Particle Size-Specific Magnetic Measurements as a Tool for Enhancing Our Understanding of the Bulk Magnetic Properties of Sediments
Abstract
:1. Introduction
2. Sources of Magnetic Minerals in the Environment
2.1. Sedimentary and Magnetic Properties
2.2. Origins and Properties of Different Magnetic Components
3. Unmixing Different Components Using Bulk Magnetic Measurements
4. Particle Size-Specific Measurements
4.1. Origins of Particle Size Dependence
4.2. The Influence of Sediment Particle Size on Bulk Magnetic Properties
4.3. Isolation of Specific Components and/or Processes
5. Designing a Particle Size-Specific Study
5.1. Number of Fractions
5.2. Sample Preparation
Fall Height | 31 μm (5 φ) | 16 μm (6 φ) | 8 μm (7 φ) | 4 μm (8 φ) | 2 μm (9 φ) |
---|---|---|---|---|---|
5 cm | 54 s | 3 m 37 s | 14 m 30 s | 58 m 59 s | 3 h 52 m |
10 cm | 1 m 49 s | 7 m 15 s | 29 m 00 s | 1 h 56 m | 7 h 44 m |
15 cm | 2 m 43 s | 10 m 52 s | 43 m 30 s | 2 h 54 m | 11 h 36 m |
20 cm | 3 m 37 s | 14 m 30 s | 57 m 59 s | 3 h 52 m | 15 h 28 m |
25 cm | 4 m 32 s | 18 m 07 s | 1 h 12 m | 4 h 50 m | 19 h 20 m |
30 cm | 5 m 26 s | 21 m 45 s | 1 h 27 m | 5 h 48 m | 23 h 12 m |
5.3. Magnetic Measurements
5.4. Limitations of Particle Size Specific Measurements
6. Summary and Future Directions
Acknowledgments
Conflicts of Interest
References
- Thompson, R.; Battarbee, R.W.; O’Sullivan, P.E.; Oldfield, F. Magnetic susceptibility of lake sediments. Limnol. Oceanogr. 1975, 20, 687–698. [Google Scholar]
- Thompson, R.; Oldfield, F. Environmental Magnetism; Allen & Unwin: London, UK, 1986. [Google Scholar]
- Maher, B.A. Characterisation of soils by mineral magnetic measurements. Phys. Earth Planet. Inter. 1986, 42, 76–92. [Google Scholar] [CrossRef]
- Robinson, S.G. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Phys. Earth Planet. Inter. 1986, 42, 22–47. [Google Scholar] [CrossRef]
- Maher, B.A.; Thompson, R. Mineral magnetic record of the Chinese loess and paleosols. Geology 1991, 19, 3–6. [Google Scholar] [CrossRef]
- Maher, B.A.; Thompson, R. Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols. Quat. Res. 1992, 37, 155–170. [Google Scholar] [CrossRef]
- Grousset, F.E.; Labeyrie, L.; Sinko, J.A.; Cremer, M.; Bond, G.; Duprat, J.; Cortijo, E.; Huon, S. Patterns of ice-rafted detritus in the glacial North Atlantic (40–55° N). Paleoceanography 1993, 8, 175–192. [Google Scholar] [CrossRef]
- Rasmussen, T.L.; van Weering, T.C.E.; Labeyrie, L. Climatic instability, ice sheets and ocean dynamics at high northern latitudes during the last glacial period (58–10 KA BP). Quat. Sci. Rev. 1997, 16, 71–80. [Google Scholar] [CrossRef]
- Kissel, C.; Laj, C.; Labeyrie, L.; Dokken, T.; Voelker, A.; Blamart, D. Rapid climatic variations during marine isotopic stage 3: Magnetic analysis of sediments from Nordic Seas and North Atlantic. Earth Planet. Sci. Lett. 1999, 171, 489–502. [Google Scholar] [CrossRef]
- Rosenbaum, J.G.; Reynolds, R.L. Basis for paleoenvironmental interpretation of magnetic properties of sediment from upper Klamath lake (Oregon): Effects of weathering and mineralogical sorting. J. Paleolimnol. 2004, 31, 253–265. [Google Scholar] [CrossRef]
- Hatfield, R.G.; Maher, B.A. Suspended sediment characterization and tracing using a magnetic fingerprinting technique: Bassenthwaite Lake, Cumbria, UK. Holocene 2008, 18, 105–115. [Google Scholar] [CrossRef]
- Razik, S.; Dekkers, M.J.; von Dobeneck, T. How environmental magnetism can enhance the interpretational value of grain-size analysis: A time-slice study on sediment export to the NW African margin in Heinrich Stadial 1 and Mid Holocene. Palaeogeogr. Palaeoclimatol. Palaecol. 2014, 406, 33–48. [Google Scholar] [CrossRef]
- Kapička, A.; Petrovský, E.; Ustjakb, S.; Macháčková, K. Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: A case study in the Czech Republic. J. Geochem. Explor. 1999, 66, 291–297. [Google Scholar] [CrossRef]
