Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review)
Abstract
:1. Introduction
2. Time–Space Distribution of Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern Margin of the Siberian Craton
3. Regional Geology
3.1. Altai-Sayan Segment
3.2. Northern Mongolia
3.3. Eastern Transbaikalia
4. Representative Deposits
4.1. Sora Porphyry Mo–Cu Deposit
4.2. Aksug Porphyry Cu Deposit
4.3. Erdenetiin Ovoo Porphyry Cu–Mo Deposit
4.4. Zhireken Porphyry Mo–Cu Deposit
4.5. Shakhtama Porphyry Mo Deposit
5. Analytical Methods
6. Geochemical Characteristics
7. Petrogenesis and Sources of Magmas
7.1. Paleozoic–Early Mesozoic Deposits
7.1.1. Geochemistry of Mafic Rocks
7.1.2. Origin of Mafic Rocks
7.1.3. Geochemistry and Origin of Granitoid Rocks
7.2. Mesozoic Deposits
7.2.1. The Most Primitive Rocks
7.2.2. Granitoid Rocks
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Richards, J.P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 2011, 40, 1–26. [Google Scholar] [CrossRef]
- White, W.H.; Bookstrom, A.A.; Kamilli, R.J.; Ganster, M.W.; Smith, R.P.; Ranta, D.E.; Steininger, R.C. Character and origin of Climax-type molybdenum deposits. Econ. Geol. 1981, 75th Anniversary Volume, 270–316. [Google Scholar]
- Pettke, T.; Oberli, F.; Heinrich, C.A. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth Planet. Sci. Lett. 2010, 296, 267–277. [Google Scholar] [CrossRef]
- Sillitoe, R.H. A plate tectonic model for the origin of porphyry copper deposits. Econ. Geol. 1972, 67, 184–197. [Google Scholar] [CrossRef]
- Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits. Econ. Geol. 1999, 94, 211–244. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Cooke, D.R.; Hollings, P.; Walshe, J.L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 2005, 100, 801–818. [Google Scholar] [CrossRef]
- Mao, J.; Pirajno, F.; Lehmann, B.; Luo, M.; Berzina, A. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. J. Asian Earth Sci. 2014, 79B, 576–584. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Gold-rich porphyry copper deposits: Geological model and exploration implications. In Mineral Deposit Modelling; Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., Duke, J.M., Eds.; Special Paper 40; Geological Association of Canada: St. John’s, NL, Canada, 1993; pp. 465–478. [Google Scholar]
- Skewes, M.A.; Stern, C.R. Genesis of the Giant Late Miocene to Pliocene Copper Deposits of Central Chile in the Context of Andean Magmatic and Tectonic Evolution. Int. Geol. Rev. 1995, 37, 893–909. [Google Scholar] [CrossRef]
- Corbett, G.J.; Leach, T.M. Southwest Pacific Rim Gold–Copper Systems: Structure, Alteration and Mineralization; Society of Economic Geologists: Littleton, CO, USA, 1998. [Google Scholar]
- Kay, S.M.; Mpodozis, C.; Coira, B. Neogene Magmatism, Tectonism, and Mineral Deposits of the Central Andes (22° to 33° S Latitude). In Geology and Ore Deposits of the Central Andes; Skinner, B.J., Ed.; Special Publication 7; Society of Economic Geologists: Littleton, CO, USA, 1999; pp. 27–59. [Google Scholar]
- Hou, Z.Q.; Gao, Y.F.; Qu, X.M.; Rui, Z.Y.; Mo, X.X. Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet. Sci. Lett. 2004, 220, 139–155. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, Z.; Qu, X.; Meng, X.; Li, Z.; Beaudoin, G.; Rui, Z.; Gao, Y.; Zaw, K. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol. Rev. 2009, 36, 25–51. [Google Scholar] [CrossRef]
- Hou, Z.; Cook, N.J. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geol. Rev. 2009, 36, 2–24. [Google Scholar] [CrossRef]
- Richards, J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 2009, 37, 247–250. [Google Scholar] [CrossRef]
- Hou, Z.; Ma, H.; Khin, Z.; Zhang, Y.; Wang, M.; Wang, Z.; Pan, G.; Tang, R. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in Eastern Tibet. Econ. Geol. 2003, 98, 125–145. [Google Scholar]
- Wang, Q.; Xu, J.F.; Jian, P.; Bao, Z.W.; Zhao, Z.H.; Li, C.F.; Xiong, X.L.; Ma, J.L. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. J. Petrol. 2006, 47, 119–144. [Google Scholar] [CrossRef]
- Hezarkhani, A.; Williams-Jones, A.E.; Gammons, C.H. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Miner. Depos. 1999, 34, 770–783. [Google Scholar] [CrossRef]
- Hezarkhani, A. Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu–Mo deposit, Iran: Evidence from fluid inclusions. J. Asian Earth Sci. 2006, 28, 409–422. [Google Scholar] [CrossRef]
- Ahmad, M.U. Porphyry Copper in Pakistan; Geological Survey of Pakistan: Quetta, Pakistan, 1992.
- Akhter, Q.J.; Xue, C.; Ghafar, A.; Xiang, K. The Saindak porphyry Cu (-Ag) deposits in Chagai, Western Pakistan: Alteration, mineralization characteristics and genesis. Acta Geol. Sin. Engl. Ed. 2014, 88, 593–594. [Google Scholar] [CrossRef]
- Kudryavtsev, Y.K. The Cu–Mo deposits of Central Kazakhstan. In Granite-Related Ore Deposits of Central Kazakhstan and Adjacent Areas; Glagol Publishing House: St. Petersburg, Russia, 1996; pp. 119–144. (In Russian) [Google Scholar]
- Yakubchuk, A.; Degtyarev, K.; Maslennikov, V.; Wurst, A.; Stekhin, A.; Lobanov, K. Tectonomagmatic Settings, Architecture, and Metallogeny of the Central Asian Copper Province. In Geology and Genesis of Major Copper Deposits and Districts of the World—A Tribute to Richard H Sillitoe; Hedenquist, J.W., Harris, M., Camus, F., Eds.; Special Publication 16; Society of Economic Geologists: Littleton, CO, USA, 2012; pp. 403–432. [Google Scholar]
- Shen, P.; Pan, H.; Xiao, W.; Chen, X.; Eleonorad, S.; Shen, Y. Two geodynamic-metallogenic events in the Balkhash (Kazakhstan) and the West Junggar (China): Carboniferous porphyry Cu and Permian greisen W–Mo mineralization. Int. Geol. Rev. 2013, 55, 1660–1687. [Google Scholar] [CrossRef]
- Chen, X.; Seitmuratova, E.; Wang, Z.; Chen, Z.; Han, S.; Li, Y.; Yang, Y.; Ye, B.; Shi, W. SHRIMP U–Pb and Ar–Ar geochronology of major porphyry and skarn Cu deposits in the Balkhash Metallogenic Belt, Central Asia, and geological implications. J. Asian Earth Sci. 2014, 79B, 723–740. [Google Scholar] [CrossRef]
- Seltmann, R.; Porter, T.M.; Pirajno, F. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review. J. Asian Earth Sci. 2014, 79B, 810–841. [Google Scholar] [CrossRef]
- Shen, P.; Hattori, K.; Pan, H.; Jackson, S.; Seitmuratova, E. Oxidation condition and metal fertility of granitic magmas: Zircon trace-element data from porphyry cu deposits in the Central Asian orogenic belt. Econ. Geol. 2015, 110, 1861–1878. [Google Scholar] [CrossRef]
- Shen, P.; Pan, H.; Seitmuratova, E.; Jakupova, S. U–Pb zircon, geochemical and Sr–Nd–Hf–O isotopic constraints on age and origin of the ore-bearing intrusions from the Nurkazgan porphyry Cu–Au deposit in Kazakhstan. J. Asian Earth Sci. 2016, 116, 232–248. [Google Scholar] [CrossRef]
- Golovanov, I.M.; Seltmann, R.; Kremenetsky, A.A. The Almalyk (Kalmakyr-Dalnee) and Saukbulak Cu-Au porphyry systems, Uzbekistan. In Super Porphyry Copper and Gold Deposits: A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2005; Volume 2, pp. 513–523. [Google Scholar]
