Genesis and Multi-Episodic Alteration of Zircon-Bearing Chromitites from the Ayios Stefanos Mine, Othris Massif, Greece: Assessment of an Unconventional Hypothesis on the Origin of Zircon in Ophiolitic Chromitites
Abstract
:1. Introduction and Rationale of the Study
2. Geological Background and Field Work
2.1. General Geological Framework—The Othris Ophiolites
2.2. Study Area, Sampling and Field Observations
3. Laboratory Methods
4. Petrographic Investigation
4.1. Sample Characteristics
4.2. Micro-Structural Description of the Alteration Zones in Cr-Spinel
4.3. The Zr-Bearing Silicate Minerals
4.3.1. Distribution, Paragenesis and Micro-Textural Relations
4.3.2. Cathodoluminescence Imaging and Element Distribution Maps
5. Mineral Chemistry
5.1. Spinel-Type Minerals
5.2. Zirconium-Bearing Silicates
5.2.1. Zircon (Ideally ZrSiO4)
5.2.2. Ca-Bearing Zr-Rich Silicates: Armstrongite (Ideally CaZrSi6O15·2.5H2O) and Calciocatapleiite (Ideally CaZrSi3O9·2H2O)
6. Confocal Raman Microspectroscopy
7. Discussion
7.1. Magmatic Stage of Lithospheric Slab Evolution
7.1.1. Extent of Subsolidus Re-Equilibration and Parental Melt of the Chromitites
7.1.2. Genetic Mechanism and Geodynamic Setting of the Ayios Stefanos Chromitites
7.1.3. An Inductive Reasoning Approach to the Potential Origin of Zircons
7.2. Post-Magmatic Stage of Evolution
7.2.1. The Polyphase Cooling History of the Chromitites
7.2.2. Zircon Re-Equilibration with Deuteric Fluids
7.3. Synthesis and Geochronological Implications
8. Concluding Remarks
- The Ayios Stefanos Al-rich chromitites precipitated from an alkali-rich melt of medium-Ti basalt (MTB) affinity produced at a near-transform boundary of a slow-spreading ridge.
- A few samples show limited Cr-spinel replacement by spinel with oriented lamellae of Mg-silicates (predominantly chlorite) ascribed to the infiltration of oxidizing fluids in the chromitites. Most specimens display common porous spinel for Cr-spinel substitution linked to Cr-spinel (or lamellae-rich spinel) breakdown after reaction with olivine in a reducing environment.
- Chromitites host numerous tiny, subhedral to anhedral and elongated Zr-bearing silicate phase that are commonly placed in open and restored fractures in Cr-spinel. Textural associations and compositional data echo the possibility that zircons originate from high-T fluids emanating from the gabbroic dykes that intrude both chromitites and peridotites in the study area.
- Zircon pseudomorphic replacement by Ca-bearing Zr-rich silicates and enrichment in solvent cation oxides (CaO, Al2O3 and FeO) provide evidence for zircon re-equilibration with deuteric fluids.
- This study highlights that a clear understanding of the origin of zircons in ophiolitic chromitites is essential for the interpretation of the sequence of synchronological petrologic and deformation events recorded by upper-mantle rocks, including their obduction, emplacement and subsequent alteration.
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Sample Number | Morphology | Chr Texture | Groundmass Texture | Secondary Phases | Zr-Si Phases | Other Features |
---|---|---|---|---|---|---|
1a | Boulder | Massive | Mesh | Srp, Chl, Tr, Hgr, Porous Spn | + | Hgr microveins |
1b | Boulder | Massive | Interpenetrating | Srp, Chl, Tr, Porous Spn | + | Chr brecciation |
2a | Boulder | Massive | Interlocking, bastite | Srp, Chl, Tr, Wo, Hgr | - | - |
2b | Boulder | Massive | Interpenetrating, bastite | Srp, Chl, Wo | - | - |
3a | Boulder | Massive | Mesh | Srp, Chl | - | Pull apart texture in Chr |
3b | Boulder | Massive | Mesh | Srp, Chl, Hgr | - | Pull apart texture in Chr |
3c | Boulder | Massive | Interpenetrating | Srp, Chl, Hgr | - | Microfolds |
3d | Boulder | Massive | Interpenetrating | Srp, Chl, Hgr, Cal | - | Hgr-Cal intergrowths |
4a | Boulder | Massive | Mesh | Srp, Chl, Wo | - | Lobate Chr |
4b | Boulder | Semi-massive | Mesh | Srp, Chl | - | Pull apart texture in Chr |
5 | Boulder | Massive | Interpenetrating | Srp, Chl, Porous Spn | - | Chr brecciation |
6 | Boulder | Semi-massive | Mesh, bastite | Srp, Chl, Tr, Wo | + | Rt exsolutions |
