Clay Minerals as Enzyme Carriers for Pollutant Removal from Wastewater: A Comprehensive Review
Abstract
1. Introduction
2. Clay Minerals: Classification, Structure, Properties, and Functionalization
2.1. Classification of Clay Minerals
2.2. Structure of Clay Minerals
2.3. Properties of Clay Minerals
2.4. Functionalization of Clay Minerals
Method | Principle | Aims | Applications | References |
---|---|---|---|---|
Chemical Activation | Treatment with acids (HCl, H2SO4), bases (NaOH, NH4OH), or surfactants (quaternary ammonium salts) |
|
| [37,44,45,46,47,48,49,50] |
Thermal Activation | Heating clays (generally at 300–800 °C) |
| Improved adsorption of organic pollutants | [39] |
Intercalation | Insertion of polar solvents (DMSO, urea) or polymers into interlayers |
| Enhanced dye and heavy metals adsorption | [40,51,52,53] |
Pillaring | Insertion of poly(hydroxo) metal cations (Fe3+, Al3+) to create stable pillars |
| Acts as adsorbents, thermal insulators and membranes | [41,54,55,56,57,58] |
Metal Oxide Coating | Deposition of TiO2, ZnO, and Fe2O3, on clay surfaces |
| Significant azo dyes degradation | [42,57] |
Grafting | Covalent bonding of silanes or polymers (-OH, NH2 groups) to clay surfaces |
| Versatile applications in adsorption, catalysis and drug delivery | [43,58,62] |
Enzyme Immobilization | Clay as a support for enzymes (laccase, peroxidase) |
| Removal of diverse wastewater pollutants (dyes, heavy metals and pharmaceuticals) | [63,64] |
3. Enzyme Immobilization on Clay Minerals
3.1. Methods of Enzyme Immobilization on Clay Minerals
3.1.1. Physical Adsorption (Non-Covalent Immobilization)
3.1.2. Covalent Bonding Immobilization
3.1.3. Entrapment in Clay Gel Matrices
3.1.4. Crosslinking with Clay Supports
3.1.5. Intercalation in Layered Clays
3.2. Comparative Analysis of Immobilization Techniques
4. Applications of Enzymes Immobilized on Clay Minerals for Pollutant Removal from Wastewater
4.1. Removal of Dyes
4.1.1. Degradation of Pharmaceuticals and Personal Care Products (PPCPs)
4.1.2. Heavy Metal Detoxification
Dye | Enzyme/Support | Immobilization Method | Removal Effciency (%) | Initial Concentration (mg/L) | Enzyme Units/Loading | pH | Temperature (°C) | Mediator | Reuse Cycles/Leaching | References |
---|---|---|---|---|---|---|---|---|---|---|
Azo | Laccase/Bentonite | Adsorption | 86 | 50 | NR | 5 | 25 | ABTS | 5 cycles (70% retained) | [74] |
Anthraquinone | Laccase/Montmorillonite | Adsorption | 90 | 100 | 0.8 mg/g | 6 | 30 | NR | 7 cycles (80% retained) | [72] |
Methylene Blue | Laccase/Modified Clay | Intercalation | 88 | 25 | 1.2 mg/g | 4.5 | 25 | HOBT | NR | [67] |
Congo Red | Peroxidase/Kaolin | Covalent | 89 | 100 | NR | 7 | 30 | H2O2 | 10 cycles (85% retained) | [33] |
Reactive Black | Peroxidase/Kaolin | Adsorption | 91 | 200 | NR | 7 | 25 | H2O2 | NR | [33] |
Brilliant Blue | Laccase/Activated Clay | Adsorption | 85 | NR | NR | 5 | 25 | NR | 6 cycles (75% retained) | [70] |
Blue RB5 | Laccase/Montmorillonite | Crosslinking | 87 | 100 | NR | 6 | 25 | NR | 8 cycles (82% retained) | [74] |
Acid Yellow | Laccase/Kaolinite | Covalent | 84 | 50 | NR | 5 | 30 | ABTS | NR | [76] |
Navy Blue | Peroxidase/Nanoclay | Entrapment | 82 | NR | NR | 6 | 25 | H2O2 | 4 cycles (65% retained) | [33] |
Fuchsine Pink | Laccase/Bentonite | Adsorption | 89 | 80 | 0.6 mg/g | 6 | 25 | NR | 5 cycles (70% retained) | [70] |
PPCP Category | Enzyme/Clay System | Immobilization Method | Removal Efficiency (%) | Time (h) | Initial Conc. (mg/L) | Enzyme Units/Loading | pH | Temperature (°C) | Mediator | Reuse Cycles/Leaching | Key Findings | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotics (Tetracycline) | Laccase/Stevensite-Clay | Hydrothermal | 95 | 8 | NR | NR | 3–9 | 25 | NR | 10 cycles (80% retained) | Stable over wide pH range; high reusability | [73] |