- Hoffmann, V.; Knab, M.; Appel, E. Magnetic susceptibility mapping of roadside pollution. J. Geochem. Explor. 1999, 66, 313–326. [Google Scholar] [CrossRef]
- Hansard, R.; Maher, B.A.; Kinnersley, R. Biomagnetic monitoring of industry-derived particulate pollution. Environ. Pollut. 2011, 159, 1673–1681. [Google Scholar] [CrossRef] [PubMed]
- Walling, D.E.; Peart, M.R.; Oldfield, F.; Thompson, R. Suspended sediment sources identified by magnetic measurements. Nature 1979, 281, 110–113. [Google Scholar] [CrossRef]
- Hatfield, R.G.; Maher, B.A. Holocene sediment dynamics in an upland temperate catchment: Climatic and land-use impacts in the English Lake District. Holocene 2009, 19, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, R.G.; Maher, B.A.; Pates, J.M.; Barker, P.A. Sediment dynamics in an upland temperate catchment: Changing sediment sources, rates, and deposition. J. Paleolimnol. 2008, 40, 1143–1158. [Google Scholar]
- Maher, B.A.; Thompson, R.; Zhou, L.P. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach. Earth Planet. Sci. Lett. 1994, 125, 461–471. [Google Scholar] [CrossRef]
- Maher, B.A.; Hu, M.; Roberts, H.M.; Wintle, A.G. Holocene loess accumulation and soil development at the western edge of the Chinese Loess Plateau: Implications for magnetic proxies of paleorainfall. Quat. Sci. Rev. 2002, 22, 445–451. [Google Scholar] [CrossRef]
- Geiss, C.E.; Egli, R.; Zanner, C.W. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. J. Geophys. Res. 2008, 113, 1–15. [Google Scholar]
- Stoner, J.S.; Channell, J.E.T.; Hillaire-Marcel, C. The magnetic signature of rapidly deposited detrital layers from the Deep Labrador Sea: Relationship to North Atlantic Heinrich layers. Paleoceanography 1996, 11, 309–325. [Google Scholar] [CrossRef]
- Watkins, S.J.; Maher, B.A. Magnetic characterisation of present-day deep-sea sediments and sources in the North Atlantic. Earth Planet. Sci. Lett. 2003, 214, 379–394. [Google Scholar] [CrossRef]
- Bloemendal, J.; de Menocal, P. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements. Nature 1989, 342, 897–900. [Google Scholar] [CrossRef]
- Stoner, J.S.; Channell, J.E.T.; Hillaire-Marcel, C. Magnetic properties of deep—Sea sediments off southwest Greenland: Evidence for major differences between the last two deglaciations. Geology 1995, 23, 241–244. [Google Scholar] [CrossRef]
- Kissel, C.; Laj, C.; Mulder, T.; Wandres, C.; Cremer, M. The magnetic fraction: A tracer of deep water circulation in the North Atlantic. Earth Planet. Sci. Lett. 2009, 288, 444–454. [Google Scholar] [CrossRef]
- Snowball, I.; Moros, M. Saw-tooth pattern of North Atlantic current speed during Dansgaard-Oeschger cycles revealed by the magnetic grain size of Reykjanes Ridge sediments at 59° N. Paleoceanography 2003, 18, 1026–1037. [Google Scholar] [CrossRef]
- Ballini, M.; Kissel, C.; Colin, C.; Richter, T. Deep-water mass source and dynamic associated with rapid climatic variations during the last glacial stage in the North Atlantic: A multiproxy investigation of the detrital fraction of deep-sea sediments. Geochem. Geophys. Geosyst. 2006, 7, Q02N01. [Google Scholar] [CrossRef]
- Heller, F.; Liu, T.S. Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China. Geophys. Res. Lett. 1986, 13, 1169–1172. [Google Scholar] [CrossRef]
- Oldfield, F.; Maher, B.A.; Donoghue, J.; Pierce, J. Particle-size related mineral magnetic source sediment linkages in the Rhode River catchment, Maryland, USA. J. Geol. Soc. 1985, 142, 1035–1046. [Google Scholar] [CrossRef]
- Oldfield, F.; Hao, Q.; Bloemendal, J.; Gibbs-Eggar, Z.; Patil, S.; Guo, Z. Links between bulk sediment particle size and magnetic grain size: General observations and implications for Chinese loess studies. Sedimentology 2009, 56, 2091–2106. [Google Scholar] [CrossRef]
