Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals
Abstract
:1. Introduction
2. Geological Setting and Sample Provenance
3. Distribution and Mineralogy of the PGM Inclusions
4. Primary PGM in Ophiolitic Chromitites
4.1. Paragenetic Assemblages of PGM as Function of Sulfur Fugacity
4.2. Relationships with Chromite Composition
5. Primary PGM in Alaskan-Type Chromitites
5.1. Primary PGM and Sulfur Fugacity in Alaskan-Type Chromitites
5.2. The Role of Oxygen Fugacity and Temperature
5.3. Thermodynamic Conditions for Precipitation of Primary Pt–Fe Alloys
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barnes, S.J.; Naldrett, A.J.; Gorton, M.P. The origin of the fractionation of Platinum-group elements in terrestrial magmas. Chem. Geol. 1985, 53, 303–323. [Google Scholar] [CrossRef]
- Cabri, L.J.; Naldrett, A.J. The nature, distribution, and concentrations of platinum-group elements in various geological environments. In Proceedings of the 27th International Geological Congress, Moscow, Russia, 4–14 August 1984; pp. 10–27. [Google Scholar]
- Crocket, J.H. Geochemistry of the Platinum-Group Elements. In Platinum-Group Elements: Mineralogy, Geology, Recovery; Cabri, L.J., Ed.; Geology Division of CIM: Ottawa, ON, Canada, 1981; pp. 47–64. [Google Scholar]
- Legendre, O.; Augé, T. Mineralogy of platinum-group mineral inclusions in chromitites from different ophiolite complexes. In Metallogeny of Basic and Ultrabasic Rocks; Gallagher, M.J., Ixer, R.A., Neary, C.R., Prichard, H.M., Eds.; Springer: Amsterdam, The Netherlands, 1986; pp. 361–372. [Google Scholar]
- Page, N.J.; Cassard, D.; Haffty, J. Palladium, platinum, rhodium, ruthenium and iridium in chromitites from the Massif du Sud and Tiebaghi massif, New Caledonia. Econ. Geol. 1982, 77, 1571–1577. [Google Scholar] [CrossRef]
- Talkington, R.W.; Watkinson, D.M.; Whittaker, P.J.; Jones, P.C. Platinum-group minerals and other solid inclusions in chromite of ophiolitic complexes: Occurrence and petrological significance. Tschermaks Mineralogische Petrogr. Mitt. 1984, 32, 285–301. [Google Scholar] [CrossRef]
- Rudashevskiy, N.S. Origin of various types of platinoid mineralization in ultramafic rocks. Int. Geol. Rev. 1987, 29, 465–480. [Google Scholar] [CrossRef]
- Garuti, G.; Zaccarini, F. In situ alteration of platinum-group minerals at low temperature: evidence from serpentinized and weathered chromitite of the Vourinos Complex, Greece. Can. Mineral. 1997, 35, 611–626. [Google Scholar]
- Capobianco, C.J.; Drake, M.J. Partitioning of ruthenium, rhodium, and palladium between spinel and silicate melt and implications for platinum-group element fractionation trends. Geochim. Cosmochim. Acta 1990, 54, 869–874. [Google Scholar] [CrossRef]
- Garuti, G.; Gazzotti, M.; Torres-Ruiz, J. Iridium, rhodium, and platinum sulfides in c chromitites from the ultramafic massifs of Finero, Italy, and Ojen, Spain. Can. Mineral. 1995, 33, 509–520. [Google Scholar]
- Constantinides, C.C.; Kingston, G.A.; Fisher, P.C. The occurrence of platinum group minerals in the chromitites of the Kokkinorotsos chrome mine, Cyprus. In Ophiolites, Proceedings of the International Ophiolite Symposium, Cyprus 1979; Panayiotou, A., Ed.; Geological Survey Department: Nicosia Cyprus, 1980; pp. 93–101. [Google Scholar]
- Stockman, H.W.; Hlava, P.F. Platinum-group minerals in Alpine chromitites from southwestern Oregon. Econ. Geol. 1984, 79, 491–508. [Google Scholar] [CrossRef]
- Augé, T.; Johan, Z. Comparative study of chromite deposits from Troodos, Vourionos, North Oman and New Caledonia ophiolites. In Mineral Deposits within the European Community; Spec. publication n. 6, of the Society for Geology Applied to Mineral Deposits; Boissonnas, J., Omenetto, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 267–288. [Google Scholar]
- Tredoux, M.; Lyndsay, N.M.; Devis, G.; MacDonald, I. The fractionation of platinum-group elements in magmatic systems, with the suggestion of a novel causal mechanism. S. Afr. J. Geol. 1995, 98, l57–167. [Google Scholar]
- Garuti, G. Chromite-platinum-group element magmatic deposits. In Geology, Encyclopedia of Life Support Systems (EOLSS) UNESCO; De Vivo, B., Stäwe, K., Grasemann, B., Eds.; Eolss Publisher: Oxford, UK, 2004. [Google Scholar]
- Razin, L.V. Geologic and genetic features of forsterite dunites and their platinum-group mineralization. Econ. Geol. 1976, 71, 1371–1376. [Google Scholar] [CrossRef]