NSAIDs (Ibuprofen) | Laccase/Alginate–Montmorillonite | Entrapment | 78 | 12 | NR | NR | 2–12 | 25–30 | NR | No leaching observed | Broad pH tolerance; good stability | [77] |
Hormones (17β-Estradiol) | Peroxidase/Organobentonite | Covalent (Glutaraldehyde) | 88 | 6 | NR | NR | NR | 30 | NR | NR | 90% degradation in continuous flow reactor | [78] |
Analgesics (Diclofenac) | Laccase/Fe3O4@Clay | Magnetic | 85 | 8 | NR | NR | NR | 25 | NR | 15 cycles (75% retained) | Easy recovery due to magnetism | [74] |
β-Blockers (Propranolol) | Peroxidase/Kaolin–Chitosan | Hybrid | 82 | 10 | NR | NR | NR | 25 | NR | NR | Chitosan enhances adsorption | [79] |
Antidepressants (Carbamazepine) | Laccase/Layered Double Hydroxide | Intercalation | 70 | 24 | NR | NR | NR | 25 | NR | Stable across matrices | Slow degradation, good matrix tolerance | [23] |
Antimicrobials (Triclosan) | Peroxidase/Clay–Graphene | Composite | 91 | 5 | NR | NR | NR | 25–30 | NR | NR | Strong synergistic oxidation–adsorption effect | [82] |
X-ray Contrast Media | Laccase/Porous Si–Al Clay | Entrapment | 65 | 48 | NR | NR | NR | 25 | NR | NR | Effective for persistent compounds | [78] |
Stimulants (Caffeine) | Laccase/Bentonite | Adsorption | 75 | 6 | NR | NR | NR | 25 | NR | 30% enzyme leaching | Cost-effective but leaching issue | [73] |
Antiepileptics (Gabapentin) | Cellulase/Kaolinite | Physical | 60 | 18 | NR | NR | NR | 25 | NR | NR | Low efficiency but scalable | [14] |
Heavy Metal | Clay–Enzyme System | Mechanism/Immobilization Method | Removal Efficiency (%) | Time (h) | Capacity (mg/g) | Initial Conc. (mg/L) | Enzyme Units/Loading | Immobilization Yield (%) | pH | Temperature (°C) | Mediator | Reuse Cycles/Leaching | Key Advantages | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb2+ | Fe3O4@Bentonite–Laccase | Adsorption + Redox (Magnetic) | 95 | 2 | 180 | NR | NR | NR | 6–7 | 25 | NR | 6 cycles (80% retained) | Easy magnetic recovery | [83] |
Hg2+ | Thiol–Modified Clay–Peroxidase | Chelation | 98 | 3 | 210 | NR | NR | NR | 6–8 | 25–30 | NR | NR | Ultra-high affinity via thiol groups | [81] |
Cd2+ | Kaolinite–Cellulase | Adsorption | 80 | 5 | 95 | NR | NR | NR | 7 | 25 | NR | NR | Removes both organics and metals | [14] |
Cr6+ | Clay–Chitosan–Laccase | Reduction to Cr3+ (Covalent/Hybrid) | 88 | 4 | 150 | NR | NR | NR | 3–5 | 30 | H2O2 | 8 cycles (75% retained) | Chitosan enhances binding + redox | [78] |
As3+ | Iron Oxide–Clay–Peroxidase | Oxidation to As5+ (Redox) | 85 | 6 | 120 | NR | NR | NR | 7–8 | 25–30 | NR | 5 cycles (70% retained) | Detoxification via oxidation | [66] |
Cu2+ | Organoclay–Lipase | Adsorption | 75 | 8 | 80 | NR | NR | NR | NR | NR | NR | NR | Low-cost sorbent | [80] |
Zn2+ | Montmorillonite–Amylase | Ion Exchange | 70 | 10 | 65 | NR | NR | NR | 6–7 | 25 | NR | NR | Works under mild conditions | [71] |
Ni2+ | Porous Si–Al Clay–Laccase | Adsorption | 82 | 7 | 110 | NR | NR | NR | 6 | 25 | NR | NR | High surface area | [78] |
Co2+ | Graphene–Clay–Peroxidase | Adsorption + Redox | 90 | 5 | 170 | NR | NR | NR | 6–8 | 25–30 | NR | NR | Enhanced conductivity | [82] |
Mn2+ | Biochar–Clay–Cellulase | Adsorption | 78 | 9 | 85 | NR | NR | NR | 6–7 | 25 | NR | NR | Eco-friendly composite | [79] |
4.2. Advantages of Clay Mineral Supports in Enzyme Applications
4.3. Fate and Toxicity of Enzymatic Degradation Byproducts
5. Challenges and Future Perspectives in Enzyme Immobilization on Clay Minerals for Wastewater Treatment
Design Considerations for Bioreactor Scale-Up
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yazdan, M.M.S.; Ahad, M.T.; Jahan, I.; Mazumder, M. Review on the Evaluation of the Impacts of Wastewater Disposal in Hydraulic Fracturing Industry in the United States. Technologies 2020, 8, 67. [Google Scholar] [CrossRef]
- United Nations. The What, Why and How of the World Water Crisis. 2023. Available online: https://sdgs.un.org/sites/default/files/2023-03/Why-What-How-of-Water-Crisis-Web.pdf (accessed on 14 July 2025).