7a | Lenticular | Semi-massive | Interpenetrating, hourglass | Srp, Chl, Tr, Porous & Lamellae-rich Spn | - | Lobate Chr |
7b | Lenticular | Massive | Interpenetrating, hourglass | Srp, Chl, Tr, Porous & Lamellae-rich Spn | - | Chl intersection by Srp |
7c | Lenticular | Massive | Interpenetrating, mesh | Srp, Chl, Tr, Porous Spn | + | Chr brecciation |
8 | Lenticular | Semi-massive | Interpenetrating, mesh | Srp, Chl, Tr, Porous Spn | + | - |
Sample/Analysis Number | SiO2 (wt %) | TiO2 | Al2O3 | Cr2O3 | V2O3 | FeOt | Fe2O3 (rec.) | MnO | MgO | NiO | CaO | ZnO | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1-a/1 | bdl | 0.05 | 26.31 | 43.61 | 0.17 | 13.28 | 1.28 | 0.20 | 15.27 | 0.20 | bdl | 0.10 | 99.17 |
2-a/5 | bdl | bdl | 24.79 | 46.00 | 0.18 | 14.16 | 0.68 | 0.20 | 14.42 | 0.11 | bdl | 0.06 | 99.92 |
2-d/5 | bdl | 0.10 | 24.96 | 46.29 | 0.15 | 14.46 | 0.58 | 0.21 | 14.28 | 0.16 | bdl | 0.10 | 100.71 |
3-c/17 | bdl | 0.08 | 26.45 | 43.03 | 0.20 | 15.05 | 2.14 | 0.24 | 14.62 | 0.09 | 0.41 | bdl | 100.16 |
3-d/3 | bdl | bdl | 26.42 | 43.35 | 0.16 | 14.22 | 2.15 | 0.18 | 15.38 | 0.17 | bdl | 0.14 | 100.01 |
4-b/10 | bdl | 0.13 | 19.66 | 50.06 | 0.16 | 15.81 | 1.22 | 0.18 | 13.00 | 0.11 | bdl | bdl | 99.08 |
5/4 | bdl | bdl | 23.77 | 44.89 | 0.21 | 14.70 | 3.01 | 0.15 | 15.21 | 0.16 | bdl | bdl | 99.08 |
6/1 | bdl | 0.29 | 18.38 | 43.47 | 0.26 | 27.87 | 8.32 | 0.25 | 9.37 | 0.10 | bdl | 0.07 | 100.07 |
7-a/20 | bdl | 0.10 | 26.47 | 43.58 | 0.14 | 14.89 | 2.37 | 0.13 | 15.35 | 0.12 | bdl | 0.07 | 100.86 |
7-b/1 | bdl | 0.08 | 25.49 | 44.33 | 0.17 | 13.07 | 3.17 | 0.14 | 16.82 | 0.08 | bdl | bdl | 100.18 |
7-c/3 | bdl | 0.07 | 24.96 | 45.99 | 0.13 | 12.89 | 1.14 | 0.16 | 15.57 | 0.11 | bdl | bdl | 99.90 |
8/9 | 0.03 | 0.16 | 17.60 | 50.91 | 0.21 | 16.62 | 4.52 | 0.38 | 14.41 | na | bdl | 0.08 | 100.39 |
Apfu | Si | Ti | Al | Cr | V | Fe3+ | Fe2+ | Mn | Mg | Ni | Ca | Zn | Total |
1-a/1 | - | - | 0.93 | 1.04 | - | 0.03 | 0.31 | 0.01 | 0.68 | 0.01 | - | - | 3.01 |
2-a/5 | - | - | 0.88 | 1.10 | - | 0.02 | 0.34 | 0.01 | 0.65 | - | - | - | 3.00 |
2-d/5 | - | - | 0.88 | 1.10 | - | 0.01 | 0.35 | 0.01 | 0.64 | - | - | - | 2.99 |
3-c/17 | - | - | 0.93 | 1.02 | 0.01 | 0.05 | 0.33 | 0.01 | 0.65 | - | 0.01 | - | 3.01 |
3-d/3 | - | - | 0.93 | 1.02 | - | 0.05 | 0.31 | - | 0.68 | - | - | - | 2.99 |
4-b/10 | - | - | 0.73 | 1.24 | - | 0.03 | 0.39 | 0.01 | 0.61 | - | - | - | 3.01 |
5/4 | - | - | 0.85 | 1.08 | 0.01 | 0.07 | 0.30 | - | 0.69 | - | - | - | 3.00 |
6/1 | - | 0.01 | 0.69 | 1.10 | 0.01 | 0.20 | 0.54 | 0.01 | 0.45 | - | - | - | 3.01 |
7-a/20 | - | - | 0.92 | 1.02 | - | 0.05 | 0.32 | - | 0.68 | - | - | - | 2.99 |
7-b/1 | - | - | 0.89 | 1.04 | - | 0.07 | 0.25 | - | 0.74 | - | - | - | 2.99 |
7-c/3 | - | - | 0.88 | 1.09 | - | 0.03 | 0.30 | - | 0.70 | - | - | - | 3.00 |
8/9 | - | - | 0.64 | 1.24 | 0.01 | 0.11 | 0.32 | 0.01 | 0.66 | - | - | - | 2.99 |
Sample/Analysis Number | SiO2 (wt %) | TiO2 | Al2O3 | Cr2O3 | V2O3 | FeO | Fe2O3 (rec.) | MnO | MgO | NiO | CaO | ZnO | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1-a/6 | bdl | 0.16 | 17.25 | 50.67 | 0.13 | 18.35 | 3.20 | 0.20 | 12.32 | 0.06 | bdl | bdl | 99.14 |
1-b/6 | bdl | 0.10 | 17.36 | 51.11 | 0.19 | 17.11 | 3.97 | 0.31 | 13.69 | na | bdl | 0.06 | 99.93 |
1-b/8 | bdl | 0.11 | 15.91 | 51.68 | 0.18 | 18.42 | 5.08 | 0.36 | 13.37 | na | bdl | bdl | 100.03 |
5/17 | bdl | 0.12 | 18.30 | 49.63 | 0.17 | 18.74 | 2.51 | 0.33 | 11.52 | 0.10 | bdl | 0.21 | 99.12 |
7-a/7 | 0.56 | 0.11 | 8.57 | 48.38 | 0.17 | 21.35 | 15.52 | 0.18 | 16.11 | 0.09 | bdl | bdl | 95.52 |
7-a/8 | bdl | 0.11 | 14.32 | 48.52 | 0.20 | 24.14 | 10.19 | 0.20 | 12.56 | 0.20 | bdl | bdl | 100.25 |
7-b/2 | 0.61 | bdl | 12.57 | 45.63 | 0.14 | 16.63 | 12.67 | 0.22 | 17.37 | 0.03 | 0.04 | 0.10 | 93.34 |
7-b/3 | 0.01 | 0.06 | 12.04 | 49.12 | 0.14 | 25.83 | 12.08 | 0.24 | 12.17 | 0.19 | bdl | 0.19 | 99.99 |
7-b/21 | 8.30 | bdl | 8.98 | 45.52 | 0.10 | 18.13 | 11.81 | 0.18 | 17.04 | 0.09 | bdl | bdl | 98.34 |
7-b/22 | 0.06 | 0.07 | 0.55 | 56.11 | 0.21 | 29.38 | 16.68 | 0.26 | 11.19 | bdl | bdl | bdl | 97.83 |
