Metal Removal from Acid Waters by an Endemic Microalga from the Atacama Desert for Water Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Microalgal Strains
2.2. Metal Removal by Muriellopsis sp. from Artificial Acid Drainage (AAD)
2.3. Removal of Fe2+ Ion by Muriellopsis sp. from Natural Acid Drainage (NAD)
2.4. Data Analysis
3. Results
3.1. Density and Metal Removal by Muriellopsis sp. in AAD
3.2. Density and Metal Removal by Muriellopsis sp. in NAD
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Verdugo Gallegos, L.A. Remoción de Iones Sulfato y Metales Pesados Desde Soluciones Acuosas que Simulan Aguas de Mina Usando Mezcla de Cal, Silicatos Nano-Estructurados y Policloruro de Aluminio en una Celda DAF. Bachelor’s Thesis, Universidad De Chile, Santiago, Chile, 2013. (In Spanish). [Google Scholar]
- Murcia, E.; Trillos, C. Estudio Cinético para la Predicción de la Formación de Drenajes Ácidos en Minas de Carbon; Technical Report; Universidad Industrial de Santander, Escuela de Ingeniería Química: Bucaramanga, Colombia, 2000; pp. 5–20. (In Spanish) [Google Scholar]
- Leusmary, D.; Villafrades, R. Remoción de Fe y Mn Provenientes de Drenajes Ácidos de Minas de Carbón Utilizando Algas y Plantas Acuáticas; Technical Report; Universidad Industrial de Santander, Escuela de Ingeniería Química: Bucaramanga, Colombia, 2001; pp. 74–76. (In Spanish) [Google Scholar]
- Laverde, D. Prevención de la Contaminación por Drenajes Ácidos de Minas de Carbon; Technical Report; Informe final presentado a Colciencias-Minercol: Bucaramanga, Colombia, 2001; pp. 18–28. (In Spanish) [Google Scholar]
- Presidencia, S.G.D.L. Normas de Emisión para la Regulación de Contaminantes Asociados a las descargas de Residuos Líquidos a Aguas Marinas y Continentales Superficiales. Available online: http://www.siss.gob.cl/586/w3-article-4127.html (accessed on 1 August 2018).
- Chen, J.P.; Hong, L.; Wu, S.N.; Wang, L. Elucidation of interactions between metal ions and Ca alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation. Langmuir 2002, 18, 9413–9421. [Google Scholar] [CrossRef]
- Hedin, R.S.; Nairn, R.W.; Kleinmann, R.L.P. Passive Treatment of Coal Mine Drainage; Technical Report; US Dept of the Interior, Bureau of Mines: Washington, DC, USA, 1994.
- Díaz, A.; Arias, J.; Gelves, G.; Maldonado, A.; Laverde, D.; Pedraza, J.; Escalante, H. Biosorción de Fe, Al y Mn de Drenajes Ácidos de Mina de Carbón Empleando Algas Marinas Sargassum sp. en Procesos Continuos; Technical Report; Revista Facultad de Ingeniería Universidad de Antioquia: Medellín, Colombia, 2003. (In Spanish) [Google Scholar]
- Devia Torres, D.; Cáceres Sepúlveda, S.; Roa, A.L.; Suárez Gelvez, J.H.; Urbina Suárez, N.A. Use of microalgae of Chlorophyta division in the biological treatment of acid drains of coal mines. Rev. Colomb. Biotecnol. 2017, 19, 95–104. (In Spanish) [Google Scholar]
