. Rev. 2012, 114, 236–249. [Google Scholar] [CrossRef]
- Huang, H.X.; Liu, H.; Li, G.M.; Zhang, L.K.; Cao, H.W.; Zhou, Q.; Wang, X.X.; Yan, G.Q. Zircon U-Pb, molybdenite Re-Os and quartz vein Rb-Sr geochronology of the Luobuzhen Au-Ag and Hongshan Cu deposits, Tibet, China: Implications for the oligocene-miocene porphyry—Epithermal metallogenic system. Minerals 2019, 9, 476. [Google Scholar] [CrossRef]
- Wen, D.R.; Chung, S.L.; Song, B.; Iizuka, Y.; Yang, H.J.; Ji, J.Q.; Liu, D.Y.; Gallet, S. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos 2008, 105, 1–11. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Et Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Kapp, P.; Yin, A.; Harrison, T.M.; Ding, L. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geol. Soc. Am. Bull. 2005, 117, 865–878. [Google Scholar] [CrossRef]
- Xu, M.J.; Li, C.; Zhang, X.Z.; Wu, Y.W. Nature and evolution of the Neo-Tethys in central Tibet: Synthesis of ophiolitic petrology, geochemistry, and geochronology. Int. Geol. Rev. 2014, 56, 1072–1096. [Google Scholar] [CrossRef]
- Zhu, D.C.; Pan, G.T.; Wang, L.Q.; Mo, X.X.; Zhao, Z.D.; Zhou, C.Y.; Liao, Z.L.; Dong, G.L.; Yuan, S.H. Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdise belt, Tibet, China, with a discussion of geodynamic setting-related issues. Geol. Bull. China 2008, 27, 1535–1550, (In Chinese with English Abstract). [Google Scholar]
- Gao, S.B.; Zheng, Y.Y.; Wang, J.S.; Zhang, Z.; Yang, C. The geochronology and geochemistry of intrusive rocks in Bange area: Constraints on the evolution time of the Bangong Lake-Nujiang ocean basin. Acta Petrol. Sin. 2011, 27, 1973–1982, (In Chinese with English Abstract). [Google Scholar]
- Geng, Q.R.; Li, W.C.; Wang, L.Q.; Zeng, X.T.; Peng, Z.M.; Zhang, X.F.; Zhang, Z.; Cong, F.; Guan, J.L. Paleozoic tectonic framework and evolution of the central and western Tethys. Sediment. Geol. Tethyan Geol. 2021, 41, 297–315, (In Chinese with English Abstract). [Google Scholar]
- Huang, H.X.; Dai, Z.W.; Liu, H.; Li, G.M.; Huizenga, J.M.; Zhang, L.K.; Huang, Y.; Cao, H.W.; Fu, J.G. Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Mugagangri monzogranite in the southern Qiangtang of Tibet, western China: Implications for the evolution of the Bangong Co-Nujiang Meso-Tethyan Ocean. Geol. J. 2021, 56, 3170–3186. [Google Scholar] [CrossRef]