- Wainwright, A.J.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K.; Friedman, R.M. U–Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu–Au district, southern Mongolia. Gondwana Res. 2011, 19, 764–787. [Google Scholar] [CrossRef]
- Hao, Y.J.; Ren, Y.S.; Duan, M.X.; Tong, K.Y.; Chen, C.; Yang, Q.; Li, C. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China. J. Asian Earth Sci. 2015, 97, 442–458. [Google Scholar] [CrossRef]
- Zhang, F.F.; Wang, Y.H.; Liu, J.J.; Wang, J.P.; Zhao, C.B.; Song, Z.W. Origin of the Wunugetushan porphyry Cu–Mo deposit, Inner Mongolia, NE China: Constraints from geology, geochronology, geochemistry, and isotopic compositions. J. Asian Earth Sci. 2016, 117, 208–224. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, W.; Qin, K.; Qu, W.; Du, A. Re–Os isotopic dating of molybdenite and pyrite in the Baishan Mo–Re deposit, eastern Tianshan, NW China, and its geological significance. Miner. Depos. 2005, 39, 960–969. [Google Scholar] [CrossRef]
- Han, C.; Xiao, W.; Zhao, G.; Sun, M.; Qu, W.; Du, A. Re–Os Geochronology on Molybdenites from the Donggebi Mo deposit in the Eastern Tianshan of the Central Asia Orogenic Belt and its geological significance. Resour. Geol. 2014, 64, 136–148. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Liu, J. Fluid inclusions and H–O–S–Pb isotope systematics of the Baishan porphyry Mo deposit in Eastern Tianshan, China. Ore Geol. Rev. 2016, 78, 409–423. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, J.; Qin, K.; Fan, H.; Chu, S.; Wang, Y.; Zhou, L. Types, characteristics, and time–space distribution of molybdenum deposits in China. Int. Geol. Rev. 2013, 55, 1311–1358. [Google Scholar] [CrossRef]
- Nie, F.J.; Zhang, K.; Liu, Y.F.; Jiang, S.H.; Liu, Y.; Liu, Y. Indosinian magamtic activity and molybdenum, gold mineralization along the northern margin of North China Craton and adjacent area. J. Jilin Univ. Earth Sci. Ed. 2011, 41, 1651–1666. [Google Scholar]
- Hu, X.; Ding, Z.; He, M.; Yao, S.; Zhu, B.; Shen, J.; Chen, B. A porphyry-skarn metallogenic system in the Lesser Xing’an Range, NE China: Implications from U–Pb and Re–Os geochronology and Sr–Nd–Hf isotopes of the Luming Mo and Xulaojiugou Pb–Zn deposits. J. Asian Earth Sci. 2014, 90, 88–100. [Google Scholar] [CrossRef]
- Zhou, L.; Zeng, Q.; Liu, J.; Friis, H.; Zhang, Z.; Duan, X.; Chu, S. Ore genesis and fluid evolution of the Daheishan giant porphyry molybdenum deposit, NE China. J. Asian Earth Sci. 2015, 97B, 486–505. [Google Scholar] [CrossRef]
- Dobryanskiy, G.I.; Sotnikov, V.I.; Berzina, A.N.; Yarovoy, S.A. Peculiarities of magmatism of the Aksug copper-molybdenum porphyry deposit. In Magmatism and Metallogeny of Tuvinian Ore-Bearing Regions; Distanov, E.G., Ed.; Nauka: Novosibirsk, Russia, 1992; pp. 49–62. (In Russian) [Google Scholar]
- Gusev, N.I.; Berzon, E.I.; Semenov, M.I. Kyzyk–Chadr porphyry copper deposit (Tuva): Geochemical features and age constraints on magmatism. Reg. Geol. Metallog. 2014, 59, 70–79. (In Russian) [Google Scholar]
- Sotnikov, V.I.; Travin, A.V.; Berzina, A.P.; Ponomarchuk, V.A. Chronology of igneous events in the Sorsk porphyry copper-molybdenum ore cluster, Kuznetskiy Alatau (K–Ar, Ar–Ar and Rb–Sr methods). Dokl. Earth Sci. 1996, 345, 126–131. [Google Scholar]
- Berzina, A.P.; Sotnikov, V.I.; Berzina, A.N.; Gimon, V.O. Geochemistry of porphyry copper and molybdenum magmatic centers related to different evolution cycles of the Central Asian Mobile Belt as exemplified by Siberia and Mongolia. Geochem. Int. 1999, 37, 1036–1038. [Google Scholar]
- Kovalenker, V.A.; Kiseleva, G.D.; Krylova, T.L.; Andreeva, O.V. Mineralogy and ore formation conditions of the Bugdaya Au-bearing W–Mo porphyry deposit, Eastern Transbaikal Region, Russia. Geol. Ore Depos. 2011, 53, 93–125. [Google Scholar] [CrossRef]
- Ponomarchuk, V.A.; Sotnikov, V.I.; Berzina, A.N. Isotopic and geochronological heterogeneity of granite porphyry from the Zhireken porphyry Cu–Mo deposit (eastern Transbaikalia). Geochem. Int. 2004, 42, 587–590. [Google Scholar]
- Sotnikov, V.I.; Ponomarchuk, V.A.; Travin, A.V.; Berzina, A.N.; Morozova, I.P. Age sequence of the magmatic events in the Shakhtama molybdenum ore group, Eastern Transbaikal region: Evidence from Ar–Ar, K–Ar, and Rb–Sr data. Dokl. Earth Sci. 1998, 359, 309–311. [Google Scholar]
- Berzina, A.P.; Sotnikov, V.I. Character of formation of the Erdenet–Ovoo porphyry Cu–Mo magmatic center (Northern Mongolia) in the zone of influence of a Permo–Triassic plume. Russ. Geol. Geophys. 2007, 48, 141–156. [Google Scholar] [CrossRef]
- Gerel, O.; Munkhtsengel, B. Erdenetiin Ovoo porphyry copper-molybdenum deposit in Northern Mongolia. In Super Porphyry Copper and Gold Deposits—A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2005; Volume 2, pp. 525–543. [Google Scholar]
- Berzina, A.P.; Gimon, V.O.; Nikolaeva, I.V.; Palesskii, S.V.; Travin, A.V. Basites of the polychronous magmatic center with the Erdenetiyn-Ovoo porphyry Cu–Mo deposit (northern Mongolia): Petrogeochemistry, 40Ar/39Ar geochronology, geodynamic position, and related ore formation. Russ. Geol. Geophys. 2009, 50, 827–841. [Google Scholar] [CrossRef]
- Berzina, A.P.; Berzina, A.N.; Serov, P.A.; Gimon, V.O. The petrogenic relationship between mafic and felsic rocks from the Sora porphyry Cu–Mo center (Kuznetsk Alatau): A geochemical and Sm-Nd isotope study. Dokl. Earth Sci. 2010, 430, 28–33. [Google Scholar] [CrossRef]
- Berzina, A.P.; Berzina, A.N.; Gimon, V.O.; Bayanova, T.B.; Kiseleva, V.Y.; Krymskii, R.S.; Lepekhina, E.N.; Palesskii, S.V. The Zhireken porphyry Mo ore-magmatic system (eastern Transbaikalia): U–Pb age, sources, and geodynamic setting. Russ. Geol. Geophys. 2015, 56, 446–465. [Google Scholar] [CrossRef]
- Berzina, A.P.; Berzina, A.N.; Gimon, V.O. Geochemical and Sr–Pb–Nd isotopic characteristics of the Shakhtama porphyry Mo–Cu system (Eastern Transbaikalia, Russia). J. Asian Earth Sci. 2014, 79B, 655–665. [Google Scholar] [CrossRef]
- Berzina, A.P.; Berzina, A.N.; Gimon, V.O.; Bayanova, T.B.; Krymskii, R.S. Sources of the porphyry Сu-Mo ore-magmatic systems (Siberia, Mongolia). In Granites and Earth’s Evolution: Granites and Continental Crust; Publising House SB RAS: Novosibirsk, Russia, 2014; pp. 33–35. [Google Scholar]
- Sotnikov, V.I.; Ponomarchuk, V.A.; Shevchenko, D.O.; Berzina, A.P.; Berzina, A.N. 40Ar/39Ar geochronology of magmatic and metasomatic events in the Sora porphyry Cu–Mo ore cluster: (Kuznetsk Alatau). Geol. Geofiz. 2001, 42, 786–801. (In Russian) [Google Scholar]
- Berzina, A.N.; (Institute of Geology and Mineralogy, Novosibirsk, Russia). U–Pb zircon ages of intrusive rocks from the Aksug porphyry copper deposit (Russia). Personal communication, 2016. [Google Scholar]
- Mihalasky, J.; Ludington, S.; Hammarstrom, J.M.; Alexeiev, D.V.; Frost, T.P.; Light, T.D.; Robinson, G.R.; Briggs, D.A.; Wallis, J.C.; Miller, R.J. Porphyry Copper Assessment of the Central Asian Orogenic Belt and Eastern Tethysides—China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India; U.S. Geological Survey Scientific Investigations Report 2010-5090-X: Reston, VA, USA, 2015.