- Hatfield, R.G.; Stoner, J.S.; Carlson, A.E.; Reyes, A.V.; Housen, B. Source as a controlling factor on the quality and interpretation of sediment magnetic records from the northern North Atlantic. Earth Planet. Sci. Lett. 2013, 368, 69–77. [Google Scholar] [CrossRef]
- Canfield, D.E.; Berner, R.A. Dissolution and pyritization of magnetite in anoxic marine sediments. Geochim. Cosmochim. Acta 1987, 51, 645–659. [Google Scholar] [CrossRef]
- Roberts, A.P.; Turner, G.M. Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth Planet. Sci. Lett. 1993, 115, 257–273. [Google Scholar] [CrossRef]
- Passier, H.F.; Dekkers, M.J. Iron oxide formation in the active oxidation front above sapropel S1 in the eastern Mediterranean Sea as derived from low-temperature magnetism. Geophys. J. Int. 2002, 150, 230–240. [Google Scholar] [CrossRef]
- Larrasoaña, J.C.; Roberts, A.P.; Musgrave, R.J.; Gràcia, E.; Piñero, P.; Vega, M.; Martínez-Ruiz, F. Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth Planet. Sci. Lett. 2007, 261, 350–366. [Google Scholar] [CrossRef]
- Rowan, C.J.; Roberts, A.P.; Broadbent, T. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth Planet. Sci. Lett. 2009, 277, 223–235. [Google Scholar] [CrossRef]
- Maher, B.A.; Taylor, R.M. Formation of ultrafine-grained magnetite in soils. Nature 1988, 336, 368–370. [Google Scholar] [CrossRef]
- Snowball, I.F. Bacterial magnetite and the magnetic properties of sediments in a Swedish lake. Earth Planet. Sci. Lett. 1994, 126, 129–142. [Google Scholar] [CrossRef]
- Yamazaki, T. Magnetostatic interactions in deep-sea sediments inferred from first-order reversal curve diagrams: Implications for relative paleointensity normalization. Geochem. Geophys. Geosyst. 2008, 9, Q02005. [Google Scholar] [CrossRef]
- Robinson, S.G.; Maslin, M.A.; McCave, I.N. Magnetic susceptibility variations in Upper Pleistocene deep-sea sediments of the NE Atlantic: Implications for ice rafting and paleocirculation at the last glacial maximum. Paleoceanography 1995, 10, 221–250. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, L.; Lu, M.; Hutchinson, S.; Feng, H. Magnetic approach to normalizing heavy metal concentrations for particle size effects in intertidal sediments in the Yangtze Estuary, China. Environ. Pollut. 2007, 147, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Karlin, R.; Levi, S. Diagenesis of magnetic minerals in recent haemipelagic sediments. Nature 1983, 303, 327–330. [Google Scholar] [CrossRef]
- Karlin, R.; Levi, S. Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments. J. Geophys. Res. 1985, 90, 10373–10392. [Google Scholar] [CrossRef]
- Robinson, S.G.; Sahota, J.T.S.; Oldfield, F. Early diagenesis in North Atlantic abyssal plain sediments chatracterized by rock-magnetic and geochemical indicies. Mar. Geol. 2000, 163, 77–107. [Google Scholar] [CrossRef]
- Russell, M.A.; Walling, D.E.; Hodgkinson, R.A. Suspended sediment sources in two small lowland agricultural catchemnts in the UK. J. Hydrol. 2001, 252, 1–24. [Google Scholar] [CrossRef]
- Robertson, D.J.; France, D.E. Discrimination of remanence-carrying minerals in mixtures using isothermal remanent magnetization acquisition curves. Phys. Earth Planet. Inter. 1994, 82, 223–234. [Google Scholar] [CrossRef]
- Heslop, D.; Dekkers, M.J.; Kruiver, P.P.; van Oorschot, I.H.M. Analysis of isothermal remanent magnetization acquisition curves using the expectation—Maximization algorithm. Geophys. J. Int. 2002, 148, 58–64. [Google Scholar] [CrossRef]
- Egli, R. Analysis of the field dependence of remanent magnetization curves. J. Geophys. Res. 2003, 108, 2081. [Google Scholar] [CrossRef]
- Egli, R. Characterization of individual rock magnetic components by analysis of remanence curves. 1. Unmixing natural sediments. Stud. Geophys. Geod. 2004, 48, 391–446. [Google Scholar] [CrossRef]