- Huang, H.X.; Luosang, J.C.; Dai, Z.W.; Liu, H.; Fu, J.G.; Li, G.M.; Cao, H.W.; Zhou, Q. Hydrothermal zircon geochronology in the Shangxu Gold Deposit and its Implication for the Early Cretaceous orogenic gold mineralization in the Middle Bangonghu-Nujiang suture zone. Acta Geol. Sin. Engl. Ed. 2021, 95, 1249–1259. [Google Scholar] [CrossRef]
- Volkmer, J.E.; Kapp, P.; Guynn, J.H.; Lai, Q.Z. Cretaceous-Tertiary structural evolution of the north central Lhasa Terrane, Tibet. Tectonics 2007, 26, TC6007. [Google Scholar] [CrossRef]
- Wang, B.D.; Wang, L.Q.; Chung, S.L.; Chen, J.L.; Yin, F.G.; Liu, H.; Li, X.B.; Chen, L.K. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos 2016, 245, 18–33. [Google Scholar] [CrossRef]
- Song, Y.; Zeng, Q.G.; Liu, H.Y.; Liu, Z.B.; Li, H.F.; Dexi, Y.Z. An innovative perspective for the evolution of Bangong-Nujiang Ocean: Also discussing the Paleo-and Neo-Tethys conversion. Acta Petrol. Sin. 2019, 35, 625–641, (In Chinese with English Abstract). [Google Scholar]
- Zeng, Y.C.; Xu, J.F.; Chen, J.L.; Wang, B.D.; Huang, F.; Xia, X.P.; Li, M.J. Early Cretaceous (∼138–134 Ma) forearc ophiolite and tectonomagmatic patterns in Central Tibet: Subduction termination and re-initiation of Meso-Tethys Ocean caused by collision of an Oceanic Plateau at the continental margin? Tectonics 2021, 40, e2020TC006423. [Google Scholar] [CrossRef]
- Wu, H.; Li, C.; Hu, P.Y.; Li, X.K. Early Cretaceous (100–105 Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for the Bangong-Nujiang Ocean subduction and slab break-off. Int. Geol. Rev. 2015, 57, 1172–1188. [Google Scholar] [CrossRef]
- Wu, H.; Li, C.; Xu, M.J.; Li, X.K. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean. J. Asian Earth Sci. 2015, 97, 51–66. [Google Scholar] [CrossRef]
Sample | Pb | Th | U | Th/U | Isotope Ratio | Age (Ma) | Concordance | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
×10−6 | ×10−6 | ×10−6 | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 208Pb/232Th | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | % | ||
ZQ05-1 | 22.25 | 252.60 | 387.71 | 0.65 | 0.0527 | 0.0027 | 0.1182 | 0.0057 | 0.0164 | 0.0002 | 0.0002 | 1.6119 | 113.42 | 5.16 | 104.69 | 2.36 | 91% |
ZQ05-10 | 30.05 | 376.02 | 523.38 | 0.72 | 0.0482 | 0.0020 | 0.1049 | 0.0042 | 0.0158 | 0.0002 | 0.0001 | 1.4755 | 101.25 | 3.84 | 101.21 | 1.84 | 99% |
ZQ05-11 | 31.58 | 386.60 | 515.62 | 0.75 | 0.0485 | 0.0022 | 0.1084 | 0.0048 | 0.0161 | 0.0002 | 0.0001 | 1.3910 | 104.53 | 4.41 | 103.25 | 2.01 | 98% |
ZQ05-12 | 52.58 | 610.22 | 857.81 | 0.71 | 0.0507 | 0.0017 | 0.1124 | 0.0036 | 0.0162 | 0.0002 | 0.0001 | 1.4659 | 108.16 | 3.29 | 103.33 | 1.83 | 95% |