- Richardson, S.D.; Manasfi, T. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2024, 96, 8184–8219. [Google Scholar] [CrossRef]
- Ansari, Z.H.; Bista, U. Hazards Associated with Industrial Effluents and Its Mitigation Strategies. In Anthropogenic Environmental Hazards: Compensation and Mitigation; Pathak, P., Srivastava, R.R., Ilyas, S., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 89–117. ISBN 978-3-031-41013-0. [Google Scholar]
- Iyiola, A.O.; Ipinmoroti, M.O.; Akingba, O.O.; Ewutanure, J.S.; Setufe, S.B.; Bilikoni, J.; Ofori-Boateng, E.; Wangboje, O.M. Organic Chemical Pollutants Within Water Systems and Sustainable Management Strategies. In Water Crises and Sustainable Management in the Global South; Izah, S.C., Ogwu, M.C., Loukas, A., Hamidifar, H., Eds.; Springer Nature: Singapore, 2024; pp. 211–251. ISBN 978-981-97-4966-9. [Google Scholar]
- Nwankwo, C.E.I.; Okeke, E.S.; Umeoguaju, F.U.; Ejeromedoghene, O.; Adedipe, D.T.; Ezeorba, T.P.C. Addressing Emerging Contaminants in Agriculture Affecting Plant–Soil Interaction: A Review on Bio-Based and Nano-Enhanced Strategies for Soil Health and Global Food Security (GFS). Discov. Toxicol. 2025, 2, 4. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Pandis, P.K.; Kalogirou, C.; Kanellou, E.; Vaitsis, C.; Savvidou, M.G.; Sourkouni, G.; Zorpas, A.A.; Argirusis, C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. Chem. Eng. 2022, 6, 8. [Google Scholar] [CrossRef]
- Yuan, C.; Croft, K.; de Nicola, S.; Davis, A.P.; Kjellerup, B.V. Treatment of Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) in Stormwater Using Polishing Columns with Biochar and Granular Activated Carbon. Chemosphere 2025, 372, 144107. [Google Scholar] [CrossRef]
- Othmani, B.; Gamelas, J.A.F.; Mendes, C.V.T.; Rasteiro, M.G.; Khadhraoui, M. Green Flocculants from Cactus Cladodes: Physicochemical Characterization and Assessment of Their Flocculating Activity for Crystal Violet Dye Removal. Water Air Soil Pollut. 2024, 235, 458. [Google Scholar] [CrossRef]
- Chai, J.; Zheng, J.; Yu, H.; Chai, F.; Tian, M. Recyclable and Selective PVDF-Based Multifunctional Molecular Imprinted Membranes for the Removal of Bisphenol A. Sep. Purif. Technol. 2024, 342, 127002. [Google Scholar] [CrossRef]
- Corbalán, M.; Da Silva, C.; Barahona, A.; Huiliñir, C.; Guerrero, L. Nitrification–Autotrophic Denitrification Using Elemental Sulfur as an Electron Donor in a Sequencing Batch Reactor (SBR): Performance and Kinetic Analysis. Sustainability 2024, 16, 4269. [Google Scholar] [CrossRef]
- Feng, S.; Guo, W.; Ding, A.; Parsa, S.M.; Pan, J.; Cheng, D.; Van Tung, T.; Ngo, H.H. Enzyme Sources in Wastewater Treatment: Their Influence on Enzymatic Bioremediation and Large-Scale Applications. Chem. Eng. J. 2025, 510, 161891. [Google Scholar] [CrossRef]
- Zhang, J.; White, J.C.; Lowry, G.V.; He, J.; Yu, X.; Yan, C.; Dong, L.; Tao, S.; Wang, X. Advanced Enzyme-Assembled Hydrogels for the Remediation of Contaminated Water. Nat. Commun. 2025, 16, 3050. [Google Scholar] [CrossRef]
- Titchou, F.E.; Zazou, H.; Afanga, H.; El Gaayda, J.; Ait Akbour, R.; Nidheesh, P.V.; Hamdani, M. Removal of Organic Pollutants from Wastewater by Advanced Oxidation Processes and Its Combination with Membrane Processes. Chem. Eng. Process. 2021, 169, 108631. [Google Scholar] [CrossRef]
- Guzmán-Rasillo, J.; Ochoa-Terán, A.; López-Maldonado, E.A.; Pérez-Sicairos, S.; Trujillo-Navarrete, B.; López-Martínez, L.M.; García-Elías, J.; Sandoval-Hernandez, P.A.; Quiroz, M.M. Carboxyl-Functionalized Bis (Carbamoylcarboxylic) Acid Ligands as a Novel Alternative for Hazardous Metal Ions Removal by Coagulation-Flocculation. J. Mol. Struct. 2025, 1336, 142107. [Google Scholar] [CrossRef]