7-c/2 | 0.06 | 0.10 | 7.80 | 60.48 | 0.20 | 20.74 | 3.45 | 0.31 | 9.97 | 0.11 | bdl | bdl | 99.77 |
7-c/4 | bdl | 0.06 | 8.36 | 58.96 | 0.21 | 22.61 | 3.72 | 0.30 | 8.89 | 0.14 | bdl | bdl | 99.53 |
8/6 | bdl | 0.54 | 8.27 | 54.43 | 0.26 | 23.20 | 9.70 | 0.49 | 11.94 | na | 0.03 | bdl | 99.16 |
Apfu | Si | Ti | Al | Cr | V | Fe3+ | Fe2+ | Mn | Mg | Ni | Ca | Zn | Total |
1-a/6 | - | - | 0.65 | 1.27 | - | 0.08 | 0.41 | 0.01 | 0.58 | - | - | - | 3.00 |
1-b/6 | - | - | 0.64 | 1.26 | 0.01 | 0.09 | 0.35 | 0.01 | 0.64 | - | - | - | 3.00 |
1-b/8 | - | - | 0.59 | 1.28 | 0.01 | 0.12 | 0.36 | 0.01 | 0.63 | - | - | - | 3.00 |
5/17 | - | - | 0.69 | 1.25 | - | 0.06 | 0.44 | 0.01 | 0.55 | - | - | 0.01 | 3.01 |
7-a/7 | 0.02 | - | 0.33 | 1.26 | 0.01 | 0.38 | 0.20 | 0.01 | 0.79 | - | - | - | 3.00 |
7-a/8 | - | - | 0.54 | 1.22 | 0.01 | 0.24 | 0.40 | 0.01 | 0.59 | 0.01 | - | - | 3.02 |
7-b/2 | 0.02 | - | 0.48 | 1.18 | - | 0.31 | 0.14 | 0.01 | 0.85 | - | - | - | 2.99 |
7-b/3 | - | - | 0.46 | 1.25 | - | 0.29 | 0.40 | 0.01 | 0.58 | 0.01 | - | 0.01 | 3.01 |
7-b/21 | 0.26 | - | 0.33 | 1.13 | - | 0.28 | 0.20 | 0.01 | 0.80 | - | - | - | 3.01 |
7-b/22 | - | - | 0.02 | 1.53 | 0.01 | 0.43 | 0.42 | 0.01 | 0.58 | - | - | - | 3.00 |
7-c/2 | - | - | 0.31 | 1.60 | 0.01 | 0.09 | 0.49 | 0.01 | 0.50 | - | - | - | 3.01 |
7-c/4 | - | - | 0.33 | 1.57 | 0.01 | 0.09 | 0.54 | 0.01 | 0.45 | - | - | - | 3.00 |
8/6 | - | 0.01 | 0.32 | 1.42 | 0.01 | 0.24 | 0.40 | 0.01 | 0.59 | - | - | - | 3.00 |
An. | SiO2 (wt %) | Al2O3 | FeO | MgO | CaO | Na2O | Y2O3 | ZrO2 | Ce2O3 | HfO2 | UO2 | ThO2 | P2O5 | Total |
4 | 35.63 | 0.12 | bdl | bdl | 0.05 | 0.02 | 0.98 | 62.63 | bdl | bdl | 0.06 | bdl | bdl | 99.49 |
5 | 35.66 | 1.25 | bdl | 0.29 | 2.06 | 0.05 | 0.86 | 59.53 | bdl | 0.33 | bdl | 0.26 | bdl | 100.29 |
6 | 37.14 | 0.86 | bdl | 0.24 | 0.82 | bdl | 0.92 | 60.24 | bdl | bdl | 0.12 | 0.15 | bdl | 100.49 |
12 | 36.00 | 0.51 | bdl | 0.15 | 0.32 | 0.02 | 1.16 | 61.08 | bdl | 0.00 | 0.16 | bdl | bdl | 99.40 |
13 | 36.57 | 0.65 | bdl | 0.30 | 0.67 | 0.04 | 0.86 | 59.12 | 0.12 | 0.28 | 0.11 | bdl | bdl | 98.72 |
16 | 36.54 | 0.19 | bdl | 0.20 | 0.20 | 0.07 | 0.53 | 63.05 | bdl | bdl | bdl | bdl | bdl | 100.78 |
21 | 36.41 | 0.40 | bdl | 0.08 | 0.00 | 0.04 | 0.71 | 61.77 | bdl | 0.39 | 0.06 | 0.09 | bdl | 99.95 |
23 | 37.62 | 1.12 | bdl | 0.32 | 0.17 | 0.00 | 0.63 | 58.07 | bdl | 0.20 | bdl | 0.08 | bdl | 98.21 |
25 | 36.15 | 0.16 | bdl | 0.09 | 0.06 | 0.00 | 0.44 | 62.70 | bdl | 0.41 | bdl | bdl | bdl | 100.01 |
35 | 35.97 | 0.14 | 1.27 | 3.62 | 0.21 | 0.03 | 0.07 | 52.71 | 0.08 | 1.73 | 0.15 | bdl | 0.07 | 96.05 |
36 | 34.28 | bdl | 0.32 | 0.03 | 0.07 | 0.03 | 0.13 | 63.25 | 0.15 | 1.68 | bdl | bdl | 0.36 | 100.30 |
37 | 34.17 | bdl | 0.37 | 0.05 | 0.04 | bdl | 0.19 | 64.03 | 0.09 | 1.53 | bdl | bdl | 0.43 | 100.90 |
40 | 45.88 | 0.19 | 2.18 | 3.74 | 14.58 | 0.04 | 0.42 | 22.36 | 0.09 | 1.03 | 0.21 | 0.08 | 0.15 | 90.95 |
41 | 48.86 | 0.15 | 1.60 | 3.60 | 7.95 | 0.05 | 0.47 | 25.79 | 0.00 | 0.89 | 0.08 | 0.21 | 0.10 | 89.75 |
Apfu | Si | Al | Fe2+ | Mg | Ca | Na | Y | Zr | Ce | Hf | U | Th | P | Total |
4 | 1.07 | - | - | - | - | - | 0.02 | 0.92 | - | - | - | - | - | 2.01 |
5 | 1.06 | 0.04 | - | 0.01 | 0.07 | - | 0.01 | 0.86 | - | - | - | - | - | 2.05 |
6 | 1.09 | 0.03 | - | 0.01 | 0.03 | - | 0.01 | 0.86 | - | - | - | - | - | 2.03 |
12 | 1.07 | 0.02 | - | 0.01 | 0.01 | - | 0.02 | 0.89 | - | - | - | - | - | 2.02 |
13 | 1.09 | 0.02 | - | 0.01 | 0.02 | - | 0.01 | 0.86 | - | - | - | - | - | 2.01 |
16 | 1.08 | 0.01 | - | 0.01 | 0.01 | - | 0.01 | 0.91 | - | - | - | - | - | 2.03 |
21 | 1.08 | 0.01 | - | - | - | - | 0.01 | 0.89 | - | - | - | - | - | 1.99 |
23 | 1.11 | 0.04 | - | 0.01 | 0.01 | - | 0.01 | 0.84 | - | - | - | - | - | 2.02 |
25 | 1.08 | 0.01 | - | - | - | - | 0.01 | 0.91 | - | - | - | - | - | 2.01 |
35 | 1.09 | 0.01 | 0.03 | 0.16 | 0.01 | - | - | 0.78 | - | 0.01 | - | - | - | 2.09 |
36 | 1.03 | - | 0.01 | - | - | - | - | 0.93 | - | 0.01 | - | - | 0.01 | 1.99 |
37 | 1.03 | - | 0.01 | - | - | - | - | 0.94 | - | 0.01 | - | - | 0.01 | 2.00 |