ZQ05-13 | 50.99 | 539.06 | 1140.79 | 0.47 | 0.0487 | 0.0017 | 0.1124 | 0.0039 | 0.0166 | 0.0002 | 0.0001 | 2.2228 | 108.12 | 3.57 | 106.43 | 2.26 | 98% |
ZQ05-14 | 48.95 | 540.05 | 951.95 | 0.57 | 0.0485 | 0.0021 | 0.1047 | 0.0041 | 0.0157 | 0.0002 | 0.0001 | 1.8378 | 101.06 | 3.81 | 100.67 | 1.76 | 99% |
ZQ05-16 | 17.94 | 216.27 | 313.64 | 0.69 | 0.0534 | 0.0028 | 0.1173 | 0.0061 | 0.0162 | 0.0002 | 0.0002 | 1.5052 | 112.64 | 5.52 | 103.63 | 2.62 | 91% |
ZQ05-17 | 48.93 | 633.05 | 629.36 | 1.01 | 0.0526 | 0.0020 | 0.1159 | 0.0044 | 0.0160 | 0.0002 | 0.0001 | 1.0351 | 111.35 | 4.05 | 102.09 | 1.91 | 91% |
ZQ05-2 | 28.93 | 268.25 | 702.81 | 0.38 | 0.0521 | 0.0019 | 0.1175 | 0.0042 | 0.0164 | 0.0002 | 0.0002 | 2.7536 | 112.78 | 3.82 | 105.17 | 1.74 | 93% |
ZQ05-21 | 22.87 | 235.89 | 431.89 | 0.55 | 0.0495 | 0.0023 | 0.1140 | 0.0054 | 0.0167 | 0.0002 | 0.0002 | 1.9441 | 109.61 | 4.88 | 106.70 | 2.13 | 97% |
ZQ05-22 | 35.14 | 385.01 | 594.21 | 0.65 | 0.0480 | 0.0021 | 0.1088 | 0.0046 | 0.0165 | 0.0001 | 0.0001 | 1.6331 | 104.91 | 4.21 | 105.38 | 1.70 | 99% |
ZQ05-23 | 17.84 | 200.74 | 377.43 | 0.53 | 0.0482 | 0.0026 | 0.1101 | 0.0055 | 0.0169 | 0.0002 | 0.0002 | 1.9355 | 106.05 | 5.05 | 107.83 | 2.49 | 98% |
ZQ05-3 | 27.80 | 299.80 | 514.01 | 0.58 | 0.0517 | 0.0020 | 0.1164 | 0.0044 | 0.0164 | 0.0002 | 0.0001 | 1.7903 | 111.78 | 4.01 | 105.09 | 1.99 | 93% |
ZQ05-4 | 23.75 | 280.40 | 403.35 | 0.70 | 0.0486 | 0.0025 | 0.1100 | 0.0054 | 0.0165 | 0.0002 | 0.0002 | 1.5069 | 105.95 | 4.91 | 105.40 | 2.15 | 99% |
ZQ05-5 | 22.25 | 231.69 | 433.52 | 0.53 | 0.0483 | 0.0025 | 0.1092 | 0.0055 | 0.0165 | 0.0002 | 0.0002 | 1.9420 | 105.24 | 5.05 | 105.47 | 2.19 | 99% |
ZQ05-6 | 32.63 | 390.71 | 528.91 | 0.74 | 0.0507 | 0.0020 | 0.1122 | 0.0041 | 0.0161 | 0.0002 | 0.0001 | 1.4169 | 108.01 | 3.78 | 103.12 | 1.85 | 95% |
ZQ05-7 | 19.86 | 220.72 | 337.58 | 0.65 | 0.0492 | 0.0033 | 0.1077 | 0.0063 | 0.0162 | 0.0002 | 0.0002 | 1.6737 | 103.89 | 5.78 | 103.71 | 2.53 | 99% |
ZQ05-8 | 54.77 | 623.64 | 749.34 | 0.83 | 0.0491 | 0.0020 | 0.1109 | 0.0042 | 0.0164 | 0.0002 | 0.0001 | 1.2927 | 106.79 | 3.88 | 105.18 | 2.07 | 98% |
Sample | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Y | Ti | Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZQ05-1 | 0.032 | 2.46 | 0.013 | 0.13 | 0.52 | 0.28 | 2.30 | 0.86 | 11.8 | 4.76 | 25.9 | 6.59 | 74.3 | 13.8 | 147 | 8.37 | 5776 |
ZQ05-10 | 0.62 | 14.9 | 0.17 | 1.76 | 2.87 | 0.27 | 14.2 | 5.90 | 82.7 | 33.6 | 170 | 39.7 | 422 | 76.0 | 1078 | 3.03 | 10,455 |