- Macfie, S.M.; Welbourn, P.M. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch. Environ. Contam. Toxicol. 2000, 39, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Cumming, J.R.; Taylor, G.J. Mechanisms of metal tolerance in plants: Physiological adaptations for exclusion of metal ions from the cytoplasm. In Stress Responses in Plants: Adaptation and Acclimation; Alscher, R.G., Cumming, J.R., Eds.; Wiley-Liss: New York, NY, USA, 1990. [Google Scholar]
- Belfore, N.M.; Anderson, S.L. Effects of contaminants on genetic patterns in aquatic organisms: A review. Mutat. Res. 2001, 489, 97–122. [Google Scholar] [CrossRef]
- Gupta, D.K.; Sandalio, L.M. Metal Toxicity in Plants: Perception, Signaling and Remediation; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Alvarez, H.M. Biorremediación de ambientes contaminados con hidrocarburos: Un proceso complejo que involucra múltiples variables. Rev. Quím. Viva 2015, 14, 18–25. (In Spanish) [Google Scholar]
- Kumar-Gupta, S.; Ahmad-Ansari, F.; Shriwastav, A.; Kumar-Sahoo, N.; Rawat, I.; Bux, F. Dual Role of Chlorella sorokiniana and Scenedesmus obliquus for Comprehensive Wastewater Treatment and Biomass Production for Bio-fuels. J. Clean. Prod. 2015, 115, 255–264. [Google Scholar] [CrossRef]
- Doshi, H.; Seth, C.; Ray, A.; Kothari, I.L. Bioaccumulation of heavy metals by green algae. Curr. Microbiol. 2008, 56, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Volesky, B. Biosorption of Heavy Metals; CRC Press: Boca Raton, FL, USA, 1990; pp. 7–14. [Google Scholar]
- Hamdy, A.A. Biosorption of heavy metals by marine algae. Curr. Microbiol. 2000, 41, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Kuzuno, E.; Mamiya, M. Adsorption of metal ions briver algae. Bunseki Kagaku 1992, 108, 123–128. [Google Scholar]
- Guillard, R.R.L.; Ryther, J.H. Studies of marine planktonic diatoms: I. Cyclotella Nana Hustedt, and Detonula Confervacea (CLEVE) Gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Toral, M.; Lara, N.; Gomez, J.; Richter, P. Determinación de hierro en fase sólida por espectrofotometría derivada de segundo orden. Bol. Soc. Chil. Quím. 2001, 46, 51–60. (In Spanish) [Google Scholar] [CrossRef]
- De la Cruz, C.E. Mitigación de drenaje ácido en minas subterráneas aplicando fangos artificiales. Caso: Mina Orcopampa. Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica 2006, 9, 69–74. (In Spanish) [Google Scholar]
- Leal, L.T.C. Drenajes Ácidos de Mina Formación y Manejo. Rev. ESAICA 2015, 1, 53–57. (In Spanish) [Google Scholar] [CrossRef]
- Montesinos León, M.I. Caracterización de Afluentes de Mina para Elección de la Alternativa Óptima de Tratamiento. Ph.D. Thesis, Pontificia Universidad Católica del Perú, Lima, Peru, 2017. (In Spanish). [Google Scholar]
- Cordero, J.; Guevara, M.; Morales, E.; Lodeiros, C. Efecto de metales pesados en el crecimiento de la microalga tropical Tetraselmis chuii (Prasinophyceae). Rev. Biol. Trop. 2005, 53, 325–330. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Santo, G.E. Efectos Agudos y Crónicos de Diversos Metales en una Batería de Organismos Dulceacuícolas. Ph.D. Thesis, Universidad Autónoma de Aguas Calientes, Aguascalientes, México, 2013. (In Spanish). [Google Scholar]