40 | 2.98 | 0.01 | 0.12 | 0.36 | 1.02 | - | 0.01 | 0.71 | - | 0.02 | - | - | 0.01 | 5.24 |
41 | 5.25 | 0.02 | 0.14 | 0.58 | 0.92 | 0.01 | 0.03 | 1.35 | - | 0.03 | - | 0.01 | 0.01 | 8.35 |
Raman Analysis Number | Eg (Tetrahedron Rotation) | A1g (Symmetric Bending, v2) | B1g (Antisym. Stetching, v3) | ||||||
---|---|---|---|---|---|---|---|---|---|
v | FWHM | I | v | FWHM | I | v | FWHM | I | |
15.12.078 | 353.4 | 12.40 | 319.50 | 438.90 | 8.06 | 257.75 | 1003.7 | 10.09 | 373.74 |
15.12.080 | 352.1 | 17.17 | 531.07 | 438.05 | 19.38 | 735.50 | 1002.7 | 11.30 | 417.48 |
15.12.084 | 354.1 | 10.11 | 475.50 | 438.60 | 13.80 | 989.50 | 1005.1 | 10.90 | 816.26 |
15.12.087 | 353.4 | 12.70 | 381.29 | 438.99 | 16.16 | 780.10 | 1003.7 | 11.90 | 624.87 |
15.12.091 | 353.1 | 14.70 | 198.52 | 438.96 | 14.86 | 504.21 | 1003.6 | 12.10 | 310.05 |
15.12.096 | 353.9 | 12.80 | 202.29 | 438.67 | 14.14 | 454.63 | 1003.7 | 12.60 | 315.24 |
15.12.099 | 355.4 | 11.30 | 402.32 | 438.78 | 15.38 | 809.33 | 1003.9 | 13.34 | 738.46 |
15.12.102 | 355.2 | 16.08 | 1535.80 | 439.27 | 16.44 | 787.89 | 1004.3 | 13.60 | 694.56 |
15.12.105 | 355.1 | 15.14 | 1927.50 | 439.56 | 15.52 | 976.13 | 1004.9 | 13.32 | 935.55 |
15.12.110 | 353.4 | 12.34 | 436.40 | 439.24 | 13.42 | 1210.50 | 1004.1 | 14.54 | 1098.04 |
15.12.117 | 353.5 | 13.54 | 779.04 | 438.25 | 15.78 | 766.12 | 1004.5 | 13.08 | 700.00 |
15.12.126 | 354.8 | 9.80 | 151.80 | 439.40 | 14.86 | 599.60 | 1005.6 | 14.86 | 249.70 |
References
- Ahmed, A.H.; Arai, S. Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contrib. Mineral. Petrol. 2002, 143, 263–278. [Google Scholar] [CrossRef]
- Leblanc, M.; Violette, J.F. Distribution of aluminium-rich and chromium-rich chromite pods in ophiolite peridotites. Econ. Geol. 1983, 78, 293–301. [Google Scholar] [CrossRef]
- Arai, S.; Yurimoto, H. Podiform chromitites of the Tari-Mikasa ultramafic complex, Southwest Japan, as mantle-melt interaction products. Econ. Geol. 1994, 89, 1279–1288. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Shmizu, N.; Salters, V.J.M. Extraction of mid-ocean ridge basalt from the upwelling mantle by focused melt in dunite channels. Nature 1995, 375, 747–753. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Griffin, W.L.; Proenza, J.A.; Gervilla, F.; O’Reilly, S.Y.; Akbulut, M.; Pearson, N.J.; Arai, S. Chromitites in ophiolites: How, where, when, why? Part II. The crystallization of chromitites. Lithos 2014, 189, 140–158. [Google Scholar] [CrossRef]
- Pagé, P.; Barnes, S.-J. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada. Econ. Geol. 2009, 104, 997–1018. [Google Scholar] [CrossRef]
- Payot, B.D.; Arai, S.; Dick, H.J.B.; Abe, N.; Ichiyama, Y. Podiform chromitite formation in a low-Cr/high-Al system: An example from the Southwest Indian Ridge (SWIR). Mineral. Petrol. 2014, 108, 553–549. [Google Scholar] [CrossRef]
- Arai, S.; Miura, M. Podiform chromitites do form beneath mid-ocean ridges. Lithos 2015, 232, 143–149. [Google Scholar] [CrossRef]
- Borisova, A.Y.; Ceuleneer, G.; Kamenetsky, V.S.; Arai, S.; Béjina, F.; Abily, B.; Bindeman, I.N.; Polvé, M.; De Parseval, P.; Aigouy, T.; et al. A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. J. Petrol. 2012, 53, 2411–2440. [Google Scholar] [CrossRef]
- Yamamoto, S.; Komiya, T.; Hirose, K.; Maruyama, S. Coesite and clinopyroxene exsolution lamellae in chromites: In situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 2009, 109, 314–322. [Google Scholar] [CrossRef]
- González-Jimenéz, J.M.; Proenza, J.A.; Gervilla, F.; Melgarejo, J.C.; Blanco-Moreno, J.A.; Ruiz-Sánchez, R.; Griffin, W.L. High-Cr and High-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos 2011, 125, 101–121. [Google Scholar] [CrossRef]
- Arai, S. Conversion of low-pressure chromitites to ultra-high-pressure chromitites by deep recycling: A good inference. Earth Planet. Sci. Lett. 2013, 379, 81–87. [Google Scholar] [CrossRef]
- Xu, X.Z.; Yang, J.S.; Robinson, P.T.; Xiong, F.H.; Zhu, B.; Guo, G.L. Ultra high pressure, highly reduced and crustal-type minerals from podiform chromitite and mantle peridotite of the Luobusa ophiolite, Tibet. Gondwana Res. 2015, 2, 686–700. [Google Scholar] [CrossRef]