ZQ05-11 | 0.0000 | 15.8 | 0.10 | 1.37 | 2.54 | 0.39 | 17.4 | 6.82 | 93.9 | 38.2 | 191 | 44.2 | 465 | 83.2 | 1208 | 1.47 | 10,008 |
ZQ05-12 | 0.12 | 15.6 | 0.15 | 2.79 | 5.60 | 0.75 | 34.1 | 12.8 | 164 | 63.0 | 291 | 62.7 | 635 | 108 | 1911 | 3.65 | 10,100 |
ZQ05-13 | 13.8 | 57.8 | 5.48 | 26.7 | 10.0 | 0.69 | 28.4 | 9.66 | 121 | 47.8 | 229 | 51.4 | 532 | 93.8 | 1498 | 3.47 | 10,364 |
ZQ05-14 | 0.69 | 18.6 | 0.27 | 2.26 | 3.09 | 0.25 | 22.9 | 8.94 | 126 | 52.6 | 260 | 60.8 | 660 | 115 | 1635 | 2.93 | 11,175 |
ZQ05-16 | 0.064 | 9.09 | 0.12 | 1.37 | 3.54 | 0.21 | 22.1 | 7.90 | 105 | 40.1 | 185 | 40.7 | 436 | 78.2 | 1189 | 4.00 | 11,555 |
ZQ05-17 | 0.080 | 2.23 | 0.0000 | 0.17 | 0.57 | 0.27 | 2.08 | 0.75 | 11.1 | 4.35 | 24.1 | 6.10 | 66.3 | 12.7 | 136 | 9.89 | 5711 |
ZQ05-2 | 2.64 | 19.5 | 0.87 | 4.87 | 3.65 | 0.58 | 19.0 | 6.92 | 95.4 | 38.0 | 187 | 42.9 | 462 | 82.7 | 1214 | 6.59 | 9092 |
ZQ05-21 | 0.18 | 15.7 | 0.23 | 1.82 | 3.42 | 0.24 | 21.9 | 9.27 | 131 | 53.1 | 259 | 60.3 | 638 | 113 | 1658 | 4.35 | 10,850 |
ZQ05-22 | 5.52 | 25.6 | 1.53 | 7.94 | 3.16 | 0.43 | 15.2 | 5.79 | 75.6 | 30.8 | 152 | 35.0 | 373 | 67.1 | 981 | 3.89 | 9991 |
ZQ05-23 | 0.89 | 17.3 | 0.29 | 2.34 | 2.75 | 0.43 | 20.5 | 7.88 | 103 | 39.8 | 191 | 41.6 | 425 | 73.4 | 1222 | 5.45 | 9195 |
ZQ05-3 | 11.7 | 42.2 | 3.70 | 16.4 | 5.11 | 0.43 | 14.1 | 5.34 | 73.8 | 31.8 | 171 | 43.3 | 502 | 94.4 | 1072 | 0.000 | 10,177 |
ZQ05-4 | 0.26 | 15.1 | 0.11 | 1.22 | 2.17 | 0.48 | 16.5 | 6.39 | 91.4 | 37.3 | 189 | 44.6 | 484 | 89.6 | 1200 | 1.25 | 9694 |
ZQ05-5 | 0.034 | 11.0 | 0.16 | 2.53 | 5.10 | 0.87 | 28.4 | 10.1 | 130 | 51.0 | 241 | 53.7 | 565 | 99.3 | 1589 | 7.27 | 9453 |
ZQ05-6 | 0.066 | 12.6 | 0.053 | 1.11 | 3.05 | 0.28 | 17.8 | 7.13 | 99.8 | 41.2 | 205 | 47.1 | 506 | 92.3 | 1297 | 6.02 | 9516 |
ZQ05-7 | 2.20 | 22.4 | 0.80 | 5.35 | 5.08 | 0.57 | 31.1 | 11.5 | 149 | 57.7 | 261 | 55.4 | 545 | 92.0 | 1701 | 4.70 | 8986 |
ZQ05-8 | 0.25 | 8.59 | 0.13 | 1.89 | 3.78 | 0.33 | 24.0 | 8.93 | 114 | 43.9 | 196 | 42.9 | 419 | 72.7 | 1298 | 6.37 | 8529 |
Sample | Age (Ma) | 176Hf/177Hf | 176Lu/177Hf | 176Yb/177Hf | εHf(0) | εHf(t) | TDM1 | TDM2 | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|
ZQ05-01 | 104.7 | 0.2828 | 0.0015 | 0.0373 | 0.9 | 3.0 | 654.3 | 863.2 | −0.96 |
ZQ05-02 | 105.2 | 0.2828 | 0.0012 | 0.0275 | 1.5 | 3.6 | 623.4 | 826.3 | −0.96 |
ZQ05-03 | 105.1 | 0.2827 | 0.0013 | 0.0315 | −1.7 | 0.4 | 754.5 | 1004.6 | −0.96 |
ZQ05-04 | 105.4 | 0.2828 | 0.0012 | 0.0296 | −0.4 | 1.8 | 698.8 | 930.9 | −0.96 |