- Egli, R. Characterization of individual rock magnetic components by analysis of remanence curves. 2. Fundamental properties of coercivity distributions. Phys. Chem. Earth 2004, 29, 851–867. [Google Scholar]
- Egli, R. Characterization of individual rock magnetic components by analysis of remanence curves. 3. Bacterial magnetite and natural processes in lakes. Phys. Chem. Earth 2004, 29, 869–884. [Google Scholar] [CrossRef]
- Lascu, I.; Banerjee, S.K.; Berquo, T.S. Quantifying the concentration of ferrimagnetic particles in sediments using rock magnetic methods. Geochem. Geophys. Geosyst. 2010, 11, Q08Z19. [Google Scholar] [CrossRef]
- Heslop, D.; Roberts, A.P. Estimating best fit binary mixing lines in the Day plot. J. Geophys. Res. 2012, 117, B01101. [Google Scholar] [CrossRef]
- Heslop, D.; Roberts, A.P. A method for unmixing magnetic hysteresis loops. J. Geophys. Res. 2012, 117, B03103. [Google Scholar] [CrossRef]
- Evans, M.E.; Heller, F. Environmental Magnetism: Principles and Applications of Enviromagnetics; Academic Press: London, UK, 2003. [Google Scholar]
- Dekkers, M.J. Magnetic proxy parameters. In Encyclopedia of Geomagnetism and Paleomagnetism; Gubbins, D., Herrero-Bervera, E., Eds.; Springer: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Dunlop, D.J.; Ozdemir, O. Rock Magnetism. Fundamentals and Frontiers; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Kletetschka, G.; Wasilewski, P.J. Grain size limit for SD hematite. Phys. Earth Planet. Inter. 2002, 129, 173–179. [Google Scholar] [CrossRef]
- Thompson, R. Modelling magnetization data using SIMPLEX. Phys. Earth Planet. Inter. 1986, 42, 113–127. [Google Scholar] [CrossRef]
- Gee, J.; Kent, D.V. Calibration of magnetic granulometric trends in oceanic basalts. Earth Planet. Sci. Lett. 1999, 170, 377–390. [Google Scholar] [CrossRef]
- Stanford, J.D.; Rohling, E.J.; Hunter, S.E.; Roberts, A.P.; Rasmussen, S.O.; Bard, E.; McManus, J.; Fairbanks, R.G. Timing of meltwater pulse 1a and climate responses to meltwater injections. Paleoceanography 2006, 21, PA4103. [Google Scholar] [CrossRef]
- Maher, B.A.; Thompson, R. Quaternary Climates, Environments and Magnetism; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Butler, R.F. Paleomagnetism: Magnetic Domains to Geologic Terranes; Blackwell: London, UK, 1992. [Google Scholar]
- Zhou, W.; van der Voo, R.; Peacor, D.R.; Zhang, Y. Vatiable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB. Earth Planet. Sci. Lett. 2000, 179, 9–20. [Google Scholar] [CrossRef]
- Maher, B.A. Magnetic properties of some synthetic sub-micron magnetites. Geophys. J. R. Astron. Soc. 1988, 94, 83–96. [Google Scholar] [CrossRef]
- Maher, B.A. Magnetic properties of modern soils and loessic paleosols: Implications for paleoclimate. Palaeogeogr. Palaeoclimatol. Palaeocol. 1998, 137, 25–54. [Google Scholar] [CrossRef]
- Grimley, D.A.; Arruda, N.K.; Bramstedt, M.W. Using magnetic susceptibility to facilitate more rapid, reproducible and precise delineation of hydric soils in the midwestern USA. Catena 2004, 58, 183–213. [Google Scholar] [CrossRef]
- Yu, L.; Oldfield, F. Quantitative sediment source ascription using magnetic measurements in a reservoir-catchment system near Nijar, S.E. Spain. Earth Surf. Process. Landf. 1993, 18, 441–454. [Google Scholar] [CrossRef]
- Caitcheon, G.G. Applying environmental magnetism to sediment tracing. In Tracers in Hydrology; International Association of Hydrological Sciences Publication No. 215; Peters, N.E., Hoehn, E., Leibundgut, C., Tase, N., Walling, D.E., Eds.; IAHS Press: Wallingford, UK, 1993; pp. 285–292. [Google Scholar]
- Roberts, A.P. Magnetic characteristics of sedimentary greigite (Fe3S4). Earth Planet. Sci. Lett. 1995, 134, 227–236. [Google Scholar] [CrossRef]
- Rowan, C.J.; Roberts, A.P. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth Planet. Sci. Lett. 2006, 241, 119–137. [Google Scholar] [CrossRef]