- Rahman, N.H.A.; Murugesu, K.; Rahman, R.A.; Mohamad, Z.; Jaafar, J.; Illias, R.M.; Sukmawati, D.; Syukri, M.S.M. A Brief Review of Immobilized Oxidoreductase Enzymes for the Removal of Endocrine-Disrupting Chemicals from Wastewater. J. Bioprocess. Biomass Technol. 2023, 2, 1–11. [Google Scholar] [CrossRef]
- Pandey, K.; Singh, B.; Pandey, A.K.; Badruddin, I.J.; Pandey, S.; Mishra, V.K.; Jain, P.A. Application of Microbial Enzymes in Industrial Waste Water Treatment. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1243–1254. [Google Scholar] [CrossRef]
- Feng, S.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Cheng, D.; Varjani, S.; Lei, Z.; Liu, Y. Roles and Applications of Enzymes for Resistant Pollutants Removal in Wastewater Treatment. Bioresour. Technol. 2021, 335, 125278. [Google Scholar] [CrossRef] [PubMed]
- Ghobadi Nejad, Z.; Borghei, S.M.; Yaghmaei, S. Kinetic Studies of Bisphenol A in Aqueous Solutions by Enzymatic Treatment. Int. J. Environ. Sci. Technol. 2019, 16, 821–832. [Google Scholar] [CrossRef]
- Daniel, R.M.; Dines, M.; Petach, H.H. The Denaturation and Degradation of Stable Enzymes at High Temperatures. Biochem. J. 1996, 317, 1–11. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R. Coupling Chemical Modification and Immobilization to Improve the Catalytic Performance of Enzymes. Adv. Synth. Catal. 2011, 353, 2216–2238. [Google Scholar] [CrossRef]
- An, N.; Zhou, C.H.; Zhuang, X.Y.; Tong, D.S.; Yu, W.H. Immobilization of Enzymes on Clay Minerals for Biocatalysts and Biosensors. Appl. Clay Sci. 2015, 114, 283–296. [Google Scholar] [CrossRef]
- Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Sun, J.; Yendluri, R.; Liu, K.; Guo, Y.; Lvov, Y.; Yan, X. Enzyme-Immobilized Clay Nanotube–Chitosan Membranes with Sustainable Biocatalytic Activities. Phys. Chem. Chem. Phys. 2017, 19, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Gonzalez, R.; Horton, A.; Li, T. Immobilization of Enzymes by Polymeric Materials. Catalysts 2021, 11, 1211. [Google Scholar] [CrossRef]
- Mubarak, N.M.; Wong, J.R.; Tan, K.W.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S.; Ganesan, P. Immobilization of Cellulase Enzyme on Functionalized Multiwall Carbon Nanotubes. J. Mol. Catal. B Enzym. 2014, 107, 124–131. [Google Scholar] [CrossRef]
- Hung, B.-Y.; Kuthati, Y.; Kankala, R.K.; Kankala, S.; Deng, J.-P.; Liu, C.-L.; Lee, C.-H. Utilization of Enzyme-Immobilized Mesoporous Silica Nanocontainers (IBN-4) in Prodrug-Activated Cancer Theranostics. Nanomaterials 2015, 5, 2169–2191. [Google Scholar] [CrossRef]
- Azhagapillai, P.; Gopalsamy, K.; Othman, I.; Alhatti, N.I.; Abu Haija, M.; Ashraf, S.S. Immobilization of Soybean Peroxidase Enzyme on Hierarchical Zeolite-Ordered Mesoporous Carbon Nanocomposite and Its Activity. RSC Adv. 2025, 15, 5781–5794. [Google Scholar] [CrossRef]
- Guisan, J.M.; Fernandez-Lorente, G.; Rocha-Martin, J.; Moreno-Gamero, D. Enzyme Immobilization Strategies for the Design of Robust and Efficient Biocatalysts. Curr. Opin. Green Sustain. Chem. 2022, 35, 100593. [Google Scholar] [CrossRef]
- Belghazdis, M.; Hachem, E.-K. Clay and Clay Minerals: A Detailed Review. Int. J. Recent Technol. Appl. Sci. (IJORTAS) 2022, 4, 54–75. [Google Scholar] [CrossRef]
- Özdemir, F.; Yalçinkaya, Z. Examination of The Immobilization and Kinetics of The Laccase Enzyme on Various Clay Minerals. MAS J. Appl. Sci. 2023, 8, 286–306. [Google Scholar] [CrossRef]
- Saphy, A.; Tijero, M.; García-Delgado, C.; Ortega, A.; Zamora, S.; Ruiz, A.I.; Eymar, E.; Cuevas, J.; Fernández, R. Biogeofilter with Hydrothermal Treated Stevensite Clay and Laccase Enzymes for Retention and Degradation of Tetracycline. Minerals 2022, 12, 1631. [Google Scholar] [CrossRef]