ZQ05-05 | 105.5 | 0.2828 | 0.0014 | 0.0340 | 0.4 | 2.5 | 670.1 | 886.7 | −0.96 |
ZQ05-06 | 103.1 | 0.2827 | 0.0015 | 0.0373 | −1.6 | 0.6 | 752.7 | 997.9 | −0.95 |
ZQ05-07 | 103.7 | 0.2828 | 0.0018 | 0.0432 | −0.4 | 1.7 | 710.8 | 934.3 | −0.95 |
ZQ05-08 | 105.2 | 0.2828 | 0.0015 | 0.0362 | −0.3 | 1.8 | 701.8 | 928.3 | −0.96 |
ZQ05-10 | 101.2 | 0.2828 | 0.0017 | 0.0441 | −0.2 | 1.9 | 703.0 | 924.1 | −0.95 |
ZQ05-11 | 103.2 | 0.2827 | 0.0018 | 0.0433 | −1.0 | 1.1 | 733.8 | 965.8 | −0.95 |
ZQ05-12 | 103.3 | 0.2828 | 0.0017 | 0.0415 | −0.7 | 1.4 | 719.6 | 948.4 | −0.95 |
Sample | t(Ma) | 87Rb/86Sr | 87Sr/86Sr | (87Sr/86Sr)t | 147Sm/144Nd | 143Nd/144Nd | fSm/Nd | εNd(t) | (143Nd/144Nd)t | 206Pb/204Pb | (206Pb/204Pb)t | 207Pb/204Pb | (207Pb/204Pb)t | 208Pb/204Pb | (208Pb/204Pb)t | △β | △γ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZQ03 | 104 | 62.1532 | 0.8182 | 0.7055 | 0.1528 | 0.512411 | −0.22 | −3.84 | 0.5123 | 18.868 | 18.777 | 15.723 | 15.719 | 39.370 | 39.110 | 25.4 | 43.8 |
ZQ04 | 104 | 17.7325 | 0.7474 | 0.7064 | 0.1350 | 0.512155 | −0.31 | −8.60 | 0.5121 | 18.779 | 18.627 | 15.714 | 15.707 | 39.396 | 39.098 | 24.6 | 43.4 |
ZQ05 | 104 | 76.1255 | 0.8179 | 0.7043 | 0.1362 | 0.512445 | −0.31 | −2.95 | 0.5124 | 18.947 | 18.788 | 15.720 | 15.712 | 39.514 | 39.038 | 24.9 | 41.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, A.; Liu, H.; Fan, W.; Zhou, Q.; Wang, H.; Li, K. Petrogenesis, Geochemistry, and Geological Significance of the Kongco Granitic Porphyry Dykes in the Northern Part of the Central Lhasa Microblock, Tibet. Minerals 2025, 15, 283. https://doi.org/10.3390/min15030283
Xiang A, Liu H, Fan W, Zhou Q, Wang H, Li K. Petrogenesis, Geochemistry, and Geological Significance of the Kongco Granitic Porphyry Dykes in the Northern Part of the Central Lhasa Microblock, Tibet. Minerals. 2025; 15(3):283. https://doi.org/10.3390/min15030283
Chicago/Turabian StyleXiang, Anping, Hong Liu, Wenxin Fan, Qing Zhou, Hong Wang, and Kaizhi Li. 2025. "Petrogenesis, Geochemistry, and Geological Significance of the Kongco Granitic Porphyry Dykes in the Northern Part of the Central Lhasa Microblock, Tibet" Minerals 15, no. 3: 283. https://doi.org/10.3390/min15030283
APA StyleXiang, A., Liu, H., Fan, W., Zhou, Q., Wang, H., & Li, K. (2025). Petrogenesis, Geochemistry, and Geological Significance of the Kongco Granitic Porphyry Dykes in the Northern Part of the Central Lhasa Microblock, Tibet. Minerals, 15(3), 283. https://doi.org/10.3390/min15030283