- U.S. Geological Survey (USGS). Metallogenesis and Tectonics of Northeast Asia; Nokleberg, W.J., Ed.; USGS: Reston, VA, USA, 2010.
- Gerel, O. Geochemical characteristics of the magmatic systems of porphyry Cu–Mo deposit Erdenetiin Ovoo, Mongolia. Mong. Geosci. 1999, 13, 26–33. [Google Scholar]
- Berzina, A.P.; Berzina, A.N.; Gimon, V.O.; Krymskii, R.S.; Larionov, A.N.; Nikolaeva, I.V.; Serov, P.A. The Shakhtama porphyry Mo ore-magmatic system (eastern Transbaikalia): Age, sources, and genetic features. Russ. Geol. Geophys. 2013, 54, 587–605. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Natal’in, B.A.; Burtman, U.S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 1993, 364, 209–304. [Google Scholar] [CrossRef]
- Khain, E.V.; Bibikova, E.V.; Kröner, A.; Zhuravlev, D.Z.; Sklyarov, E.V.; Fedotova, A.A.; Kravchenko-Berezhnoy, I.R. The most ancient ophiolite of the Central Asian fold belt: U–Pb and Pb–Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet. Sci. Lett. 2002, 199, 311–325. [Google Scholar] [CrossRef]
- Kovalenko, V.I.; Yarmolyuk, V.V.; Kovach, V.P.; Kotov, A.B.; Kozakov, I.K.; Salnikova, E.B.; Larin, A.M. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence. J. Asian Earth Sci. 2004, 23, 605–627. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Wilhem, C.; Windley, B.F.; Stampfli, G.M. The Altaids of Central Asia: A tectonic and evolutionary innovative review. Earth-Sci. Rev. 2012, 113, 303–341. [Google Scholar] [CrossRef]
- Yarmolyuk, V.V.; Kuzmin, M.I.; Ernst, R.E. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt. J. Asian Earth Sci. 2014, 93, 158–179. [Google Scholar] [CrossRef]
- Zonenshain, L.P.; Kuzmin, M.L.; Natapov, L.M. Geology of USSR: A Plate-Tectonic Synthesis; Page, B.M., Ed.; Geodynamic Series; American Geophysical Union: Washington, DC, USA, 1990; Volume 21. [Google Scholar]
- Berzin, N.A.; Coleman, R.G.; Dobretsov, N.L.; Zonenshain, L.P.; Xiao, X.; Chang, E.Z. Geodynamic map of the western part of the Paleo-Asian ocean. Russ. Geol. Geophys. 1994, 35, 5–22. [Google Scholar]
- Yarmolyuk, V.V.; Kovalenko, V.I. Batholiths and geodynamics of batholiths formation in the Central Asian Fold Belt. Russ. Geol. Geophys. 2003, 44, 1260–1274. [Google Scholar]
- Zorin, Y.A.; Belichenko, V.G.; Rutshtein, I.G.; Zorina, L.D.; Spiridonov, A.M. Geodynamics of the western part of the Mongolia–Okhotsk fold belt and tectonic framework of gold mineralization in the Transbaikal area. Russ. Geol. Geophys. 1998, 39, 1578–1585. [Google Scholar]
- Zorin, Y.A. Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 1999, 306, 33–56. [Google Scholar] [CrossRef]
- Zhao, X.; Coe, R.S.; Zhou, Y.; Wu, H.; Wang, J. Tectonics of Eastern Asia and Western Pacific Continental Margin New paleomagnetic results from northern China: Collision and suturing with Siberia and Kazakhstan. Tectonophysics 1990, 181, 43–81. [Google Scholar]
- Parfenov, L.M.; Popeko, L.I.; Tomurtogoo, O. Problems of tectonics of the Mongol–Okhotsk orogenic belt. Geol. Pac. Ocean 2001, 16, 797–830. [Google Scholar]
- Zorin, Y.A.; Belichenko, V.G.; Turutanov, E.K.; Mazukabzov, A.M.; Sklyarov, E.V.; Mordvinova, V.V. The structure of the earth’s crust and geodynamics of the western part of the Mongol–Okhotsk belt. Otechestvennaya Geol. 1997, 11, 52–58. (In Russian) [Google Scholar]
- Yarmolyuk, V.V.; Kovalenko, V.I.; Kuzmin, M.I. North Asian superplume activity in the Phanerozoic: Magmatism and geodynamics. Geotectonics 2000, 34, 343–366. [Google Scholar]
- Berzin, N.A.; Kungurtsev, L.V. Geodynamic interpretation of Altai–Sayan geological complexes. Russ. Geol. Geophys. 1996, 37, 56–73. [Google Scholar]
- Dovgal, V.N.; Shirokikh, V.N. Evolution of High Alkali Magmatism in the Kuznetsk Alatau; Nauka: Novosibirsk, Russia, 1980. (In Russian) [Google Scholar]
- Shokalsky, S.P.; Babin, G.A.; Vladimirov, A.G.; Borisov, S.M. Correlation of Magmatic and Metamorphic Complexes of the Western Part of the Altai-Sayan Folded Area; Geo: Novosibirsk, Russia, 2000. (In Russian) [Google Scholar]
- Kuznetsov, Y.A.; Bognibov, V.I.; Distanova, A.N.; Sergeeva, E.S. Early Paleozoic Granitoid Formation in the Kuznetsk Alatau; Nauka: Moscow, Russia, 1971. [Google Scholar]
- Berzina, A.P.; Sotnikov, V.I.; Berzina, A.N.; Gimon, V.O. Features of magmatism in Cu–Mo deposits in various geodynamic settings. Russ. Geol. Geophys. 1994, 35, 204–217. [Google Scholar]
- Parfenov, L.M.; Badarch, G.; Berzin, N.A.; Khanchuk, A.I.; Kuzmin, M.I.; Nokleberg, W.J.; Prokop’ev, A.V.; Osasawara, M.; Yan, H. Summary of Northeast Asia geodynamics and tectonics: Stephan Mueller Special Publication Series. Stephan Mueller Spec. Publ. Ser. 2009, 4, 11–33. [Google Scholar] [CrossRef]
- Gordienko, I.V.; Kuz’min, M.I. Geodynamics and metallogeny of the Mongolo-Transbaikalian region. Russ. Geol. Geophys. 1999, 40, 1522–1538. [Google Scholar]
- Parfenov, L.M.; Berzin, N.A.; Khanchuk, A.I.; Badarch, G.; Belichenko, V.G.; Bulgatov, A.N.; Dril’, S.I.; Kirillova, G.L.; Kuz’min, M.I.; Nokleberg, W.; et al. A model for the formation of orogenic belts in Central and Northeast Asia. Tikhookeanskaya Geol. 2003, 22, 7–41. (In Russian) [Google Scholar]
- Gordienko, I.V.; Bulgatov, A.N.; Ruzhentsev, S.V.; Minina, O.R.; Klimuk, V.S.; Vetluzhskikh, L.I.; Nekrasov, G.E.; Lastochkin, N.I.; Sitnikova, V.S.; Metelkin, D.V.; et al. The Late Riphean–Paleozoic history of the Uda–Vitim island arc system in the Transbaikalian sector of the Paleoasian Ocean. Russ. Geol. Geophys. 2010, 51, 461–481. [Google Scholar] [CrossRef]
- Metelkin, D.V.; Vernikovsky, V.A.; Kazansky, A.Y.; Wingate, M.T.D. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence. Gondwana Res. 2010, 18, 400–419. [Google Scholar] [CrossRef]
- Yarmolyuk, V.V.; Kovalenko, V.I.; Sal’nikova, E.B.; Budnikov, S.V.; Kovach, V.P.; Kotov, A.B.; Ponomarchuk, V.A. Tectono-magmatic zoning, magma sources, and geodynamics of the Early Mesozoic Mongolia–Transbaikal province. Geotectonics 2002, 36, 293–311. [Google Scholar]
- Tomurtogoo, O.; Windley, B.F.; Kröner, A.; Badarch, G.; Liu, D.Y. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: Constraints on the evolution of the Mongol–Okhotsk ocean, suture and orogen. J. Geol. Soc. 2005, 162, 125–134. [Google Scholar] [CrossRef]
- Donskaya, T.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Ivanov, A.V. Late Paleozoic–Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol–Okhotsk Ocean. J. Asian Earth Sci. 2013, 62, 79–97. [Google Scholar] [CrossRef]
- Zonenshain, L.P.; Mezhelovskiy, Z.V.; Natapov, L.M. Geodynamic Map of the USSR and Adjacent Water-Covered Areas, Scale 1:2,500,000; Ministry of Geology of the USSR: Moscow, Russian, 1989. (In Russian)
- Yarmolyuk, V.V.; Kovalenko, V.I.; Ivanov, V.G. The intraplate Late Mesozoic-Cenozoic volcanic province in Central-East Asia as a projection of the mantle hot spot. Geotektonika 1995, 5, 41–67. (In Russian) [Google Scholar]
- Zorin, Y.A.; Zorina, L.D.; Spiridonov, A.M.; Rutshtein, I.G. Geodynamic setting of gold deposits in Eastern and Central Transbaikal (Chita Region, Russia). Ore Geol. Rev. 2001, 17, 215–232. [Google Scholar] [CrossRef]
- Mineral Resource Potential and Consumption in Russian Federation in 2013. The Report of the Ministry of Mineral Resources and Ecology. Available online: http://www.mnr.gov.ru/upload/iblock/914/Report2014.pdf (accessed on 27 July 2016).