- Singh, N.B. Clays and Clay Minerals in the Construction Industry. Minerals 2022, 12, 301. [Google Scholar] [CrossRef]
- Massaro, M.; Colletti, C.G.; Lazzara, G.; Riela, S. The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications. J. Funct. Biomater. 2018, 9, 58. [Google Scholar] [CrossRef]
- Huang, A.; He, J.; Feng, J.; Huang, C.; Yang, J.; Mo, W.; Su, X.; Zou, B.; Ma, S.; Lin, H. A High-Efficiency Clay Mineral Based Organic Photocatalysttowards Photodegradation of Butyl Xanthate in Mineral Processing Wastewater. Sep. Purif. Technol. 2024, 349, 127880. [Google Scholar] [CrossRef]
- Ndé, H.S.; Tamfuh, P.A.; Clet, G.; Vieillard, J.; Mbognou, M.T.; Woumfo, E.D. Comparison of HCl and H2SO4 for the Acid Activation of a Cameroonian Smectite Soil Clay: Palm Oil Discolouration and Landfill Leachate Treatment. Heliyon 2019, 5, e02926. [Google Scholar] [CrossRef] [PubMed]
- Hamad, A.M.; Abdella, E.M.; Hamed, R.R.; Salah, S.M.; Fahmy, H.M. Synthetic Nanoclays: Synthesis, Modifications, Polymer Integration, and Physicochemical Characterization. In Functionalized Nanoclays; Micro and Nano Technologies; Mallakpour, S., Hussain, C.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2025; pp. 25–44. ISBN 978-0-443-15894-0. [Google Scholar]
- Heller-Kallai, L. Thermally Modified Clay Minerals. In Developments in Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Handbook of Clay Science; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 289–308. [Google Scholar]
- Deng, Y.; Dixon, J.B.; White, G.N. Intercalation and Surface Modification of Smectite by Two Non-Ionic Surfactants. Clays Clay Miner. 2003, 51, 150–161. [Google Scholar] [CrossRef]
- Ishii, R.; Nakatsuji, M.; Ooi, K. Preparation of Highly Porous Silica Nanocomposites from Clay Mineral: A New Approach Using Pillaring Method Combined with Selective Leaching. Microporous Mesoporous Mater. 2005, 79, 111–119. [Google Scholar] [CrossRef]
- Fatimah, I.; Fadillah, G.; Yanti, I.; Doong, R. Clay-Supported Metal Oxide Nanoparticles in Catalytic Advanced OxidationProcesses: A Review. Nanomaterials 2022, 12, 825. [Google Scholar] [CrossRef]
- Funes, I.G.A.; Peralta, M.E.; Pettinari, G.R.; Carlos, L.; Parolo, M.E. Facile Modification of Montmorillonite by Intercalation and Grafting: The Study of the Binding Mechanisms of a Quaternary Alkylammonium Surfactant. Appl. Clay Sci. 2020, 195, 105738. [Google Scholar] [CrossRef]
- Komadel, P. Acid ActivatedClays: Materials in Continuous Demand. Appl. Clay Sci. 2016, 131, 84–99. [Google Scholar] [CrossRef]
- Ismadji, S.; Soetaredjo, F.E.; Ayucitra, A. Modification of Clay Minerals for Adsorption Purpose. In Clay Materials for Environmental Remediation; Ismadji, S., Soetaredjo, F.E., Ayucitra, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 39–56. ISBN 978-3-319-16712-1. [Google Scholar]
- Sarkar, B.; Rusmin, R.; Ugochukwu, U.C.; Mukhopadhyay, R.; Manjaiah, K.M. Modified Clay Minerals for Environmental Applications. In Modified Clay and Zeolite Nanocomposite Materials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 113–127. [Google Scholar]
- Kangmennaa, A.; Acquah, S.; Forkuo, R.B.; Adusei, J.K.; Atongo, G.A.; Amarh, F.A.; Opoku, F.; Agorku, E.S. Methylene Blue Dye Adsorption on Ghana’s Activated Clay from Teleku Bukazo. J. Dispers. Sci. Technol. 2025, 46, 807–820. [Google Scholar] [CrossRef]
- Messaid, B.; Djemai, I.; Boudouh, I.; Robustillo, M.D. Assessment of the Performance of an Acid-Activated Composite Made of Na-Montmorillonite Algerian Clay to Remove Phenol and 4-Chlorophenol from Water. Desalin. Water Treat. 2025, 322, 101088. [Google Scholar] [CrossRef]