- Barnes, S.J. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. J. Petrol. 2000, 41, 387–409. [Google Scholar] [CrossRef]
- Burkhard, D.J.M. Accessory chromium spinels: Their coexistence and alteration in serpentinites. Geochim. Cosmochim. Acta 1993, 57, 1297–1306. [Google Scholar] [CrossRef]
- Merlini, A.; Grieco, G.; Diella, V. Ferritchromite and chromian-chlorite formation in mélange-hosted Kalkan chromitite (Southern Urals, Russia). Am. Mineral. 2009, 94, 1459–1467. [Google Scholar] [CrossRef]
- Grieco, G.; Merlini, A. Chromite alteration processes within Vourinos ophiolite. Int. J. Earth Sci. 2012, 101, 1523–1533. [Google Scholar] [CrossRef]
- Colás, V.; González-Jimenéz, J.M.; Griffin, W.L.; Fanlo, I.; Gervilla, F.; O’Reilly, S.Y.; Pearson, N.J.; Kerestedjian, T.; Proenza, J.A. Fingerprints of metamorphism in chromite: New insights from minor and trace elements. Chem. Geol. 2014, 389, 137–152. [Google Scholar] [CrossRef]
- Spangenberg, K. Die chromitlagerstätte von Tampadel in Zobten. Z. Prakt. Geol. 1943, 51, 13–35. [Google Scholar]
- Gervilla, F.; Padron-Navarta, J.A.; Kerestedjian, T.; Sergeeva, I.; Gonzalez-Jimenez, J.M.; Fanlo, I. Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: A two stage process. Contrib. Mineral. Petrol. 2012, 164, 643–657. [Google Scholar] [CrossRef]
- Savelieva, G.N.; Suslov, P.V.; Larionov, A.N. Vendian tectono-magmatic events in mantle ophiolitic complexes of the Polar Urals: U-Pb dating of zircon from chromitite. Geotectonics 2007, 41, 105–113. [Google Scholar] [CrossRef]
- Robinson, P.T.; Trumbull, R.B.; Schmitt, A.; Yang, J.-S.; Li, J.-W.; Zhou, M.-F.; Erzinger, J.; Dare, S.; Xiong, F. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Res. 2015, 27, 486–506. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Locmelis, M.; Belousova, E.; Griffin, W.L.; Gervilla, F.; Kerestedjian, T.; O’Reilly, S.Y.; Sergeeva, I.; Pearson, N.J. Genesis and tectonic implications of podiform chromitites in the metamorphosed Ultramafic Massif of Dobromirtsi (Bulgaria). Gondwana Res. 2015, 27, 555–574. [Google Scholar] [CrossRef]
- Stern, R.J.; Ali, K.A.; Liegois, J.P.; Jhonson, P.R.; Kozdrojs, W.; Kattan, F.H. Distribution and significance of pre-Neoproterozoic zircons in juvenile Neoproterozoic igneous rocks of the Arabian-Nubian shield. Am. J. Sci. 2010, 130, 791–811. [Google Scholar] [CrossRef]
- Yamamoto, S.; Komiya, T.; Yamamoto, H.; Kaneko, Y.; Terabayashi, M.; Katayama, I.; Iizuka, T.; Maruyama, S.; Yang, J.; Kon, Y.; et al. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet. Island Arc 2013, 22, 89–103. [Google Scholar] [CrossRef]
- McGowan, N.; Griffin, W.L.; González-Jiménez, J.M.; Belousova, E.; Afonso, J.C.; Shi, R.; McCammon, C.A.; Pearson, N.J.; O’Reilly, S.Y. Tibetan chromitites: Excavating the slab graveyard. Geology 2015, 43, 179–182. [Google Scholar] [CrossRef]
- Belousova, E.A.; González-Jiménez, J.M.; Graham, I.; Griffin, W.L.; O’Reilly, S.Y.; Pearson, N.; Martin, L.; Craven, S.; Talavera, C. The enigma of crustal zircons in upper-mantle rocks: Clues from the Tumut ophiolite, southeast Australia. Geology 2015, 43, 119–122. [Google Scholar] [CrossRef]
- Portella, Y.M.; Zaccarini, F.; Luvizotto, G.L.; Garuti, G.; Bakker, R.J.; Angeli, N.; Thalhammer, O. The Cedrolina chromitite, Goiás State, Brazil: A metamorphic puzzle. Minerals 2016, 6, 91. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Clift, P.D.; Degnan, P.J.; Jones, G. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 87, 289–343. [Google Scholar] [CrossRef]
- Vérgely, P. Origine “vardarienne”, chevauchement vers l’Ouest et rétrocharriage vers l’Est des ophiolites de Macédoine (Grèce) au cours du Jurassique supérieur-Eocrétacé. CR Acad. Sci. Paris 1976, 280, 1063–1066. (In French) [Google Scholar]
- Smith, A. Othris, Pindos and Vourinos ophiolites and the Pelagonian zone. In Proceedings of the 6th Colloquium on the Geology of the Aegean Region, Athens, Greece, 14–20 September 1977; pp. 1369–1374.