- Seltmann, R.; Soloviev, S.; Shatov, V.; Pirajno, F.; Naumov, E.; Cherkasov, S. Metallogeny of Siberia: Tectonic, geologic and metallogenic settings of selected significant deposits. Aust. J. Earth Sci. 2010, 57, 655–706. [Google Scholar] [CrossRef]
- Berzina, A.N.; Stein, H.J.; Zimmerman, A.; Sotnikov, V.I. Re–Os ages for molybdenite from porphyry Cu–Mo and greizen Mo-W deposits of southern Siberia (Russia) preserve metallogenic record. In Mineral Exploration and Sustainable Development; Eliopoulos, D., Ed.; Milpress: Rotterdam, The Netherlands, 2003; Volume 1, pp. 231–234. [Google Scholar]
- Creating a New Copper-Focused Base Metals Company. Ak-Sug Copper Project Highlights. Available online: http://vs1.textlab.io/store/data/000153627.pdf?key=f1b2a87ed6a25f0026e1474baf3983ec&r=1&fn=153627.pdf&t=1469690652534&p=86400 (accessed on 28 July 2016).
- Sotnikov, V.I.; Berzina, A.N.; Economou-Eliopoulos, M.; Eliopoulos, D.G. Palladium, platinum and gold distribution in porphyry Cu ± Mo deposits of Russia and Mongolia. Ore Geol. Rev. 2001, 18, 95–111. [Google Scholar] [CrossRef]
- Berzina, A.N.; Sotnikov, V.I.; Economou-Eliopoulos, M.; Eliopoulos, D.G. First finding of merenskyite (Pd,Pt)Te2 in porphyry Cu–Mo ores in Russia. Russ. Geol. Geophys. 2007, 48, 656–658. [Google Scholar] [CrossRef]
- Sotnikov, V.I.; Ponomarchuk, V.A.; Shevchenko, D.O.; Berzina, A.N. The Aksug porphyry Cu–Mo deposit in northeastern Tuva: 40Ar/39Ar geochronology and sources of matter. Russ. Geol. Geophys. 2003, 44, 1080–1092. [Google Scholar]
- Gavrilova, S.P.; Maksimyuk, I.E.; Orolmaa, D. Stages of formation of the Erdenet molubdenum-copper porphyry deposit (Mongolia). Geol. Ore Depos. 1990, 6, 3–17. (In Russian) [Google Scholar]
- Watanabe, Y.; Stein, H.J. Re–Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu–Mo deposits, Mongolia, and tectonic implications. Econ. Geol. 2000, 95, 1537–1542. [Google Scholar] [CrossRef]
- Sotnikov, V.I.; Berzina, A.P. Porphyry Cu–Mo ore–magmatic systems of Siberia and Mongolia. In Ore-Bearing Granites of Russia and Adjacent Countries; Kremenetsky, A.A., Lehmann, B., Seltmann, R., Eds.; IMGRE: Moscow, Russia, 2000; pp. 263–279. [Google Scholar]
- Sotnikov, V.I.; Ponomarchuk, V.A.; Shevchenko, D.O.; Berzina, A.P. The Erdenetiyn-Ovoo porphyry Cu–Mo deposit, Northern Mongolia: 40Ar/39Ar geochronology and factors of large-scale mineralization. Geol. Geofiz. 2005, 46, 620–644. [Google Scholar]
- Jiang, S.H.; Nie, F.J.; Su, Y.J.; Bai, D.M.; Liu, Y.F. Geochronology and origin of the Erdenet superlarge Cu–Mo deposit in Mongolia. Acta Petrol. Sin. 2010, 31, 289–306. (In Chinese) [Google Scholar]
- Karpinsky Russian Geological Research Institute (VSEGEI). State Geological Map of Russian Federation, Scale 1:1,000,000 (Third Generation); Aldan-Transbaikalia Series; VSEGEI: St. Petersburg, Russia, 2010. [Google Scholar]
- Kozlov, V.D.; Efremov, S.V.; Dril’, S.I.; Sandimirova, G.P. Geochemistry, isotopic geochronology, and genesis of the Verkhnyaya Unda granitoid batholith. Geochem. Int. 2003, 41, 364–378. [Google Scholar]
- Ruzhentsev, S.V.; Nekrasov, G.E.; Golionko, B.G.; Lykhin, D.A. Paleogeodynamics of the Transbaikalian area of the Mongol–Okhotsk belt. In Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent); IZK SO RAN: Irkutsk, Russia, 2008; Volume 6, pp. 71–72. (In Russian) [Google Scholar]
- Berzina, A.P.; Berzina, A.N.; Gimon, V.O. The Sora porphyry Cu–Mo deposit (Kuznetsk Alatau): Magmatism and effect of mantle plume on the development of ore-magmatic system. Russ. Geol. Geophys. 2011, 52, 1553–1562. [Google Scholar] [CrossRef]
- Berzina, A.N.; Berzina, A.P. Geological and geochemical characteristics of the Aksug porphyry Cu–Mo system, Altay-Sayan region, Russia. Acta Petrol. Sin. 2008, 24, 2657–2668. [Google Scholar]
- Irvine, T.N.; Baragar, W.R.A. A Guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Kuno, H. Origin of andesite and its bearing on the Island arc structure. Bull. Volcanol. 1968, 32, 141–176. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. Chemical evolution of the mantle. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Wang, K.; Plank, T.; Walker, J.D.; Smith, E.I. A mantle melting profile across the Basin and Range, SW USA. J. Geophys. Res. Solid Earth 2002, 107. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Berzin, N.A.; Buslov, M.M. Opening and tectonic evolution of the Paleo-Asian Ocean. Int. Geol. Rev. 1995, 37, 335–360. [Google Scholar] [CrossRef]
- Drummond, M.S.; Defant, M.J. A model for Trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J. Geophys. Res. Solid Earth 1990, 95, 21503–21521. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Hanghøj, K.; Greene, A.R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In Treatise on Geochemistry; Turekian, K.K., Ed.; Pergamon: Oxford, UK, 2007; pp. 1–70. [Google Scholar]