- Roberts, A.P.; Chang, L.; Rowan, C.J.; Horng, C.-S.; Florindo, F. Magnetic properties of sedimentary greigite (Fe3S4): An update. Rev. Geophys. 2011, 49, RG1002. [Google Scholar] [CrossRef]
- Kent, D.V.; Lowrie, W. Origin of magnetic instability in sediment cores from the Central North Pacific. J. Geophys. Res. 1974, 79, 2987–3000. [Google Scholar] [CrossRef]
- Passier, H.F.; de Lange, G.J.; Dekkers, M.J. Rock-magnetic properties and geochemistry of the active oxidation front and the youngest sapropel in the eastern Mediterranean. Geophys. J. Int. 2001, 145, 604–614. [Google Scholar] [CrossRef]
- Dearing, J.A.; Dann, R.J.L.; Hay, K.; Lees, J.A.; Loveland, P.J.; Maher, B.A.; O’Grady, K. Frequency-dependant susceptibility measurements of environmental materials. Geophys. J. Int. 1996, 124, 228–240. [Google Scholar] [CrossRef]
- Zheng, H.; Oldfield, F.; Yu, L.; Shaw, J.; An, Z. The magnetic properties of particle-sized samples from the Luo Chuan loess section: Evidence for pedogenesis. Phys. Earth Planet. Inter. 1991, 68, 250–258. [Google Scholar] [CrossRef]
- Blakemore, R. Magnetotactic bacteria. Science 1975, 190, 377–379. [Google Scholar] [CrossRef]
- Petersen, N.; von Dobeneck, T.; Vali, H. Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature 1986, 320, 611–615. [Google Scholar] [CrossRef]
- Kopp, R.E.; Kirschvink, J.L. The identification and biogeochemical interpretation of fossilized magnetotactic bacteria. Earth Sci. Rev. 2008, 86, 42–61. [Google Scholar] [CrossRef]
- Kirschvink, J.L.; Chang, S.R. Ultrafine-grained magnetite in deep-sea sediments: Possible bacterial magnetofossils. Geology 1984, 12, 559–562. [Google Scholar] [CrossRef]
- Paasche, Ø.; Løvlie, R.; Dahl, S.O.; Bakke, J.; Nesje, A. Bacterial magnetite in lake sediments: Late glacial to Holocene climate and sedimentary changes in northern Norway. Earth Planet. Sci. Lett. 2004, 223, 319–333. [Google Scholar] [CrossRef]
- Shen, Z.; Bloemendal, J.; Mauz, B.; Chiverrall, R.C.; Dearing, J.A.; Lang, A.; Liu, Q. Holocene environmental reconstruction of sediment-source linkages at Crummock Water, English Lake District, based on magnetic measurements. Holocene 2008, 18, 129–140. [Google Scholar] [CrossRef]
- Egli, R. VARIFORC: An optimized protocol for calculating non-regular first-order reversal curve (FORC) diagrams. Glob. Planet. Chang. 2013, 110, 302–320. [Google Scholar] [CrossRef]
- Harrison, R.J.; Feinberg, J.M. FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem. Geophys. Geosyst. 2008, 9, Q05016. [Google Scholar]
- Roberts, A.P.; Pike, C.R.; Verosub, K.L. First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res. 2000, 105, 28461–28475. [Google Scholar] [CrossRef]
- Chen, A.P.; Egli, R.; Moskowitz, B.M. First-order reversal curve (FORC) diagrams of natural and cultured biogenic magnetic particles. J. Geophys. Res. 2007, 112, B08S90. [Google Scholar]
- Hanesch, M.; Scholger, R. The influence of soil type on the magnetic susceptibility measured throughout soil profiles. Geophys. J. Int. 2005, 161, 50–56. [Google Scholar]
- Mitchell, R.; Maher, B.A.; Kinnersley, R. Rates of particulate pollution deposition onto leaf surfaces: Temporal and inter-species analyses. Environ. Pollut. 2010, 158, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Hanesch, M.; Scholger, R. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. J. Environ. Geol. 2002, 42, 857–870. [Google Scholar] [CrossRef]
- Shi, R.; Cioppa, M. Magnetic survey of topsoils in Windsor-Essex County, Canada. J. Appl. Geophys. 2006, 60, 201–212. [Google Scholar] [CrossRef]
- Day, R.; Fuller, M.; Schmidt, V.A. Hysteresis properties of titanomagnetites: Grain size and composition dependence. Phys. Earth Planet. Inter. 1977, 13, 260–267. [Google Scholar] [CrossRef]