- Estupiñan, J.C. Evaluación de un Tratamiento para Drenaje Ácido Proveniente de una Mina de Carbon. Bachelor’s Thesis, Universidad de La Sabana, Chía, Colombia, 2015. (In Spanish). [Google Scholar]
- Zeraatkar, A.K.; Ahmadzadeh, H.; Talebi, A.F.; Moheimani, N.R.; McHenry, M.P. Potential use of algae for heavy metal bioremediation, a critical review. J. Environ. Manag. 2016, 181, 817–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Silva, K.R.; Vega-Bolaños, A.M.; Hernández-Rodríguez, L.C.; Parra-Ospina, D.A.; Ballen-Segura, M.Á. Uso de scenedesmus para la remoción de metales pesados y nutrientes de aguas residuales de la industria textil. Ingeniería Solidaria 2016, 12, 95–105. (In Spanish) [Google Scholar] [CrossRef]
- Jaramillo Ramos, R.A.; Romero Jara, H.M. Tratamiento de las Aguas del Sector las Katyas del Estero el Macho en Machala Mediante la Thalassiosira y Tetraselmis. Bachelor’s Thesis, Universidad Técnica de Machala, Machala, Ecuador, 2018. (In Spanish). [Google Scholar]
- Aksu, Z. Equilibrium and kinetic modelling of cadmiun (II) biosorption by C. Vulgaris in a batch system: Effect of temperatura. Sep. Purif. Technol. 2001, 21, 285–294. [Google Scholar] [CrossRef]
- Ortega, P.; Yomaira, B.; Valdez Álvarez, C.A. Análisis de Remoción de Cadmio por Acción de la Microalga Chlorella sp. Inmovilizada en Perlas de Alginate. Bachelor’s Thesis, Universidad Politécni Ca Salesiana, Quito, Ecuador, 2017. (In Spanish). [Google Scholar]
- Aksu, Z.; Dönmez, G. Binary biosorption of cadmiun (II) and nickel (II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters. Process Biochem. 2006, 41, 860–868. [Google Scholar] [CrossRef]
- Gaber, E.; Yahia, A.; Abdulrahim, A. Biosorption of Cadmium and Lead from Aqueous Solutions by Chlorella vulgaris Biomass: Equilibrium and Kinetic Study. Arab. J. Sci. Eng. 2014, 39, 87–93. [Google Scholar]
- Tüzün, I.; Bayramoglu, G.; Yalcin, E.; Basaran, G.; Anca, M.Y. Equilibrium and kinetic studies on biosorption of Hg (II), Cd (II) and Pb (II) ion sonto microalgae Chlamydomonas reinhardtii. J. Environ. Manag. 2005, 77, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Adhiya, J.; Cai, X.; Sayre, R.T.; Traina, S.J. Binding of aqueour cadmium by the lyophilized biomass of Chlamydomonas reinhardtii. Colloid Surf. A-Physicochem. Eng. Asp. 2002, 210, 1–11. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chang, H.W.; Kao, P.C.; Pan, J.L.; Chan, J.S. Biosorption of cadmium by CO2-fixing microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 2012, 105, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Amézquita Imata, E.E. Remoción de Cadmio Bivalente (Cd+2) Mediante Bioadsorción en un Sistema de Flujo Continuo Empacado con Biomasa Muerta e Inmovilizada de Scenedesmus Obliquus (Turpin) Kützing 1833 a Escala de Laboratorio. Bachelor’s Thesis, Universidad Nacional De San Agustin De Arequipa, Arequipa, Peru, 2018. (In Spanish). [Google Scholar]