- Smith, A.; Rassios, A. The evolution of ideas for the origin and emplacement of the western Hellenic ophiolites. In Ophiolite Concept and the Evolution of Geological Thought; GSA Special Papers; Dilek, Y., Newcomb, S., Eds.; GSA Special Publication: Boulder, CO, USA, 2003; Volume 373, pp. 337–350. [Google Scholar]
- Rassios, A.; Konstantopoulou, G. Emplacement tectonism and the position of chrome ores in the Mega Isoma peridotites, SW Othris, Greece. Bull. Geol. Soc. Greece 1993, 28, 463–474. [Google Scholar]
- Ferrière, J.; Bertrand, J.; Simantov, J.; De Wever, P. Comparaison entre les formations volcano-detritiques (Mélanges) du malm des Hellenides internes (Othrys, Eubee): Implications geodynamics. Bull. Geol. Soc. Greece 1988, 20, 223–235. (In French) [Google Scholar]
- Spray, J.G.; Bébien, J.; Rex, D.C.; Roddick, J.C. Age constraints on the igneous and metamorphic evolution of the Hellenic-Dinaric ophiolites. In The Geological Evolution of the Eastern Mediterranean; Dixon, J.E., Robertson, A.H.F., Eds.; The Geological Society Special Publications: London, UK, 1984; Volume 17, pp. 619–627. [Google Scholar]
- Rassios, A.; Dilek, Y. Rotational deformation in the Jurassic Mesohellenic Ophiolites, Greece, and its tectonic significance. Lithos 2009, 108, 207–223. [Google Scholar] [CrossRef]
- Armstrong, J.T. CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal. 1995, 4, 177–200. [Google Scholar]
- Fleet, M.E.; Angeli, N.; Pan, Y. Oriented chlorite lamellae in chromite from the Pedra Branca Mafic-Ultramafic Complex, Ceará, Brazil. Am. Mineral. 1993, 78, 68–74. [Google Scholar]
- Nasdala, L.; Kronz, A.; Wirth, R.; Váczi, T.; Pérez-Soba, C.; Willner, A.; Kennedy, A.K. The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochim. Cosmochim. Acta 2009, 73, 1637–1650. [Google Scholar] [CrossRef] [Green Version]
- Nasdala, L.; Lengauer, C.L.; Hanchar, J.M.; Kronz, A.; Wirth, R.; Blanc, P.; Kennedy, A.K.; Seydoux-Guillaume, A.-M. Annealing radiation damage and the recovery of cathodoluminescence. Chem. Geol. 2002, 191, 121–140. [Google Scholar] [CrossRef]
- Sommerauer, J. Trace elements distribution patterns and mineralogical stability of zircons—An application for combined electron microprobe techniques. Electron Microsc. Soc. S. Afr. Proc. 1974, 4, 71–72. [Google Scholar]
- Bonavia, F.F.; Diella, V.; Ferrario, A. Precambrian podiform chromitites from Kenticha Hill, Southern Ethiopia. Econ. Geol. 1993, 88, 198–202. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Arai, S. Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction. Resour. Geol. 1997, 47, 177–187. [Google Scholar]
- Kamenetsky, V.S.; Crawford, A.J.; Meffre, S. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef]
- Claiborne, L.L.; Miller, C.F.; Walker, B.A.; Wooden, J.L.; Mazdab, F.K.; Bea, F. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada. Mineral. Mag. 2006, 70, 517–543. [Google Scholar] [CrossRef]
- Dawson, P.; Hargreave, M.M.; Wilkinson, G.R. The vibrational spectrum of zircon (ZrSiO4). J. Phys. C Solid State Phys. 1971, 4, 240–255. [Google Scholar] [CrossRef]
- Nasdala, L.; Zhang, M.; Kempe, U.; Panczer, G.; Gaft, M.; Andrut, M.; Plötze, M. Spectroscopic methods applied to zircon. Rev. Mineral. Geochem. 2003, 53, 427–467. [Google Scholar] [CrossRef]
- Zhang, M.; Salje, E.K.H.; Farnan, I.; Graeme-Barber, A.; Daniel, P.; Ewing, R.C.; Clark, A.M.; Leroux, H. Metamictization of zircon: Raman spectroscopic study. J. Phys. Condens. Matter 2000, 12, 1915–1925. [Google Scholar] [CrossRef]
- Palenik, C.S.; Nasdala, L.; Ewing, R.C. Radiation damage in zircon. Am. Mineral. 2003, 88, 770–781. [Google Scholar] [CrossRef]
- Johan, Z.; Dunlop, H.; Le Bel, Robert, J.L.; Volfinger, M. Origin of chromite deposits in ophiolitic complexes: Evidence for a volatile- and sodium-rich reducing fluid phase. Fortschr. Mineral. 1983, 61, 105–107. [Google Scholar]
- Maurel, C.; Maurel, P. Étude expérimentale de la distribution de l’aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: Teneur en chrome des spinelles. Bull. Minéral. 1982, 105, 197–202. (In French) [Google Scholar]
- Zaccarini, F.; Garuti, G.; Proenza, J.A.; Campos, L.; Thalhammer, O.A.R.; Aiglsperger, T.; Lewis, J. Chromite and platinum-group-elements mineralization in the Santa Elena ophiolitic ultramafic nappe (Costa Rica): Geodynamic implications. Geol. Acta 2011, 9, 407–423. [Google Scholar]
- Augé, T. Chromite deposits in the northwestern Oman ophiolite: Mineralogical constraints. Miner. Deposita 1987, 22, 1–10. [Google Scholar] [CrossRef]
- Wilson, M. Igneous Petrogenesis; Unwin Hyman: London, UK, 1989; p. 466. [Google Scholar]
- Rollinson, H. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: Inferred parental melt compositions. Contrib. Mineral. Petrol. 2008, 156, 273–288. [Google Scholar] [CrossRef]