- Dunlop, D.J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Dunlop, D.J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 2. Application to data for rocks, sediments, and soils. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Oldfield, F. Toward the discrimination of fine-grained ferrimagnets by magnetic measurements in lake and near-shore marine sediments. J. Geophys. Res. 1994, 99, 9045–9050. [Google Scholar] [CrossRef]
- Oldfield, F. Sources of fine-grained magnetic minerals in sediments: A problem revisited. Holocene 2007, 17, 1265–1271. [Google Scholar] [CrossRef]
- Van der Post, K.D.; Oldfield, F.; Haworth, E.Y.; Crooks, P.R.J.; Appleby, P.G. A record of accelerated erosion in the recent sediments of Blelham Tarn in the English Lake District. J. Paleolimnol. 1997, 18, 103–120. [Google Scholar] [CrossRef]
- Peters, C.; Dekkers, M.J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth 2003, 28, 659–667. [Google Scholar] [CrossRef]
- Lees, J.A. Mineral magnetic properties of mixtures of environmental and synthetic materials: Linear additivity and interaction effects. Geophys. J. Int. 1997, 131, 335–346. [Google Scholar] [CrossRef]
- Lees, J.A. Evaluating magnetic parameters for use in source identification, classification and modelling of natural and environmental materials. In Environmental Magnetism: A Practical Guide; Technical Guide No. 6; Oldfield, F., Walden, J., Smith, J., Eds.; Quaternary Research Association: London, UK, 1999; pp. 113–138. [Google Scholar]
- Lascu, I.; McLauchlan, K.K.; Myrbo, A.; Leavitt, P.R.; Banerjee, S.K. Sediment-magnetic evidence for last millennium drought conditions at the prairie—Forest ecotone of northern United States. Palaeogeogr. Palaeoclimatol. Palaeocol. 2012, 337, 99–107. [Google Scholar] [CrossRef]
- Lees, J.A. Modelling the Magnetic Properties of Natural and Environmental Materials. Ph.D. Thesis, Coventry University, Coventry, UK, 1994. [Google Scholar]
- Rowan, J.S.; Goodwill, P.; Franks, S.W. Uncertainty estimation in fingerprinting suspended sediment sources. In Tracers in Geomorphology; Foster, I.D.L., Ed.; Wiley: Chichester, UK, 2000; pp. 279–290. [Google Scholar]
- Stockhausen, H. Some new aspects for the modelling of isothermal remanent magnetization acquisition curves by cumulative log Gaussian functions. Geophys. Res. Lett. 1998, 25, 2217–2220. [Google Scholar] [CrossRef]
- Kruiver, P.P.; Dekkers, M.J.; Heslop, D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization. Earth Planet. Sci. Lett. 2001, 189, 269–276. [Google Scholar] [CrossRef]
- Heslop, D.; McIntosh, G.; Dekkers, M.J. Using time and temperature dependant Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions. Geophys. J. Int. 2004, 157, 55–63. [Google Scholar] [CrossRef]
- Spassov, S.; Egli, R.; Heller, F.; Nourgaliev, D.K.; Hannam, J. Magnetic quantification of urban pollution sources in atmospheric particulate matter. Geophys. J. Int. 2004, 159, 555–564. [Google Scholar] [CrossRef]
- Sagnotti, L.; Macri, P.; Egli, R.; Mondino, M. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): Toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources. J. Geophys. Res. 2006, 111, B12S22. [Google Scholar] [CrossRef]
- Yamazaki, T. Paleoposition of Intertropical Convergence Zone in the eastern Pacific inferred from glacial-interglacial changes in terrigenous and biogenic magnetic mineral fractions. Geology 2012, 40, 151–154. [Google Scholar] [CrossRef]
- Chang, L.; Winklhofer, M.; Roberts, A.P.; Heslop, D.; Florindo, F.; Dekkers, M.J.; Krijgsman, W.; Kodama, K.; Yamamoto, Y. Low-temperature magnetic properties of pelagic carbonates: Oxidation of biogenic magnetite and identification of magnetosome chains. J. Geophys. Res. Sol. Earth 2013, 118, 6049–6065. [Google Scholar] [CrossRef]
- Jackson, M.; Solheid, P. On the quantitative analysis and evaluation of magnetic hysteresis data. Geochem. Geophys. Geosyst. 2010, 11, Q04Z15. [Google Scholar] [CrossRef]