- Han, X.; Wong, Y.S.; Tam, N.F.Y. Surface complexation mechanism and modeling in Cr (III) biosorption by a microalgal isolate, Chlorella miniata. J. Colloid Interface Sci. 2006, 303, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Akthar, N.; Iqbal, M.; Zafar, S.I.; Iqbal, J. Biosorption characterisitics of unicelular Green alga Chlorella sorokinian immobilized in loofa sponge of removal of Cr (III). J. Environ. Sci. 2008, 20, 231–239. [Google Scholar]
- Gokhale, S.V.; Jyoti, K.K.; Lele, S.S. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour. Technol. 2008, 99, 3600–3608. [Google Scholar] [CrossRef] [PubMed]
- Arica, M.Y.; Tüzün, I.; Yalcin, E.; Ince, O.; Bayramoglu, G. Utilisation of native, heat and acid-treated microalge Chlamydomonas reinhardtii preparations for biosorption of Cr (VI) ions. Process Biochem. 2005, 40, 2351–2358. [Google Scholar] [CrossRef]
- Dönmez, G.; Aksu, Z. Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochem. 2002, 38, 751–762. [Google Scholar] [CrossRef]
- Jácome-Pilco, C.R.; Cristiani-Urbina, E.; Flores-Cotera, L.B.; Velasco-García, R.; Ponce-Noyola, T.; Cañizares-Villanueva, R.O. Continuous Cr (VI) removal by Scenedesmus incrassatulus in an airlift photobioreactor. Bioresour. Technol. 2009, 100, 2388–2391. [Google Scholar] [CrossRef] [PubMed]
- Quezada, R.; Varela, E.; Rosa, M.A. Remediación natural para completar la depuración del cromo (VI) en efluentes de curtiembres. In Proceedings of the Quinto Congreso Deficiencia y Tecnología para Alumnos, Simposio Llevado a cabo en el Congreso de la Facultad Regional de Villa María, Córdoba, Argentina, 15–16 de Agosto 2012. (In Spanish). [Google Scholar]
- Bayramoğlu, G.; Yakup Arıca, M. Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu (II), Zn (II) and Ni (II): Kinetics and equilibrium studies. Bioresour. Technol. 2009, 100, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.K.; Gaur, J.P. Removal of Ni and Cu from single and binary metal solutions by free and immobilized Chlorella vulgaris. Eur. J. Protistol. 2001, 37, 261–271. [Google Scholar] [CrossRef]
- Mehta, S.K.; Tripathi, B.N.; Gaur, J.P. Enhanced sorption of Cu2+ and Ni2+ by acid-pretreated Chlorella vulgaris from single and binary metal solutions. J. Appl. Phycol. 2002, 14, 267–273. [Google Scholar] [CrossRef]
- Vela García, F.N. Remoción de Mercurio en Aguas Residuales de la Actividad Minera con el Uso de Microalgas. Bachelor’s Thesis, Universidad de las Américas, Quito, Ecuador, 2016. (In Spanish). [Google Scholar]
- Wong, J.P.K.; Wong, Y.S.; Tam, N.F.Y. Nickel biosorption by two Chlorella species, C. vulgaris (a comercial species) and C. Miniata (a local isolate). Bioresour. Technol. 2000, 73, 133–137. [Google Scholar] [CrossRef]