- Xi, Y.; Mallavarapu, M.; Naidu, R. Preparation, Characterization of Surfactants Modified Clay Minerals and Nitrate Adsorption. Appl. Clay Sci. 2010, 48, 92–96. [Google Scholar] [CrossRef]
- Johnston, C.T.; Santagata, M.; Sasar, M. Physical and Chemical Properties of Layered Clay Mineral Particle Surfaces. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2022; Volume 10, pp. 125–167. [Google Scholar]
- Wu, N.; Wu, L.; Liao, L.; Lv, G. Organic Intercalation of Structure Modified Vermiculite. J. Colloid Interface Sci. 2015, 457, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Detellier, C. Functional Kaolinite. Chem. Rec. 2018, 18, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Balomenou, G.; Stathi, P.; Enotiadis, A.; Gournis, D.; Deligiannakis, Y. Physicochemical Study of Amino-Functionalized Organosilicon Cubes Intercalated in Montmorillonite Clay: H-Binding and Metal Uptake. J. Colloid Interface Sci. 2008, 325, 74–83. [Google Scholar] [CrossRef]
- Cheng, J.; Yu, S.M.; Zuo, P. Horseradish Peroxidase Immobilized on Aluminum-Pillared Interlayered Clay for the Catalytic Oxidation of Phenolic Wastewater. Water Res. 2006, 40, 283–290. [Google Scholar] [CrossRef]
- Vallejo, C.A.; Galeano, L.A.; Trujillano, R.; Vicente, M.Á.; Gil, A. Preparation of Al/Fe-PILC Clay Catalysts from Concentrated Precursors: Enhanced Hydrolysis of Pillaring Metals and Intercalation. RSC Adv. 2020, 10, 40450–40460. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, C.; Wei, H.; Yuan, W.; Li, K. Adsorption of Levofloxacin onto an Iron-Pillared Montmorillonite (Clay Mineral): Kinetics, Equilibrium and Mechanism. Appl. Clay Sci. 2015, 118, 301–307. [Google Scholar] [CrossRef]
- Rapsomanikis, A.; Papoulis, D.; Panagiotaras, D.; Kaplani, E.; Stathatos, E. NanocrystallineTiO2 and Halloysite Clay Mineral Composite Films Prepared by Sol–Gel Method: Synergistic Effect and the Case of Silver Modification to the Photocatalytic Degradation of Basic Blue-41 AzoDye in Water. Glob. NEST J. 2014, 16, 485–498. [Google Scholar]
- Dedzo, G.K.; Detellier, C. Clay Minerals—Ionic Liquids, Nanoarchitectures, and Applications. Adv. Funct. Mater. 2018, 28, 1703845. [Google Scholar] [CrossRef]
- He, H.; Duchet, J.; Galy, J.; Gérard, J.-F. Grafting of Swelling Clay Materials with 3-Aminopropyltriethoxysilane. J. Colloid Interface Sci. 2005, 288, 171–176. [Google Scholar] [CrossRef]
- Letaief, S.; Detellier, C. Application of Thermal Analysis for the Characterisation of Intercalated and Grafted Organo-Kaolinite Nanohybrid Materials. J. Therm. Anal. Calorim. 2011, 104, 831–839. [Google Scholar] [CrossRef]
- Machida, S.; Idota, N.; Sugahara, Y. Interlayer Grafting of Kaolinite Using Trimethylphosphate. Dalton Trans. 2019, 48, 11663–11673. [Google Scholar] [CrossRef]
- Scholtzová, E.; Tunega, D. Prediction of Mechanical Properties of Grafted Kaolinite—A DFT Study. Appl. Clay Sci. 2020, 193, 105692. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. General Introduction: Clays, Clay Minerals, and Clay Science. In Developments in Clay Science; Bergaya, F., Lagaly, G., Eds.; Handbook of Clay Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 1–19. [Google Scholar]
- Murray, H.H. Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays; Elsevier: Amsterdam, The Netherlands, 2006; Volume 2. [Google Scholar]
- Bilal, M.; Asgher, M.; Parra-Saldivar, R.; Hu, H.; Wang, W.; Zhang, X.; Iqbal, H.M.N. Immobilized Ligninolytic Enzymes: An Innovative and Environmental Responsive Technology to Tackle Dye-Based Industrial Pollutants—A Review. Sci. Total Environ. 2017, 576, 646–659. [Google Scholar] [CrossRef]
- Zhou, C.H.; Keeling, J. Fundamental and Applied Research on Clay Minerals: From Climate and Environment to Nanotechnology. Appl. Clay Sci. 2013, 74, 3–9. [Google Scholar] [CrossRef]