- Pike, C.R.; Roberts, A.P.; Verosub, K.L. Characterizing interactions in fine magnetic particle systems using first order reversal curves. J. Appl. Phys. 1999, 85, 6660–6667. [Google Scholar] [CrossRef]
- Roberts, A.P.; Pike, C.R.; Verosub, K.L. First-order reversal curve diagrams and thermal relaxation effects in magnetic particles. Geophys. J. Int. 2001, 145, 721–730. [Google Scholar] [CrossRef]
- Egli, R.; Chen, A.P.; Winklhofer, M.; Kodama, K.P.; Horng, C.-S. Detection of noninteracting single domain particles using first-order reversal curve diagrams. Geochem. Geophys. Geosyst. 2010, 11, Q01Z11. [Google Scholar] [CrossRef]
- Carter-Stiglitz, B.; Moskowitz, B.; Jackson, M. Unmixing magnetic assemblages and the magnetic behavior of bimodal mixtures. J. Geophys. Res. 2001, 106, 26397–26412. [Google Scholar] [CrossRef]
- Yu, Y.; Dunlop, D.J.; Özdemir, Ö. Partial anhysteretic remanent magnetization in magnetite, 1: Additivity. J. Geophys. Res. 2002, 107, B001249. [Google Scholar] [CrossRef]
- Channell, J.E.T.; Hodell, D.A.; Lehman, B. Relative geomagnetic paleointensity and δ18O at ODP Site 983 (Gardar Drift, North Atlantic) since 350 ka. Earth Planet. Sci. Lett. 1997, 153, 103–118. [Google Scholar] [CrossRef]
- Channell, J.E.T. Geomagnetic paleointensity and directional secular variation at Ocean Drilling Program (ODP) Site 984 (Bjorn Drift) since 500 ka: Comparisons with ODP Site 983 (Gardar Drift). J. Geophys. Res. 1999, 104, 22937–22951. [Google Scholar] [CrossRef]
- Evans, H.F.; Channell, J.E.T.; Stoner, J.S.; Hillaire-Marcel, C.; Wright, J.D.; Neitzke, L.C.; Mountain, G.S. Paleointensity-assisted chronostratigraphy of detrital layers on the Eirik Drift (North Atlantic) since marine isotope stage 11. Geochem. Geophys. Geosyst. 2007, 8, Q11007. [Google Scholar] [CrossRef]
- Mazaud, A.; Channell, J.E.T.; Stoner, J.S. Relative paleointensity and environmental magnetism since 1.2 Ma at IODP site U1305 (Eirik Drift, NW Atlantic). Earth Planet. Sci. Lett. 2012, 357–358, 137–144. [Google Scholar] [CrossRef]
- Oldfield, F.; Yu, L. The influence of particle size variations on the magnetic properties of sediments from the north-eastern Irish Sea. Sedimentology 1994, 41, 1093–1108. [Google Scholar] [CrossRef]
- Hao, Q.; Oldfield, F.; Bloemendal, J.; Guo, Z. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the last 22 Ma. Geology 2008, 36, 727–730. [Google Scholar] [CrossRef]
- Hatfield, R.G.; Cioppa, M.T.; Trenhaile, A.S. Sediment sorting and beach erosion along a coastal foreland: Magnetic measurements in Point Pelee National Park, Ontario, Canada. Sediment. Geol. 2010, 231, 63–73. [Google Scholar] [CrossRef]
- Jakobsson, S.P. Chemistry and distribution pattern of recent basaltic rocks in Iceland. Lithos 1972, 5, 365–386. [Google Scholar] [CrossRef]
- Andrews, J.T.; Hardardóttir, J.; Stoner, J.S.; Principato, S.M. Holocene sediment magnetic properties along a transect from Ísafjardardjúp to Djúpáll, Northwest Iceland. Arct. Antarct. Alp. Res. 2008, 40, 1–15. [Google Scholar] [CrossRef]
- Willigers, B.J.A.; Krogstad, E.J.; Wijbrans, J.R. Comparison of thermochron- ometers in a slowly cooled granulite Terrain: Nagssugtoqidian Orogen, West Greenland. J. Petrol. 2001, 42, 1729–1749. [Google Scholar] [CrossRef]
- Willigers, B.J.A.; van Gool, J.A.M.; Wijbrans, R.; Krogstad, J.; Mezger, K. Posttectonic cooling of the Nagssugtoqidian orogen and a comparison of contrasting cooling histories in Precambrian and Phanerozoic orogens. J. Geol. 2002, 110, 503–517. [Google Scholar] [CrossRef]
- Rosenbaum, J.G.; Reynolds, R.L.; Colman, S.M. Fingerprinting of glacial silt in lake sediments yields continuous records of alpine glaciation (35–15 ka), western USA. Quat. Res. 2012, 78, 333–340. [Google Scholar] [CrossRef]