- Photiades, A.; Saccani, E.; Tassinari, R. Petrogenesis and tectonic setting of volcanic rocks from the Subpelagonian ophiolitic mélange in the Agoriani area (Othrys, Greece). Ofioliti 2003, 28, 121–135. [Google Scholar]
- Saccani, E.; Beccaluva, L.; Coltorti, M.; Siena, F. Petrogenesis and tectono-magmatic significance of the Albanide-Hellenide subpelagonian ophiolites. Ofioliti 2004, 29, 77–95. [Google Scholar]
- Barth, M.G.; Mason, P.R.D.; Davies, G.R.; Drury, M.R. The Othris Ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge. Lithos 2008, 100, 234–254. [Google Scholar] [CrossRef]
- Saccani, E.; Beccaluva, L.; Photiades, A.; Zeda, O. Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian-Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic-Jurassic evolution of the Neo-Tethys in the Dinaride sector. Lithos 2011, 124, 227–242. [Google Scholar] [CrossRef]
- Dijkstra, A.H.; Drury, M.R.; Vissers, R.L.M. Structural petrology of plagioclase-peridotites in the West Othris Mountains (Greece): Melt impregnation in mantle lithosphere. J. Petrol. 2001, 42, 5–24. [Google Scholar] [CrossRef]
- Dijkstra, A.H.; Barth, M.G.; Drury, M.R.; Mason, P.R.D.; Vissers, R.L.M. Diffuse porous melt flow and melt-rock reaction in the mantle lithosphere at a slow-spreading ridge: A structural petrology and LA-ICP-MS study of the Othris Peridotite Massif (Greece). Geochem. Geophys. Geosyst. 2003, 4, 8613. [Google Scholar] [CrossRef]
- Bizimis, M.; Salters, V.J.M.; Bonatti, E. Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem. Geol. 2000, 165, 67–85. [Google Scholar] [CrossRef]
- Grieco, G.; Ferrario, A.; Von Quadt, A.; Koeppel, V.; Mathez, E.A. The zircon-bearing chromitites of the phlogopite peridotite of Finero (Ivrea Zone, Southern Alps): Evidence and geochronology of a metasomatized mantle slab. J. Petrol. 2001, 42, 89–101. [Google Scholar] [CrossRef]
- Zaccarini, F.; Stumpfl, E.; Garuti, G. Zirconolite and Zr-Th-U minerals in chromitites of the Finero complex, western Alps, Italy: Evidence for carbonatite-type metasomatism in a subcontinental mantle plume. Can. Mineral. 2004, 42, 1825–1845. [Google Scholar] [CrossRef]
- Tange, Y.; Takahashi, E. Stability of the high-pressure polymorph of zircon (ZrSiO4) in the deep mantle. Phys. Earth Planet. Inter. 2004, 143–144, 223–229. [Google Scholar] [CrossRef]
- Barth, M.G.; Mason, P.R.D.; Davies, G.R.; Dijkstra, A.H.; Drury, M.R. Geochemistry of the Othris Ophiolite, Greece: Evidence for refertilization? J. Petrol. 2003, 44, 1759–1785. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.-F.; Robinson, P.T.; Su, B.-X.; Gao, J.-F.; Li, J.-W.; Yang, J.-S.; Malpas, J. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Res. 2014, 26, 262–283. [Google Scholar] [CrossRef]
- Chen, Z.; Doherty, W.; Gregoire, D.C. Application of laser sampling microprobe inductively-coupled plasma-mass spectrometry to the in-situ trace-element analysis of selected geological-materials. J. Anal. At. Spectrom. 1997, 12, 653–659. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon saturation re-revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Ireland, T.R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 2000, 28, 627–630. [Google Scholar] [CrossRef]
- Dubińska, E.; Bylina, P.; Kozlowski, A.; Dorr, W.; Nejbert, K.; Schastok, J.; Kulicki, C. U–Pb dating of serpentinization: Hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chem. Geol. 2004, 203, 183–203. [Google Scholar] [CrossRef]
- Pettke, T.; Audétat, A.; Schaltegger, U.; Heinrich, C.A. Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia) Part II: Evolving zircon and thorite trace element chemistry. Chem. Geol. 2005, 220, 191–213. [Google Scholar] [CrossRef]
- Leblanc, M.; Nicolas, A. Ophiolitic chromitites. Int. Geol. Rev. 1992, 34, 653–686. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Shnukov, S.E.; Andreev, A.V.; Savenok, S.P. Admixture Elements in Zircons and Apatites: A Tool for Provenance Studies of Terrigenous Sedimentary Rocks; European Union of Geosciences (EUG 9): Strasburg, Germany, 1997. [Google Scholar]
- O’Reilly, S.Y.; Griffin, W.L. Rates of magma ascent: Constraints from mantle-derived xenoliths. In Timescales of Magmatic Processes: From Core to Atmosphere; Dosseto, A., Turner, S., van Orman, J., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2010; pp. 116–124. [Google Scholar]
- Bindeman, I.N.; Melnik, O.E. Zircon Survival, Rebirth and Recycling during Crustal Melting, Magma Crystallization, and Mixing Based on Numerical Modelling. J. Petrol. 2016, 57, 437–460. [Google Scholar] [CrossRef]
- Badanina, I.Y.; Malitch, K.N. Timing of metasomatism in a subcontinental mantle: Evidence from zircon at Finero (Italy). In Proceedings of the EGU General Assembly, Vienna, Austria, 22–27 April 2012.