- Akthar, N.; Iqbal, J.; Iqbal, M. Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: Characterization studies. J. Hazard. Mater. 2004, 108, 85–94. [Google Scholar]
- Al-Rub Abu, F.A.; El-Naas H, M.; Benyahia, F.; Ashour, I. Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem. 2004, 39, 1767–1773. [Google Scholar] [CrossRef]
- Aneja, R.K.; Chaudhary, G.; Ahluwalia, S.S.; Goyal, D. Biosorption of Pb2+ and Zn2+ by Non-Living Biomass of Spirulina sp. Indian J. Microbiol. 2010, 50, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Villanueva Vega, J.A. Determinación de la Biorremocion de Plomo (pb+2) Mediante Hongos y Microalgas Nativas Aisladas de Efluentes Industriales Empacadas en un Sistema en Serie de Agitación Continua. Bachelor’s Thesis, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru, 2015. (In Spanish). [Google Scholar]
- Mendoza Espinoza, S. Efecto de las Concentraciones de Plomo en el Crecimiento de la Microalga Marina Tetraselmis Suecica. Bachelor’s Thesis, Universidad Nacional del Santa, Nuevo Chimbote, Peru, 2017. (In Spanish). [Google Scholar]
- Vogel, M.; Gunther, A.; Rossberg, A.; Li, B.; Bernhard, G.; Raff, J. Biosorption of U (VI) by the Green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci. Total Environ. 2010, 409, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.; Castro, P.L.; Xavier Malcata, F. Biosorption of zinc ions from aqueous solution by the microalga Scenedesmus obliquus. Environ. Chem. Lett. 2011, 9, 169–176. [Google Scholar] [CrossRef]
- Sobczuk, T.M. Influencia de las Condiciones Hidrodinámicas y de la Fracción Molar de CO2 en la Fase Gaseosa Sobre el Crecimiento Celular en Cultivos de Microalgas. Ph.D. Thesis, Universidad De Almería, Almería, Spain, 2005. (In Spanish). [Google Scholar]
Initial Concentration | 20 mg/L | 50 mg/L | 100 mg/L | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | 0 h | 4 h | 8 h | 12 h | 0 h | 4 h | 8 h | 12 h | 0 h | 4 h | 8 h | 12 h | |
pH3 | Cu2+ | 0% | 50.9% | 68.5% | 92.7% | 0% | 30.2% | 40.3% | 56.2% | 0% | 37.3% | 46.0% | 80.6% |
(0.0) | (10.2) | (13.7) | (18.6) | (0.0) | (15.1) | (20.2) | (28.1) | (0.0) | (37.3) | (46.0) | (80.6) | ||
Zn2+ | 0% | 34.7% | 41.8% | 62.2% | 0% | 16.0% | 32.8% | 37.6% | 0% | 12.3% | 16.2% | 17.8% | |
(0.0) | (6.9) | (8.4) | (12.4) | (0.0) | (8.0) | (16.4) | (18.8) | (0.0) | (12.3) | (16.2) | (17.8) | ||
Fe2+ | 0% | 68.6% | 70.4% | 99.6% | 0% | 59.5% | 60.7% | 85.2% | 0% | 8.4% | 17.6% | 47.2% | |
(0.0) | (13.7) | (14.0) | (19.9) | (0.0) | (29.7) | (30.3) | (42.6) | (0.0) | (8.4) | (17.5) | (47.2) | ||
pH5 | Cu2+ | 0% | 78.8% | 80.6% | 89.7% | 0% | 66.4% | 68.8% | 71.0% | 0% | 46.8% | 57.5% | 79.0% |
(0.0) | (15.8) | (16.1) | (17.9) | (0.0) | (33.2) | (34.4) | (35.5) | (0.0) | (46.8) | (57.5) | (79.0) | ||
Zn2+ | 0% | 59.2% | 82.6% | 83.7% | 0% | 33.6% | 70.0% | 74.4% | 0% | 30.3% | 38.1% | 40.4% | |
(0.0) | (11.8) | (16.5) | (16.7) | (0.0) | (16.8) | (35.0) | (37.2) | (0.0) | (30.3) | (38.1) | (40.4) | ||