- Jahn, B.; Wu, F.; Lo, C.H.; Tsai, C.H. Crust–mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr–Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol. 1999, 157, 119–146. [Google Scholar] [CrossRef]
- Huang, F.; Li, S.; Dong, F.; Li, Q.; Chen, F.; Wang, Y.; Yang, W. Recycling of deeply subducted continental crust in the Dabie Mountains, central China. Lithos 2007, 96, 151–169. [Google Scholar] [CrossRef]
- Orejana, D.; Villaseca, C.; Pérez-Soba, C.; López-García, J.A.; Billström, K. The Variscan gabbros from the Spanish Central System: A case for crustal recycling in the sub-continental lithospheric mantle? Lithos 2009, 110, 262–276. [Google Scholar] [CrossRef] [Green Version]
- Donskaya, T.V.; Windley, B.F.; Mazukabzov, A.M.; KRöNER, A.; Sklyarov, E.V.; Gladkochub, D.P.; Ponomarchuk, V.A.; Badarch, G.; Reichow, M.K.; Hegner, E. Age and evolution of late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia. J. Geol. Soc. 2008, 165, 405–421. [Google Scholar] [CrossRef]
- Kelemen, P.B. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 1995, 120, 1–19. [Google Scholar]
- Yang, Z.M.; Lu, Y.J.; Hou, Z.Q.; Chang, Z.S. High-Mg diorite from Qulong in Southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. J. Petrol. 2015, 56, 227–254. [Google Scholar] [CrossRef]
- Dril’, S.I.; Lokhov, I.K.; Kurilenko, A.V.; Sandimirova, G.P. Sr–Nd isotopic characteristics and U–Pb ages of island-arc complexes within the Mongol–Okhotsk fold belt. In Modern Problems of Geochemistry; Institute of Geography: Irkutsk, Russia, 2012; Volume 2, pp. 220–223. (In Russian) [Google Scholar]
- Xiao, L.; Zhang, H.F.; Clemens, J.D.; Wang, Q.W.; Kan, Z.Z.; Wang, K.M.; Ni, P.Z.; Liu, X.M. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution. Lithos 2007, 96, 436–452. [Google Scholar] [CrossRef]
- Xiao, L.; Clemens, J.D. Origin of potassic (C-type) adakite magmas: Experimental and field constraints. Lithos 2007, 95, 399–414. [Google Scholar] [CrossRef]
Deposit | Aksug | ||||||||
Series | Plutonic | Porphyry | |||||||
Rock | Gabbro | Diorite | Tonalite | Plagiogranite | Tonalite Porphyry | Granodiorite Porphyry I | Granodiorite Porphyry II | ||
Major element (wt %) | |||||||||
SiO2 | 51.30 | 58.55 | 67.31 | 71.51 | 66.48 | 65.83 | 67.08 | 67.39 | |
TiO2 | 0.70 | 0.62 | 0.33 | 0.28 | 0.32 | 0.48 | 0.30 | 0.30 | |
Al2O3 | 18.20 | 15.94 | 16.43 | 14.35 | 16.69 | 16.02 | 16.60 | 16.34 | |
FeOt | 8.94 | 7.88 | 3.08 | 2.49 | 2.91 | 2.99 | 2.73 | 2.57 | |
MnO | 0.14 | 0.15 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | |
MgO | 4.25 | 3.37 | 0.33 | 0.55 | 1.05 | 1.55 | 0.95 | 0.93 | |
CaO | 8.01 | 5.87 | 2.69 | 2.62 | 2.37 | 2.78 | 2.98 | 2.77 | |
Na2O | 2.43 | 2.45 | 4.82 | 4.51 | 4.62 | 6.07 | 5.01 | 4.90 | |
K2O | 2.14 | 2.46 | 2.00 | 1.59 | 2.50 | 1.04 | 1.61 | 1.69 | |
P2O5 | 0.16 | 0.14 | 0.10 | 0.07 | 0.11 | 0.20 | 0.35 | 0.10 | |
LOI | 1.76 | 1.83 | 2.19 | 2.39 | 1.88 | 1.84 | 1.43 | 2.10 | |
∑ | 98.05 | 99.26 | 99.31 | 100.39 | 99.30 | 98.85 | 99.07 | 99.15 | |
Mg# | 45.88 | 43.25 | 16.04 | 28.23 | 39.22 | 47.93 | 38.21 | 39.32 | |
Trace element (ppm) | |||||||||
Method | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | |
Sc | 23 | 28 | 5.6 | 1.4 | 5.1 | 9.8 | 4.3 | 4.0 | |
V | 255 | 207 | 72 | 22 | 62 | 72 | 54 | 48 | |
Cr | 20 | 20 | 31 | 28 | 16 | 38 | 4 | 7 | |
Co | 24 | 19.5 | 5.4 | 4.2 | 5.1 | 7.1 | 5 | 5.4 | |
Ni | 9 | <5 | <5 | <5 | 3.5 | 10.7 | 2.7 | 3.9 | |
Rb | 51 | 57 | 32 | 24 | 38 | 20 | 22 | 25 | |
Sr | 490 | 380 | 690 | 155 | 665 | 380 | 830 | 680 | |
Y | 9.2 | 25 | 6.2 | 3.9 | 5.2 | 8.8 | 5.5 | 5.8 | |
Zr | 39 | 102 | 75 | 54 | 78 | 87 | 76 | 80 | |
Nb | 1.6 | 4.1 | 2.7 | 2.6 | 2.2 | 3.2 | 2.2 | 2.4 | |
Cs | 1.7 | 1.6 | 0.6 | 1.1 | 0.9 | 0.4 | 0.5 | 0.7 | |
Ba | 407 | 436 | 426 | 473 | 452 | 104 | 565 | 554 | |
La | 5 | 13 | 9 | 7 | 9 | 14 | 9 | 10 | |
Ce | 11 | 29 | 19 | 13 | 17 | 31 | 19 | 19 | |
Pr | 1.6 | 3.9 | 2.3 | 1.6 | 2.2 | 3.8 | 2.3 | 2.5 | |
Nd | 7.9 | 16.9 | 9.7 | 6.4 | 8.2 | 15 | 8.6 | 9.3 | |
Sm | 2 | 4.2 | 1.8 | 1.1 | 1.6 | 3 | 1.5 | 1.7 | |
Eu | 0.71 | 0.92 | 0.54 | 0.25 | 0.48 | 0.73 | 0.44 | 0.44 | |
Gd | 1.95 | 4.1 | 1.3 | 0.76 | 1.37 | 2.23 | 1.29 | 1.39 | |
Tb | 0.29 | 0.63 | 0.19 | 0.11 | 0.16 | 0.28 | 0.15 | 0.2 | |
Dy | 1.64 | 4.3 | 0.98 | 0.62 | 0.83 | 1.67 | 0.85 | 0.99 | |
Ho | 0.32 | 0.9 | 0.2 | 0.12 | 0.16 | 0.32 | 0.17 | 0.2 | |
Er | 0.9 | 2.6 | 0.52 | 0.34 | 0.48 | 0.94 | 0.51 | 0.57 | |
Tm | 0.13 | 0.43 | 0.09 | 0.06 | 0.08 | 0.14 | 0.09 | 0.08 | |
Yb | 0.87 | 2.6 | 0.62 | 0.40 | 0.55 | 0.88 | 0.57 | 0.56 | |
Lu | 0.13 | 0.42 | 0.09 | 0.06 | 0.08 | 0.13 | 0.09 | 0.09 | |
Hf | 1.25 | 3.7 | 2.2 | 1.99 | 2.24 | 2.77 | 2.47 | 2.47 | |
Ta | 0.21 | 0.7 | 0.14 | 0.26 | 0.15 | 0.17 | 0.14 | 0.14 | |
Pb | 3.0 | 8.4 | 3.9 | 1.2 | 3.8 | 4.8 | 4.7 | 8 | |
Th | 0.7 | 3.2 | 1.1 | 2.7 | 0.9 | 1.7 | 1.1 | 1.2 | |