- McCave, I.N.; Manighetti, B.; Robinson, S.G. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 1995, 10, 593–610. [Google Scholar] [CrossRef]
- Fagel, N.; Hillaire-Marcel, C.; Humblet, M.; Brasseur, R.; Weis, D.; Stevenson, R. Nd and Pb isotope signatures of the clay-size fraction of Labrador Sea sediments during the Holocene: Implications for the inception of the modern deep circulation pattern. Paleoceanography 2004, 19, PA3002. [Google Scholar] [CrossRef]
- Praetorius, S.K.; McManus, J.F.; Oppo, D.W.; Curry, W.B. Episodic reductions in bottom-water currents since the last ice age. Nat. Geosci. 2008, 1, 449–452. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, R.; Roberts, A.P.; Li, S.; Chang, J.-H. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait. J. Geophys. Res. 2004, 109, B03103. [Google Scholar]
- Li, Y.-X.; Yu, Z.; Kodama, K.P.; Moeller, R.E. A 14,000-year environmental change history revealed by mineral magnetic data from White Lake, New Jersey, USA. Earth Planet. Sci. Lett. 2006, 246, 27–40. [Google Scholar] [CrossRef]
- Abbott, M.B.; Edwards, M.E.; Finney, B.P. A 40,000-yr record of environmental change from Burial Lake in Northwest Alaska. Quat. Res. 2010, 74, 156–165. [Google Scholar] [CrossRef]
- Balascio, N.L.; Bradley, R.S. Evaluating Holocene climate change in northern Norway using sediment records from two contrasting lake systems. J. Paleolimnol. 2012, 48, 259–273. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Li, G.; Oguchi, T.; He, H.; Shen, H. Discrimination in magnetic properties of different-sized sediments from the Changjiang and Huanghe Estuaries of China and its implication for provenance of sediment on the shelf. Mar. Geol. 2009, 260, 121–129. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, H.; Li, G.; Zhang, W.; Oguchi, T.; Bao, M.; Jiang, H.; Bishop, M.E. Magnetic properties of muddy sediments on the northeastern continental shelves of China: Implications for provenance and transportation. Mar. Geol. 2010, 274, 107–119. [Google Scholar] [CrossRef]
- Bush, D.C.; Jenkins, R.E.; McCaleb, S.B. Separation of swelling clay minerals by a centrifugal method. Clays Clay Miner. 1966, 14, 407–418. [Google Scholar] [CrossRef]
- Smith, J.P. Mineral Magnetic Studies on Two Shropshire-Cheshire Meres. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 1985. [Google Scholar]
- Walden, J.; Slattery, M.C. Verification of a simple gravity technique for separation of particle size fractions suitable for mineral magnetic analyses. Earth Surf. Process. Landf. 1993, 18, 829–833. [Google Scholar] [CrossRef]
- Clifton, J.; McDonald, P.; Plater, A.; Oldfield, F. An investigation into the efficiency of particle size separation using Stokes’ law. Earth Surf. Process. Landf. 1999, 24, 725–730. [Google Scholar] [CrossRef]
- Gallaway, E.; Trenhaile, A.S.; Cioppa, M.T.; Hatfield, R.G. Magnetic mineral transport and sorting in the swash-zone: Northern Lake Erie, Canada. Sedimentology 2012, 59, 1718–1734. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatfield, R.G. Particle Size-Specific Magnetic Measurements as a Tool for Enhancing Our Understanding of the Bulk Magnetic Properties of Sediments. Minerals 2014, 4, 758-787. https://doi.org/10.3390/min4040758
Hatfield RG. Particle Size-Specific Magnetic Measurements as a Tool for Enhancing Our Understanding of the Bulk Magnetic Properties of Sediments. Minerals. 2014; 4(4):758-787. https://doi.org/10.3390/min4040758
Chicago/Turabian StyleHatfield, Robert G. 2014. "Particle Size-Specific Magnetic Measurements as a Tool for Enhancing Our Understanding of the Bulk Magnetic Properties of Sediments" Minerals 4, no. 4: 758-787. https://doi.org/10.3390/min4040758
APA StyleHatfield, R. G. (2014). Particle Size-Specific Magnetic Measurements as a Tool for Enhancing Our Understanding of the Bulk Magnetic Properties of Sediments. Minerals, 4(4), 758-787. https://doi.org/10.3390/min4040758