- Zanetti, A.; Giovanardi, T.; Langone, A.; Tiepolo, M.; Wu, F.-Y.; Dallai, L.; Mazzucchelli, M. Origin and age of zircon-bearing chromitite layers from the Finero phlogopite peridotite (Ivrea–Verbano Zone, Western Alps) and geodynamic consequences. Lithos 2016, 262, 58–74. [Google Scholar] [CrossRef]
- Roeder, P.L.; Poustovetov, A.; Oskarsson, N. Growth forms and composition of chromian spinel in MORB magma: Diffusion-controlled crystallization of chromian spinel. Can. Mineral. 2001, 39, 397–416. [Google Scholar] [CrossRef]
- Zagrtdenov, N.; Borisova, A.Y.; Toplis, M.; Duployer, B.; Tenailleau, C. Preliminary experimental investigation of chromite dissolution in mid-ocean ridge basalt melt. In Proceedings of the Goldschmidt Conference, Prague, Czech Republic, 16–21 August 2015.
- Candia, M.A.F.; Gaspar, J.C. Chromian spinels in metamorphosed ultramafic rocks from Mangabal I and II complexes, Goiás, Brazil. Mineral. Petrol. 1997, 60, 27–40. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Reich, M.; Camprubí, A.; Gervilla, F.; Griffin, W.; Colás, V.; O’Reilly, S.Y.; Proenza, J.A.; Pearson, N.J.; Centeno-García, E. Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles. Contrib. Mineral. Petrol. 2015, 170. [Google Scholar] [CrossRef]
- Mellini, M.; Rumori, C.; Viti, C. Hydrothermally reset magmatic spinels in retrogade serpentinites: Formation of “ferritchromit” rims and chlorite aureoles. Contrib. Mineral. Petrol. 2005, 149, 266–275. [Google Scholar] [CrossRef]
- Shack, R.O.; Ghiorso, M.S. Chromian spinels as petrogenetic indicators: Thermodynamic and petrological applications. Am. Mineral. 1991, 76, 827–847. [Google Scholar]
- Purvis, A.C.; Nesbitt, R.W.; Hallberg, J.A. The geology of part of the Carr Boyd rocks complex and its associated nickel mineralization, Western Australia. Econ. Geol. 1972, 67, 1093–1113. [Google Scholar] [CrossRef]
- Evans, B.W.; Frost, B.R. Chrome-spinel in progressive metamorphism-a preliminary analysis. Geochim. Cosmochim. Acta 1975, 39, 959–972. [Google Scholar] [CrossRef]
- Suita, M.T.F.; Streider, A.J. Cr-spinel from Brazilian mafic-ultramafic complexes: Metamorphic modifications. Int. Geol. Rev. 1996, 38, 245–267. [Google Scholar] [CrossRef]
- Putnis, C.V.; Tsukamoto, K.; Nishimura, Y. Direct observation of pseudomorphism: Compositional and textural evolution at a fluid-solid interface. Am. Mineral. 2005, 90, 1909–1912. [Google Scholar] [CrossRef]
- Geisler, T.; Schaltegger, U.; Tomaschek, F. Re-equilibration of zircon in aqueous fluids and melts. Elements 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Kynicky, J.; Chakhmouradian, A.R.; Xu, C.; Krmicek, L.; Galiova, M. Distribution and evolution of zirconium mineralization in peralkaline granites and associated pegmatites of the Khan Bogd complex, southern Mongolia. Can. Mineral. 2011, 49, 947–965. [Google Scholar] [CrossRef]
- Salvi, S.; Williams-Jones, A.E. Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton, Québec–Labrador, Canada. Am. Mineral. 1995, 80, 1031–1040. [Google Scholar] [CrossRef]
- Salvi, S.; Williams-Jones, A.E. Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada. Lithos 2006, 91, 19–34. [Google Scholar] [CrossRef]
- Geisler, T.; Rashwan, A.A.; Rahn, M.K.W.; Poller, U.; Zwingmann, H.; Pidgeon, R.T.; Schleicher, H.; Tomaschek, F. Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral. Mag. 2003, 67, 485–508. [Google Scholar] [CrossRef]
- Liati, A.; Gebauer, D.; Fanning, C.M. The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): First U-Pb ion microprobe (SHRIMP) zircon ages. Chem. Geol. 2004, 207, 171–188. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapsiotis, A.; Ewing Rassios, A.; Antonelou, A.; Tzamos, E. Genesis and Multi-Episodic Alteration of Zircon-Bearing Chromitites from the Ayios Stefanos Mine, Othris Massif, Greece: Assessment of an Unconventional Hypothesis on the Origin of Zircon in Ophiolitic Chromitites. Minerals 2016, 6, 124. https://doi.org/10.3390/min6040124
Kapsiotis A, Ewing Rassios A, Antonelou A, Tzamos E. Genesis and Multi-Episodic Alteration of Zircon-Bearing Chromitites from the Ayios Stefanos Mine, Othris Massif, Greece: Assessment of an Unconventional Hypothesis on the Origin of Zircon in Ophiolitic Chromitites. Minerals. 2016; 6(4):124. https://doi.org/10.3390/min6040124
Chicago/Turabian StyleKapsiotis, Argyrios, Annie Ewing Rassios, Aspasia Antonelou, and Evangelos Tzamos. 2016. "Genesis and Multi-Episodic Alteration of Zircon-Bearing Chromitites from the Ayios Stefanos Mine, Othris Massif, Greece: Assessment of an Unconventional Hypothesis on the Origin of Zircon in Ophiolitic Chromitites" Minerals 6, no. 4: 124. https://doi.org/10.3390/min6040124
APA StyleKapsiotis, A., Ewing Rassios, A., Antonelou, A., & Tzamos, E. (2016). Genesis and Multi-Episodic Alteration of Zircon-Bearing Chromitites from the Ayios Stefanos Mine, Othris Massif, Greece: Assessment of an Unconventional Hypothesis on the Origin of Zircon in Ophiolitic Chromitites. Minerals, 6(4), 124. https://doi.org/10.3390/min6040124