- Arıca, M.Y.; Altıntas, B.; Bayramoğlu, G. Immobilization of Laccase onto Spacer-Arm Attached Non-Porous Poly (GMA/EGDMA) Beads: Application for Textile Dye Degradation. Bioresour. Technol. 2009, 100, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A.; van Pelt, S. Enzyme Immobilisation in Biocatalysis: Why, What and How. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.S.; Yang, K.-L. Entrapment of Cross-Linked Cellulase Colloids in Alginate Beads for Hydrolysis of Cellulose. Colloids Surf. B Biointerfaces 2016, 145, 862–869. [Google Scholar] [CrossRef]
- Alsoufi, M.A. Use of Immobilized Laccase in Bioremediation of Phenolic Compounds Which Causes Environmental Pollution. J. Biodivers. Environ. Sci. 2018, 12, 370–377. [Google Scholar]
- Sanjay, G.; Sugunan, S. Acid Activated Montmorillonite: An Efficient Immobilization Support for Improving Reusability, Storage Stability and Operational Stability of Enzymes. J. Porous Mater. 2008, 15, 359–367. [Google Scholar] [CrossRef]
- Iqhrammullah, M.; Fahrina, A.; Chiari, W.; Ahmad, K.; Fitriani, F.; Suriaini, N.; Safitri, E.; Puspita, K. Laccase Immobilization Using Polymeric Supports for Wastewater Treatment: A Critical Review. Macromol. Chem. Phys. 2023, 224, 2200461. [Google Scholar] [CrossRef]
- Morsy, S.A.G.Z.; Ahmad Tajudin, A.; Ali, M.S.M.; Shariff, F.M. Current Development in Decolorization of SyntheticDyes by Immobilized Laccases. Front. Microbiol. 2020, 11, 572309. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wang, J.; Li, Y.; Chen, X.; Liu, Y. Enzymes Immobilized on SuperparamagneticFe3O4@ClaysNanocomposites: Preparation, Characterization, and a New Strategy for the Regeneration of Supports. J. Phys. Chem. C 2011, 115, 6350–6359. [Google Scholar] [CrossRef]
- Cameselle, C.; Pazos, M.; Lorenzo, M.; Sanromán, M. Enhanced Decolourisation Ability of Laccase towards Various Synthetic Dyes by an Electrocatalysis Technology. Biotechnol. Lett. 2003, 25, 603–606. [Google Scholar] [CrossRef]
- Rodríguez-Couto, S. Immobilized-Laccase Bioreactors for Wastewater Treatment. Biotechnol. J. 2024, 19, 2300354. [Google Scholar] [CrossRef]
- Mehandia, S.; Ahmad, S.; Sharma, S.C.; Arya, S.K. Decolorization and detoxification of textile effluent by immobilized laccase-ACS into chitosan-clay composite beads using a packed bed reactor system: An ecofriendly approach. J. Water Process Eng. 2022, 47, 102662. [Google Scholar] [CrossRef]
- Jiang, B.; Li, Y.; Wang, H.; Jia, L.; Huang, F.; Hu, X. Application of a New Type of Si–Al Porous Clay Material as a Solid Phase Support for Immobilizing Acidovorax Sp. PM3 to Treat Domestic Sewage. Adsorpt. Sci. Technol. 2019, 37, 729–744. [Google Scholar] [CrossRef]
- Al-Maqdi, K.A.; Elmerhi, N.; Athamneh, K.; Bilal, M.; Alzamly, A.; Ashraf, S.S.; Shah, I. Challenges and Recent Advances in Enzyme-Mediated Wastewater Remediation—A Review. Nanomaterials 2021, 11, 3124. [Google Scholar] [CrossRef]
- Dong, H.; Li, J.; Li, Y.; Hu, L.; Luo, D. Improvement of Catalytic Activity and Stability of Lipase by Immobilization on Organobentonite. Chem. Eng. J. 2012, 181, 590–596. [Google Scholar] [CrossRef]
- Wang, P.; Shen, X.; Qiu, S.; Zhang, L.; Ma, Y.; Liang, J. Clay-Based Materials for Heavy Metals Adsorption: Mechanisms, Advancements, and Future Prospects in Environmental Remediation. Crystals 2024, 14, 1046. [Google Scholar] [CrossRef]
- Qi, Y.; Zhao, S.; Shen, Y.; Jiang, X.; Lv, H.; Han, C.; Liu, W.; Zhao, Q. A Critical Review of Clay Mineral-Based Photocatalysts for Wastewater Treatment. Catalysts 2024, 14, 575. [Google Scholar] [CrossRef]
- Alali, A.F.; Almojil, S.F.; Almohana, A.I.; Almoalimi, K.T. Highly Reusable Bentonite Clay@Biochar@Fe3O4 Nanocomposite for Hg(II) Removal from Synthetic and Real Wastewater. Environ. Sci. Pollut. Res. 2023, 30, 72484–72502. [Google Scholar] [CrossRef] [PubMed]