U | 0.6 | 1.5 | 0.5 | 1.1 | 0.9 | 1.8 | 1 | 1 | |
Sr/Y | 53 | 15 | 111 | 40 | 129 | 43 | 151 | 117 | |
(La/Yb)n | 3.89 | 3.46 | 10.16 | 11.55 | 10.92 | 10.89 | 11.01 | 11.70 | |
Deposit | Sora | ||||||||
Series | Plutonic | Porphyry | |||||||
Rock | Gabbro | Monzodiorite | Leucogranite | Gabbro Porphyry | Granite Porphyry | Granite Porphyry | |||
Major element (wt %) | |||||||||
SiO2 | 49.94 | 53.95 | 70.10 | 47.91 | 71.40 | 73.09 | |||
TiO2 | 1.23 | 0.90 | 0.24 | 0.97 | 0.06 | 0.15 | |||
Al2O3 | 18.51 | 16.16 | 15.98 | 16.48 | 15.26 | 14.26 | |||
FeOt | 8.63 | 7.15 | 2.28 | 8.77 | 1.37 | 1.65 | |||
MnO | 0.15 | 0.15 | 0.04 | 0.16 | 0.03 | 0.03 | |||
MgO | 5.36 | 6.09 | 0.60 | 8.10 | 0.14 | 0.26 | |||
CaO | 8.94 | 7.36 | 1.84 | 9.18 | 1.10 | 1.17 | |||
Na2O | 3.77 | 3.90 | 3.76 | 3.28 | 5.58 | 4.55 | |||
K2O | 1.10 | 1.82 | 3.36 | 1.53 | 3.66 | 3.76 | |||
P2O5 | 0.65 | 0.26 | 0.10 | 0.29 | 0.00 | 0.03 | |||
LOI | 0.96 | 1.42 | 1.00 | 2.20 | 0.00 | 0.78 | |||
∑ | 99.23 | 99.17 | 99.30 | 98.87 | 98.60 | 99.73 | |||
Mg# | 52.54 | 60.28 | 31.91 | 62.21 | 15.38 | 21.90 | |||
Trace element (ppm) | |||||||||
Method | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | * | |||
Sc | 21 | 23 | 2.7 | 33 | 0.5 | ||||
V | 272 | 204 | 37 | 242 | 13 | ||||
Cr | 57 | 442 | 402 | 158 | 10 | ||||
Co | 32 | 29 | 3.9 | 35 | 0.5 | ||||
Ni | 29 | 74 | 38 | 107 | <5 | ||||
Rb | 16 | 45 | 112 | 41 | 63 | 119 | |||
Sr | 2070 | 770 | 520 | 520 | 280 | 645 | |||
Y | 26 | 21 | 8.5 | 22.7 | 9.5 | 8.3 | |||
Zr | 103 | 141 | 161 | 72 | 222 | 155 | |||
Nb | 9.3 | 9.4 | 13.2 | 4.5 | 19.1 | 9.4 | |||
Cs | 0.4 | 0.8 | 1.6 | 1 | 0.1 | ||||
Ba | 757 | 566 | 677 | 305 | 829 | 820 | |||
La | 42 | 25 | 36 | 20 | 35 | 21 | |||
Ce | 90 | 53 | 54 | 40 | 52 | 32 | |||
Pr | 12.7 | 6.9 | 5.6 | 5.7 | 4.9 | ||||
Nd | 53 | 28 | 19 | 23.9 | 13.4 | 8.8 | |||
Sm | 9.9 | 5.3 | 2.8 | 4.7 | 1.5 | 2 | |||
Eu | 3.1 | 1.5 | 0.61 | 1.39 | 0.32 | 0.52 | |||
Gd | 7.3 | 4.4 | 2.0 | 4.72 | 1.22 | 1.62 | |||
Tb | 0.92 | 0.64 | 0.25 | 0.65 | 0.14 | 0.22 | |||
Dy | 4.9 | 3.6 | 1.41 | 3.81 | 0.96 | ||||
Ho | 0.87 | 0.71 | 0.26 | 0.76 | 0.20 | ||||
Er | 2.3 | 2.1 | 0.77 | 2.18 | 0.77 | ||||
Tm | 0.32 | 0.31 | 0.12 | 0.31 | 0.15 | ||||
Yb | 1.91 | 1.89 | 0.83 | 2.18 | 1.20 | 0.6 | |||
Lu | 0.26 | 0.26 | 0.12 | 0.27 | 0.20 | 0.08 | |||
Hf | 2.7 | 3.7 | 4.7 | 2.27 | 6.25 | 3.1 | |||
Ta | 0.44 | 0.71 | 0.84 | 0.24 | 1.33 | 0.79 | |||
Pb | 6 | 7.4 | 15.8 | 4.9 | 12 | ||||
Th | 1.8 | 3 | 14.4 | 1.9 | 13.1 | 1.1 | |||
U | 0.7 | 1.5 | 2.4 | 0.7 | 3.1 | 6.4 | |||
Sr/Y | 79 | 36 | 61 | 23 | 30 | 78 | |||
(La/Yb)n | 15.11 | 9.14 | 29.67 | 6.11 | 19.84 | 23.21 | |||
Deposit | Erdenetiin Ovoo | ||||||||
Series | Plutonic | Porphyry | |||||||
Rock | Monzogabbro | Gabbrodiorite | Granodiorite | Granodiorite | Monzogabbro Porphyry | Diorite Porphyry | Quartz Monzonite Porphyry | Granodiorite Porphyry | |
Major element (wt %) | |||||||||
SiO2 | 50.60 | 57.60 | 68.27 | 69.05 | 48.89 | 58.31 | 64.5 | 67.70 | |
TiO2 | 1.59 | 1.01 | 0.44 | 0.37 | 1.24 | 0.97 | 0.63 | 0.37 | |
Al2O3 | 17.50 | 18.20 | 16.24 | 14.90 | 18.19 | 18.25 | 16.5 | 15.68 | |
FeOt | 9.19 | 7.02 | 2.66 | 2.63 | 8.38 | 6.05 | 3.74 | 3.19 | |
MnO | 0.12 | 0.12 | 0.04 | 0.05 | 0.13 | 0.06 | 0.08 | 0.07 | |
MgO | 4.86 | 2.79 | 0.96 | 1.32 | 4.94 | 2.65 | 1.81 | 1.49 | |
CaO | 6.90 | 5.83 | 2.50 | 2.43 | 6.94 | 4.47 | 3.5 | 2.19 | |
Na2O | 4.33 | 4.83 | 5.06 | 4.15 | 5.26 | 4.55 | 5.2 | 5.00 | |
K2O | 1.43 | 1.74 | 2.78 | 3.50 | 1.26 | 1.06 | 2 | 2.70 | |
P2O5 | 0.58 | 0.38 | 0.14 | 0.11 | 0.43 | 0.34 | 0.19 | 0.14 | |
LOI | 2.41 | 0.93 | 0.68 | 0.63 | 3.4 | 2.63 | 1.15 | 1.51 | |
∑ | 99.51 | 100.45 | 99.77 | 99.14 | 99.06 | 99.34 | 99.30 | 100.04 | |
Mg# | 48.51 | 41.47 | 39.15 | 47.23 | 51.23 | 43.82 | 46.33 | 45.46 | |
Trace element (ppm) | |||||||||
Method | ICP-MS | ICP-MS | * | * | ICP-MS | ICP-MS | ICP-MS | * | |
Sc | 24 | 12.8 | 4.8 | 4.8 | 13.9 | 10.2 | 6.2 | 3.8 | |
V | 201 | 110 | 130 | 100 | 154 | 102 | 72 | 190 | |
Cr | 58 | 9 | 20 | 15 | 178 | 23 | 50 | 26 | |
Co | 21 | 16 | 24 | 22 | 29 | 10.4 | 11.4 | 22 | |
Ni | 42 | 16.7 | 31 | 29 | 95 | 16 | 35 | 48 | |
Rb | 30 | 29 | 68 | 87 | 16 | 26 | 37 | 44 | |
Sr | 1985 | 1030 | 930 | 420 | 1485 | 970 | 1216 | 1010 | |
Y | 23 | 17.5 | 14 | 19.3 | 7.7 | ||||
Zr | 73 | 137 | 99 | 144 | 292 | 114 | |||
Nb | 3.6 | 4.6 | 4 | 5.8 | 5.3 | 2.4 | |||
Cs | 2.5 | 1.3 | 1.7 | ||||||
Ba | 568 | 699 | 827 | 857 | 678 | 501 | 1083 | 1180 | |
La | 20 | 26 | 15 | 14 | 22 | 20 | 17 | 17 | |
Ce | 49 | 52.63 | 32 | 33 | 48 | 44 | 34 | 33.8 | |
Pr | 8.4 | 6.8 | 6.8 | 5.8 | 4.5 | ||||
Nd | 39 | 26.1 | 13.3 | 15 | 28 | 22 | 17.3 | 14.3 | |
Sm | 8.4 | 4.6 | 2.7 | 3.2 | 5.1 | 4.1 | 3.2 | 2.7 | |
Eu | 2.3 | 1.42 | 0.73 | 0.68 | 1.63 | 1.32 | 0.77 | 0.68 | |
Gd | 6.8 | 4.12 | 9.8 | 9.1 | 4.2 | 3.7 | 2.3 | 1.6 | |
Tb | 0.9 | 0.58 | 0.26 | 0.41 | 0.5 | 0.56 | 0.32 | 0.25 | |