Fe2+ | 0% | 76.6% | 88.7% | 100% | 0% | 90.3% | 90.7% | 99.7% | 0% | 62.0% | 92.7% | 93.5% | |
(0.0) | (15.3) | (17.7) | (20.0) | (0.0) | (45.2) | (45.4) | (49.8) | (0.0) | (62.0) | (92.7) | (93.5) |
Initial Concentrations of Fe2+ | ||||
---|---|---|---|---|
Hours | 50 mg/L | 100 mg/L | Acid Drainage (80 mg/L) | 800 mg/L |
6 h | 59.9% (29.9 mg/L) | 71.6% (71.6 mg/L) | 80.6% (64.5 mg/L) | 0.42% (0.33 mg/L) |
12 h | 95.6% (47.8 mg/L) | 91.6% (91.6 mg/L) | 92.8% (74.2 mg/L) | 7.5% (6 mg/L) |
Metal | Microalgal Species | Maximum Absorption (mg/g) | pH Optimization | Initial Metal Concentration (mg/L) | Biomass Concentration (g/L) | Temperature (°C) | Time (h) | References |
---|---|---|---|---|---|---|---|---|
Al (II) | Scenedesmus sp. | 0.75 | 7.68–8.61 | 0.88 | - | - | 336 | [29] |
As (II) | Thalassiosira sp. & Tetraselmis sp. | 0.111 | 7 | 0.13 | - | - | 0.3 | [30] |
Cd (II) | Chlorella vulgaris | 85.3 | 4 | 200 | 0.75 | 20 | 2 | [31] |
- | Chlorella sp. | 11.9 | 7.8–8 | 20 | - | - | 1.2 | [32] |
- | Chlorella sp. | 36.4 | 7.8–8 | 100 | - | - | 1.2 | [32] |
- | Chlorella sp. | 59.86 | 7.8–8 | 200 | - | - | 1.2 | [32] |
- | C. vulgaris | 86.6 | 4 | 150 | 1 | 25 | - | [33] |
- | C. vulgaris | 200–250 | - | 300 | 1 | 30 | 0.2 | [34] |
- | Chamydomonas reinhardtii | 42.6 | 6 | - | - | 25 | 1 | [35] |
- | C. Reinhardtii | 145 | 7 | 989.21 | - | 23 | - | [36] |
- | Scenedesmus obliquus | 50 | 6 | 50 | 0.6 | 30 | - | [37] |
- | S. obliquus | 12.56 | 7 | 25 | 5 | 20 | 168 | [38] |
- | S. obliquus | 25.33 | 7 | 50 | 5 | 20 | 168 | [38] |
- | S. obliquus | 50.48 | 7 | 100 | 5 | 20 | 168 | [38] |
Cr (III) | Chlorella miniata | 41.12 | 4.5 | 100 | - | 25 | 24 | [39] |
- | C. sorokiniana | 58.8 | 4 | - | 1 | 25 | - | [40] |
- | Scenedesmus sp. | 2.85 | 7.68–8.61 | 3.23 | - | - | 336 | [29] |
Cr (VI) | Chlorella vulgaris | 140 | 1.5 | 250 | 1 | 25 | - | [41] |
- | Chlamydomona reinhardtii | 18.2 | 2 | - | 0.6 | 25 | 2 | [42] |
- | C. reinhardtii | 18.2 | 2 | - | 0.6 | 25 | 2 | [42] |
- | C. reinhardtii | 18.2 | 2 | - | 0.6 | 25 | 2 | [42] |
- | Dunaliella Sp. 1 | 58.3 | 2 | 100 | 1 | 25 | 72 | [43] |
- | Dunaliella Sp. 2 | 45.5 | 2 | 100 | 1 | 25 | 72 | [43] |
- | Scenedesmus inclassatulus | 4.4 | 8.9 | - | - | 25 | 24 | [44] |
- | Scenedesmus obliquus | 79.1 | - | 85.6 | - | - | 40 | [45] |
Cu (II) | Scenedesmus quadricauda | 75.6 | 5 | - | - | 22 | 120 | [46] |
Cu (III) | Chlorella vulgaris | 89.19 | 3.5 | - | 0.005 | 25 | 0.5 | [47] |
- | C. vulgaris | 14.48 | 3.5 | - | 0.1 | 25 | 0.5 | [47] |
- | C. vulgaris | 420.67 | 3.5 | 31.77 | - | 25 | 3 | [48] |
- | C. vulgaris | 714.892 | 3.5 | 31.77 | - | 25 | 3 | [48] |
Hg (II) | Chlamydomonas reinhardtii | 72.2 | 6 | - | - | 25 | 1 | [35] |
- | Chlorella sp. | 0.0058 | 6.2 | 0.007 | - | 28.5 | 288 | [49] |
- | Pleurococcus sp. | 0.0059 | 6.2 | 0.007 | - | 28.5 | 288 | [49] |
- | Scenedesmus sp. | 0.00455 | 6.2 | 0.007 | - | 28.5 | 288 | [49] |