- Mohidem, N.A.; Mohamad, M.; Rashid, M.U.; Norizan, M.N.; Hamzah, F.; Mat, H. Recent Advances in Enzyme Immobilisation Strategies: An Overview of Techniques and Composite Carriers. J. Compos. Sci. 2023, 7, 488. [Google Scholar] [CrossRef]
- Tzialla, A.A.; Pavlidis, I.V.; Felicissimo, M.P.; Rudolf, P.; Gournis, D.; Stamatis, H. Lipase Immobilization on Smectite Nanoclays: Characterization and Application to the Epoxidation of α-Pinene. Bioresour. Technol. 2010, 101, 1587–1594. [Google Scholar] [CrossRef]
- Cantone, S.; Ferrario, V.; Corici, L.; Ebert, C.; Fattor, D.; Spizzo, P.; Gardossi, L. Efficient Immobilisation of Industrial Biocatalysts: Criteria and Constraints for the Selection of Organic Polymeric Carriers and Immobilisation Methods. Chem. Soc. Rev. 2013, 42, 6262–6276. [Google Scholar] [CrossRef]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. A General Overview of Support Materials for EnzymeImmobilization: Characteristics, Properties, Practical Utility. Catalysts 2018, 8, 92. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N.; Hu, H.; Wang, W.; Zhang, X. Development of Horseradish Peroxidase-Based Cross-Linked Enzyme Aggregates and Their Environmental Exploitation for Bioremediation Purposes. J. Environ. Manage. 2017, 188, 137–143. [Google Scholar] [CrossRef]
- Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme Immobilization by Adsorption: A Review. Adsorption 2014, 20, 801–821. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying Enzyme Activity and Selectivity by Immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. [Google Scholar] [CrossRef]
- Basso, A.; Serban, S. Industrial Applications of Immobilized Enzymes—A Review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Judd, S. The Status of Membrane Bioreactor Technology. Trends Biotechnol. 2008, 26, 109–116. [Google Scholar] [CrossRef]
Method | Enzyme Retention | Cost | Scalability | Optimal Conditions | Best Use Case | References |
---|---|---|---|---|---|---|
Physical Adsorption | 50%–70% (5 cycles) | Low (5–10 USD/g) | High | Neutral pH, room temperature | Dyes, batch systems | [67,72] |
Covalent Bonding | >80% (15 cycles) | High (20–50 USD/g) | Moderate | Wide pH (3–9), <60 °C | Toxic/organic pollutants | [33,71] |
Intercalation | >90% (20 cycles) | Very High (>80 USD/g) | Low | Small enzymes (<50 kDa), harsh conditions | Extreme pH/temperature applications | [23,71] |
Hybrid (Adsorption–Crosslinking) | 70%–90% (10+ cycles) | Moderate (15–30 USD/g) | High | Broad operational range | Mixed pollutant streams | [70,73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayahi, N.; Othmani, B.; Mnif, W.; Algarni, Z.; Khadhraoui, M.; Ben Rebah, F. Clay Minerals as Enzyme Carriers for Pollutant Removal from Wastewater: A Comprehensive Review. Minerals 2025, 15, 969. https://doi.org/10.3390/min15090969
Sayahi N, Othmani B, Mnif W, Algarni Z, Khadhraoui M, Ben Rebah F. Clay Minerals as Enzyme Carriers for Pollutant Removal from Wastewater: A Comprehensive Review. Minerals. 2025; 15(9):969. https://doi.org/10.3390/min15090969
Chicago/Turabian StyleSayahi, Naima, Bouthaina Othmani, Wissem Mnif, Zaina Algarni, Moncef Khadhraoui, and Faouzi Ben Rebah. 2025. "Clay Minerals as Enzyme Carriers for Pollutant Removal from Wastewater: A Comprehensive Review" Minerals 15, no. 9: 969. https://doi.org/10.3390/min15090969
APA StyleSayahi, N., Othmani, B., Mnif, W., Algarni, Z., Khadhraoui, M., & Ben Rebah, F. (2025). Clay Minerals as Enzyme Carriers for Pollutant Removal from Wastewater: A Comprehensive Review. Minerals, 15(9), 969. https://doi.org/10.3390/min15090969