Dy | 4.5 | 3.22 | 2.8 | 3.3 | 1.55 | ||||
Ho | 0.83 | 0.64 | 0.5 | 0.64 | 0.26 | ||||
Er | 2.1 | 1.8 | 1.26 | 1.95 | 0.71 | ||||
Tm | 0.29 | 0.26 | 0.18 | 0.31 | 0.10 | ||||
Yb | 1.73 | 1.67 | 0.61 | 1.24 | 1.07 | 2.2 | 0.65 | 0.44 | |
Lu | 0.23 | 0.25 | 0.11 | 0.19 | 0.16 | 0.33 | 0.1 | 0.07 | |
Hf | 2.4 | 3.48 | 3.9 | 4.9 | 3.7 | 7.2 | 3.1 | 3.6 | |
Ta | 0.23 | 0.24 | 0.3 | 0.6 | 0.32 | 0.75 | 0.18 | 0.2 | |
Pb | 13.4 | 8.5 | 13.6 | 8.6 | 64 | ||||
Th | 2.4 | 1.7 | 2.9 | 7.7 | 1.7 | 5 | 1.6 | 2.8 | |
U | 0.6 | 0.5 | 1.3 | 1.4 | 0.6 | 1.5 | 0.5 | 1.3 | |
Sr/Y | 88 | 59 | 106 | 50 | 158 | ||||
(La/Yb)n | 7.65 | 10.40 | 16.37 | 7.78 | 13.97 | 6.18 | 17.69 | 26.71 | |
Deposit | Zhireken | ||||||||
Series | Plutonic | Porphyry | |||||||
Rock | Gabbro | Gabbrodiorite | Quartz Monzonite | Granite | Monzonite Porphyry | Granodiorite Porphyry | Quartz Monzonite Porphyry | Granite Porphyry | |
Major element (wt %) | |||||||||
SiO2 | 47.68 | 51.60 | 66.80 | 69.50 | 56.12 | 59.00 | 64.10 | 65.05 | 72.35 |
TiO2 | 1.44 | 1.30 | 0.44 | 0.23 | 0.82 | 0.86 | 0.57 | 0.84 | 0.26 |
Al2O3 | 15.43 | 17.50 | 15.70 | 16.20 | 14.58 | 14.60 | 15.60 | 15.80 | 13.70 |
FeOt | 7.69 | 9.27 | 3.33 | 2.43 | 8.81 | 7.02 | 3.60 | 2.88 | 1.80 |
MnO | 0.234 | 0.11 | 0.05 | 0.03 | 0.047 | 0.06 | 0.03 | 0.03 | 0.02 |
MgO | 8.84 | 4.91 | 1.17 | 0.40 | 5.57 | 4.91 | 1.89 | 2.85 | 0.48 |
CaO | 10.50 | 9.09 | 2.64 | 2.15 | 3.39 | 3.02 | 2.85 | 1.75 | 1.55 |
Na2O | 2.70 | 3.27 | 4.33 | 4.67 | 3.53 | 4.33 | 4.33 | 5.00 | 3.67 |
K2O | 0.69 | 1.33 | 4.00 | 3.33 | 3.11 | 3.67 | 2.88 | 2.81 | 4.50 |
P2O5 | 0.26 | 0.19 | 0.10 | 0.04 | 0.25 | 0.22 | 0.19 | 0.36 | 0.05 |
LOI | 2.06 | 1.50 | 0.74 | 0.54 | 2.49 | 1.62 | 2.83 | 1.36 | 0.83 |
∑ | 97.53 | 100.07 | 99.30 | 99.52 | 98.71 | 99.31 | 98.87 | 98.73 | 99.21 |
Mg# | 67.20 | 48.57 | 38.53 | 22.69 | 52.96 | 55.50 | 48.37 | 63.85 | 32.22 |
Trace element (ppm) | |||||||||
Method | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS |
Sc | 52 | 30 | 5 | 1.9 | 10.8 | 7.1 | 9.3 | 2.8 | |
V | 278 | 320 | 58 | 14 | 133 | 80 | 110 | 27 | |
Cr | 216 | 48 | 25 | 18 | 290 | 39 | 34 | 11 | |
Co | 31 | 27 | 7.2 | 2 | 13.6 | 9.6 | 6 | 2.9 | |
Ni | 101 | <2 | <2 | <2 | 169 | 26 | 6.8 | <2 | |
Rb | 14 | 36 | 144 | 84 | 395 | 312 | 176 | 236 | 207 |
Sr | 750 | 860 | 520 | 480 | 450 | 515 | 620 | 610 | 305 |
Y | 22 | 14.3 | 11.8 | 7.2 | 15 | 22 | 13.0 | 18.1 | 13.1 |
Zr | 138 | 48 | 108 | 97 | 283 | 101 | 128 | 146 | 89 |
Nb | 4.8 | 2.7 | 7.8 | 3.5 | 6.8 | 6.2 | 5.9 | 7.5 | 10.5 |
Cs | 1.3 | 3.9 | 5.8 | 2.9 | 57 | 23 | 36 | 30 | 7.3 |
Ba | 129 | 310 | 633 | 1129 | 288 | 575 | 1377 | 644 | 1206 |
La | 15 | 13 | 24 | 20 | 29 | 41 | 18 | 41 | 31 |
Ce | 38 | 27 | 54 | 34 | 58 | 78 | 38 | 65 | 51 |
Pr | 5.8 | 3.7 | 5.7 | 4.0 | 6.8 | 9.1 | 5.3 | 8.9 | 5.4 |
Nd | 24 | 15.3 | 19.3 | 13.6 | 24 | 32 | 20 | 31 | 16.6 |
Sm | 5.1 | 3.2 | 3.2 | 2.2 | 4.3 | 5.3 | 3.7 | 5.0 | 2.5 |
Eu | 1.38 | 0.91 | 0.54 | 0.41 | 0.67 | 0.83 | 0.67 | 0.92 | 0.27 |
Gd | 5.4 | 3.1 | 2.6 | 1.82 | 3.2 | 4.6 | 2.8 | 4.1 | 2.1 |
Tb | 0.72 | 0.44 | 0.31 | 0.19 | 0.43 | 0.62 | 0.37 | 0.5 | 0.31 |
Dy | 4.1 | 2.4 | 1.84 | 1.08 | 2.2 | 3.2 | 2.1 | 2.7 | 1.88 |
Ho | 0.77 | 0.44 | 0.38 | 0.19 | 0.36 | 0.63 | 0.38 | 0.51 | 0.38 |
Er | 2.2 | 1.21 | 1.08 | 0.57 | 1.11 | 1.7 | 1.13 | 1.53 | 1.25 |
Tm | 0.32 | 0.17 | 0.16 | 0.09 | 0.16 | 0.24 | 0.18 | 0.26 | 0.20 |
Yb | 1.99 | 0.95 | 1.02 | 0.64 | 1.06 | 1.7 | 1.13 | 1.53 | 1.32 |
Lu | 0.27 | 0.13 | 0.15 | 0.1 | 0.16 | 0.25 | 0.16 | 0.24 | 0.21 |
Hf | 4.3 | 1.36 | 3 | 2.5 | 6.1 | 2.7 | 4.1 | 4.8 | 2.9 |
Ta | 0.37 | 0.3 | 0.83 | 0.23 | 0.38 | 0.45 | 0.83 | 0.63 | 1.27 |
Pb | 78 | 13.9 | 17.3 | 23 | 25 | 18.1 | 56 | 19.1 | |
Th | 4.7 | 2.3 | 12.4 | 4.5 | 5.7 | 5.4 | 8.7 | 7.1 | 16.8 |
U | 1.6 | 1 | 2.1 | 1.1 | 1.6 | 5.1 | 6.3 | 5.3 | 16.7 |
Sr/Y | 34 | 60 | 44 | 67 | 30 | 24 | 48 | 34 | 23 |
(La/Yb)n | 5.14 | 9.17 | 16.19 | 21.40 | 18.90 | 16.42 | 10.96 | 18.26 | 15.84 |
Deposit | Shakhtama | ||||||||
Series | Plutonic | Porphyry | |||||||
Rock | Diorite | Monzonite | Quartz Monzonite | Granite | Monzodiorite Porphyry | Monzonite Porphyry | Syenite Porphyry | Quartz Monzonite Porphyry | Granite Porphyry |
Major element (wt %) | |||||||||
SiO2 | 56.40 | 61.37 | 61.92 | 69.47 | 53.36 | 59.8 | 60.5 | 63.5 | 69.2 |
TiO2 | 0.74 | 0.69 | 0.56 | 0.43 | 1.24 | 0.77 | 0.77 | 0.6 | 0.41 |
Al2O3 | 13.50 | 18.84 | 17.30 | 15.33 | 12.8 | 13.25 | 13.74 | 14.87 | 15.33 |
FeOt | 6.85 | 4.65 | 4.10 | 3.10 | 8.50 | 5.09 | 4.77 | 3.74 | 2.00 |
MnO | 0.09 | 0.12 | 0.08 | 0.06 | 0.08 | 0.06 | 0.05 | 0.05 | 0.04 |
MgO | 8.40 | 2.14 | 2.66 | 1.21 | 9.26 | 7.12 | 6.54 | 3.27 | 1.81 |
CaO | 6.06 | 5.15 | 4.75 | 2.67 | 4.98 | 4.42 | 3.03 | 3.46 | 2.2 |
Na2O | 2.90 | 4.75 | 4.27 | 3.77 | 3.35 | 3.5 | 3.65 | 3.82 | 4.5 |
K2O | 2.40 | 2.50 | 3.70 | 3.59 | 3.8 | 4.18 | 4.94 | 4.47 | 4 |