Ni (II) | Chlorella miniata | 1.367 | 7.4 | - | - | - | 24 | [50] |
- | C. sorokiniana | 48.08 | 5 | 200 | 1 | 25 | 0.33 | [51] |
- | C. vulgaris | 0.641 | 7.4 | - | - | - | 24 | [50] |
- | C. vulgaris | 15.4 | 5 | 100 | 2.5 | 25 | 2 | [52] |
- | C. vulgaris | 23.47 | 5.5 | - | 0.005 | 25 | 0.5 | [47] |
- | C. vulgaris | 15.6 | 5 | 100 | 2.5 | 25 | 2 | [52] |
- | C. vulgaris | 20.23 | 5.5 | - | 0.1 | 25 | 0.5 | [47] |
- | C. vulgaris | 58.4 | 4.5 | 150 | 1 | 25 | - | [33] |
- | C. vulgaris | 59.29 | 4.5 | 5 | - | - | 1 | [47] |
- | C. vulgaris | 264.7 | 5.5 | 29.34 | 0.1 | 25 | 3 | [48] |
- | C. vulgaris | 437.84 | 5.5 | 29.34 | - | 25 | 3 | [48] |
- | Scenedesmus quadricauda | 30.4 | 5 | - | - | 22 | 120 | [46] |
Pb (II) | Chlamydomonas reinhardtii | 96.3 | 5 | - | - | 25 | 1 | [35] |
- | Chlorella vulgaris | 200–250 | - | 300 | 1 | 30 | 0.2 | [34] |
- | Spirullina sp. | 41 | 4 | 50 | 0.1 | - | 0.3 | [53] |
- | Spirullina sp. | 45 | 8 | 50 | 0.1 | - | 0.3 | [53] |
- | Spirullina sp. | 5 | 2 | 100 | 0.1 | - | 0.3 | [53] |
- | Scenedesmus obliquus | 296.16 | 6.5 | 300 | 0.1 | 25 | 96 | [54] |
- | Thalassiosira sp. & Tetraselmis sp. | 0.049 | 7 | 0.06 | - | - | 0.3 | [30] |
- | Tetraselmis suecica | 3.56 | 8.3–9.9 | 5 | - | 21.1–22.5 | 168 | [55] |
- | Tetraselmis suecica | 1.944 | 8.3–9.9 | 10 | - | 21.1–22.6 | 168 | [55] |
U (VI) | Chlorella vulgaris | 14.3 | 4.4 | 23.8 | 0.76 | - | 0.08 | [56] |
- | C. vulgaris | 26.6 | 4.4 | 23.8 | 0.76 | - | 96 | [56] |
- | C. vulgaris | 27 | 4.4 | 23.8 | 0.76 | - | 96 | [56] |
Zn (II) | Scenedesmus obliquus (ACO1598) | 75 | 6–7 | 429.6 | 0.02 | 25 | 24 | [57] |
- | S. obliqus (L) | 75 | 6–7 | 836.5 | 0.02 | 25 | 24 | [57] |
- | S. obliqus (L) | 50 | 6–7 | 209.6 | 0.02 | 25 | 1.5 | [57] |
- | Scenedesmus quadricauda | 55.2 | 5 | - | - | 22 | 120 | [46] |
- | Spirullina sp. | 37.5 | 4 | 50 | 0.1 | - | 30 | [53] |
- | Spirullina sp. | 44.5 | 8 | 50 | 0.1 | - | 30 | [53] |
- | Spirullina sp. | 35 | 2 | 100 | 0.1 | - | 30 | [53] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, M.; Leyton, Y.; Cisternas, L.A.; Riquelme, C. Metal Removal from Acid Waters by an Endemic Microalga from the Atacama Desert for Water Recovery. Minerals 2018, 8, 378. https://doi.org/10.3390/min8090378
Martínez M, Leyton Y, Cisternas LA, Riquelme C. Metal Removal from Acid Waters by an Endemic Microalga from the Atacama Desert for Water Recovery. Minerals. 2018; 8(9):378. https://doi.org/10.3390/min8090378
Chicago/Turabian StyleMartínez, Marcela, Yanett Leyton, Luis A. Cisternas, and Carlos Riquelme. 2018. "Metal Removal from Acid Waters by an Endemic Microalga from the Atacama Desert for Water Recovery" Minerals 8, no. 9: 378. https://doi.org/10.3390/min8090378
APA StyleMartínez, M., Leyton, Y., Cisternas, L. A., & Riquelme, C. (2018). Metal Removal from Acid Waters by an Endemic Microalga from the Atacama Desert for Water Recovery. Minerals, 8(9), 378. https://doi.org/10.3390/min8090378