P2O5 | 0.04 | 0.21 | 0.17 | 0.08 | 0.3 | 0.09 | 0.1 | 0.14 | 0.06 |
LOI | 2.40 | 0.59 | 0.46 | 0.95 | 2.46 | 1.57 | 1.29 | 1.21 | 0.71 |
∑ | 99.78 | 101.00 | 99.97 | 100.65 | 100.13 | 99.85 | 99.38 | 99.13 | 100.26 |
Mg# | 68.60 | 45.07 | 53.67 | 41.00 | 66.01 | 71.36 | 70.97 | 60.94 | 61.77 |
Trace element (ppm) | |||||||||
Method | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS | ICP-MS |
Sc | 22 | 11.9 | 5.8 | 5.2 | 19.6 | 11.3 | 10.6 | 6.6 | 4.0 |
V | 147 | 82 | 40 | 44 | 145 | 91 | 66 | 63 | 33 |
Cr | 768 | 228 | 108 | 15 | 498 | 429 | 301 | 116 | 83 |
Co | 30 | 13.7 | 5.3 | 5 | 20 | 16.5 | 10.4 | 10 | 5.5 |
Ni | 197 | 60 | 39 | <5 | 247 | 260 | 157 | 73 | 24 |
Rb | 117 | 192 | 237 | 139 | 407 | 214 | 249 | 160 | 128 |
Sr | 480 | 425 | 300 | 485 | 590 | 560 | 410 | 890 | 930 |
Y | 14.3 | 20 | 13.6 | 15 | 26 | 14.5 | 14.0 | 15.3 | 8.7 |
Zr | 152 | 231 | 73 | 110 | 294 | 121 | 150 | 144 | 108 |
Nb | 6.9 | 14 | 14.4 | 10 | 16 | 9.1 | 10.5 | 9.5 | 8.8 |
Cs | 17.6 | 10.7 | 9.9 | 4.6 | 44 | 11 | 10.9 | 5.6 | 2.2 |
Ba | 534 | 599 | 609 | 678 | 1106 | 844 | 719 | 1148 | 1178 |
La | 26 | 33 | 21 | 23 | 72 | 34 | 32 | 61 | 29 |
Ce | 51 | 64 | 48 | 49 | 141 | 66 | 67 | 116 | 60 |
Pr | 6.2 | 7.8 | 6.4 | 6.0 | 18.2 | 8.4 | 7.9 | 14.6 | 7.3 |
Nd | 23 | 28 | 23 | 22 | 67 | 31 | 29 | 53 | 26 |
Sm | 4.2 | 4.8 | 3.8 | 3.5 | 11.6 | 5.4 | 5.1 | 7.7 | 4.0 |
Eu | 0.99 | 0.85 | 0.61 | 0.87 | 2.6 | 0.94 | 1.20 | 1.76 | 0.74 |
Gd | 3.4 | 3.6 | 3.2 | 3.3 | 8.3 | 4.2 | 4.2 | 5.6 | 2.8 |
Tb | 0.44 | 0.51 | 0.44 | 0.41 | 0.95 | 0.50 | 0.5 | 0.63 | 0.32 |
Dy | 2.5 | 2.8 | 2.3 | 2.1 | 4.8 | 2.6 | 2.5 | 2.9 | 1.6 |
Ho | 0.45 | 0.58 | 0.44 | 0.44 | 0.83 | 0.44 | 0.44 | 0.44 | 0.26 |
Er | 1.22 | 1.73 | 1.33 | 1.2 | 2.1 | 1.27 | 1.21 | 1.14 | 0.7 |
Tm | 0.19 | 0.26 | 0.22 | 0.15 | 0.27 | 0.19 | 0.18 | 0.14 | 0.1 |
Yb | 1.15 | 1.79 | 1.27 | 1.1 | 1.76 | 1.08 | 1.08 | 0.89 | 0.64 |
Lu | 0.19 | 0.25 | 0.18 | 0.15 | 0.25 | 0.16 | 0.15 | 0.12 | 0.1 |
Hf | 4.1 | 5.7 | 2.5 | 2.9 | 6.8 | 3.9 | 4.5 | 4.5 | 3.6 |
Ta | 0.63 | 0.98 | 1.66 | 0.79 | 1.27 | 0.69 | 0.83 | 0.69 | 0.84 |
Pb | 36 | 12.8 | 23 | 19 | 184 | 14.9 | 44 | 31 | 21 |
Th | 10 | 12.5 | 19.4 | 2.9 | 17.5 | 10.2 | 11.6 | 14.1 | 10.3 |
U | 3 | 4.3 | 6.7 | 1.4 | 5.6 | 3.4 | 3.8 | 2.7 | 2.7 |
Sr/Y | 34 | 21 | 22 | 33 | 23 | 39 | 29 | 58 | 107 |
(La/Yb)n | 15.28 | 12.40 | 11.25 | 14.39 | 27.56 | 21.28 | 20.17 | 46.58 | 31.30 |
Deposit | Lithology | Age (Ma) | (87Sr/86Sr)i | ƐNd(t) | TNd(DM1st) (Ga) | References |
---|---|---|---|---|---|---|
Aksug, Altai-Sayan segment, Russia | plutonic series: gabbro, diorite, tonalite, plagiogranite | 504.1 ± 5.2 (SHRIMP U–Pb zircon) | 0.70216–0.70347 | +6.1–+8.0 | 0.57–0.85 | [54,56] |
porphyry series: tonalite porphyry, granodiorite porphyries | 500.4 ± 5.9; 499.2 ± 6.3 (SHRIMP U–Pb zircon) | 0.70110–0.70298 | +6.6–+7.7 | 0.59–0.68 | ||
Sora, Altai-Sayan segment, Russia | plutonic series: gabbro, monzodiorite, leucogranite | 480–420 (40Ar/39Ar dating) | 0.70399–0.70436 | +0.9–+3.4 | 0.8–1.1 | [43,51,55] |
porphyry series: monzodiorite, syenite, granite porphyries | 405–370 (40Ar/39Ar dating) | 0.70407–0.70460 | +0.3–+2.4 | 0.79–1.0 | ||
Erdenetiin Ovoo, Northern Mongolia | plutonic series: diorite, monzonite, granodiorite | 258–247 (40Ar/39Ar dating) | 0.70413–0.70437 | +1.9–+4.1 | 0.67–0.98 | [54,102] |
porphyry series: diorite, granodiorite porphyries | 235–220 (40Ar/39Ar dating) | 0.70418–0.70465 | +1.5–+4.0 | 0.65–0.77 | ||
Zhireken, Eastern Transbaikalia, Russia | plutonic series: diorite, quartz monzonite, granite | 164–161 (SHRIMP U–Pb zircon) | 0.70501–0.70542 | −10.3–−1.4 | 1.1–1.5 | [46,52,54] |
porphyry series: monzonite, monzogranite, granite porphyries | 161–158 (SHRIMP U–Pb zircon) | 0.70451–0.70633 | −3.7–+1.0 | 0.75–1.1 | ||
Shakhtama, Eastern Transbaikalia, Russia | plutonic series: diorite, monzonite, granodiorite | 163–159 (SHRIMP U–Pb zircon) | 0.70712–0.70732 | −2.7–−0.3 | 0.89–0.95 | [53,54,60] |
porphyry series: monzonite, granite porphyries | 160–153 (SHRIMP U–Pb zircon) | 0.70741–0.70782 | −1.4–+2.1 | 0.67–0.94 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berzina, A.N.; Berzina, A.P.; Gimon, V.O. Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review). Minerals 2016, 6, 125. https://doi.org/10.3390/min6040125
Berzina AN, Berzina AP, Gimon VO. Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review). Minerals. 2016; 6(4):125. https://doi.org/10.3390/min6040125
Chicago/Turabian StyleBerzina, Anita N., Adel P. Berzina, and Victor O. Gimon. 2016. "Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review)" Minerals 6, no. 4: 125. https://doi.org/10.3390/min6040125
APA StyleBerzina, A. N., Berzina, A. P., & Gimon, V. O. (2016). Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review). Minerals, 6(4), 125. https://doi.org/10.3390/min6040125