- Makeyev, A.B.; Kononkova, N.N.; Kraplya, E.A.; Chernukha, F.P.; Bryanchaninova, N.I. Platinum Group Minerals in alluvium of the Northern Urals and Timan: The key to primary sources of platinum. Trans. Acad. Sci. Earth Sci. Sect. 1997, 353, 181–184. [Google Scholar]
- Anikina, Ye.V.; Pushkarev, E.V.; Garuti, G.; Zaccarini, F.; Cabella, R. The Evolution of Chrome Spinel Composition and PGE Minerals in the Dunite of the Uktus Massif (Middle Urals); Institute of Geology and Geochemistry Ekaterimburg: Ekaterimburg, Russia, 1996; p. 9. (In Russian) [Google Scholar]
- Augé, T.; Genna, A.; Legendre, O.; Ivanov, K.S.; Volchenko, Y.A. Primary platinum mineralization in the Nizhny Tagil and Kachkanar ultramafic complexes, Urals, Russia: A genetic model for PGE concentration in chromite-rich zones. Econ. Geol. 2005, 100, 707–732. [Google Scholar] [CrossRef]
- Distler, V.; Kryachko, V.V.; Yudovskaya, M.A. Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex. Mineral. Petrol. 2008, 92, 31–58. [Google Scholar] [CrossRef]
- Garuti, G.; Zaccarini, F.; Cabella, R.; Fershtater, G.B. Occurrence of unknown Ru–Os–Ir–Fe oxide in the chromitites of the Nurali ultramafic complex, southern Urals, Russia. Can. Mineral. 1997, 35, 1431–1440. [Google Scholar]
- Garuti, G.; Zaccarini, F.; Moloshag, V.; Alimov, V. Platinum-group minerals as indicators of sulfur fugacity in ophiolitic upper mantle: An example from chromitites of the Ray–Iz ultramafic complex, Polar Urals, Russia. Can. Mineral. 1999, 37, 1099–1116. [Google Scholar]
- Garuti, G.; Pushkarev, E.; Zaccarini, F. Composition and paragenesis of Pt-alloys from chromitites of the Ural-Alaskan-Type Kitlim and Uktus complexes, northern and central Urals, Russia. Can. Mineral. 2002, 40, 1127–1146. [Google Scholar] [CrossRef]
- Garuti, G.; Pushkarev, E.; Zaccarini, F.; Cabella, R.; Anikina, E. Chromite composition and platinum-group mineral assemblage in the Uktus Uralian-Alaskan-type complex (Central Urals, Russia). Mineral. Deposita 2003, 38, 312–326. [Google Scholar] [CrossRef]
- Grieco, G.; Diella, V.; Chaplygina, N.L.; Savelieva, G.N. Platinum group elements zoning and mineralogy of chromitites from the cumulate sequence of the Nurali massif (Southern Urals, Russia). Ore Geol. Rev. 2007, 30, 257–276. [Google Scholar] [CrossRef]
- Ivanov, O.K. Zoned Ultramafic Complexes of the Urals (Mineralogy, Petrology, Genesis); Uralian University Publishing House: Ekaterinburg, Russia, 1997; p. 488. (In Russian) [Google Scholar]
- Melcher, F.; Stumpfl, E.F.; Simon, G. Platinum-group minerals and associated inclusions in chrome spinel of the Kempirsai ultramafic massif, Southern Urals, Kazakhstan. In Mineral Deposits; Pašava, K.Z., Ed.; Balkema: Rotterdam, The Netherlands, 1995; pp. 153–156. [Google Scholar]
- Melcher, F.; Grum, W.; Simon, G.; Thalhammer, T.V.; Stumpfl, E.F. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J. Petrol. 1997, 38, 1419–1458. [Google Scholar] [CrossRef]
- Melcher, F. Base metal-platinum group element sulfides from the Urals and the Eastern Alps: Characterization and significance for mineral systematics. Mineral. Petrol. 2000, 68, 177–211. [Google Scholar] [CrossRef]
- Moloshag, V.P.; Smirnov, S.V. Platinum mineralization of the Nurali mafic-ultramafic massif (Southern Urals). Notes Rus. Mineral. Soc. Part. 1996, 125, 48–54. (In Russian) [Google Scholar]
- Pašava, J.; Knésl, I.; Vymazalová, A.; Vavřín, I.; Ivanovna Gurskaya, L.; Ruslanovich Kolantsev, L. Geochemistry and mineralogy of platinum-group elements (PGE) in chromites from Centralnoye I, Polar Urals, Russia. Geosc. Front. 2011, 2, 81–85. [Google Scholar] [CrossRef]
- Pushkarev, E.V. Petrology of the Uktus Dunite-Clinopyroxenite-Gabbro Massif (the Middle Urals); Russian Academy of Sciences, Ural Branch, Institute of Geology and Geochemistry: Ekaterinburg, Russia, 2000; pp. 1–296. (In Russian) [Google Scholar]
- Pushkarev, E.V.; Anikina, E.V. Low temperature origin of the Ural-Alaskan type platinum deposits: Mineralogical and geochemical evidence. In Proceedings of the 9th International Platinum Symposium, Billings, Montana, MT, USA, 21–25 July 2002; pp. 387–390. [Google Scholar]
- Pushkarev, E.V.; Anikina, E.V.; Garuti, G.; Zaccarini, F. Chromium-Platinum deposits of Nizhny-Tagil type in the Urals: Structural-substantial characteristic and a problem of genesis. Litosfera. 2007, 3, 28–65. (In Russian) [Google Scholar]
- Sedler, I.K.; Wipfler, E.L.; Anikina, E.V. Platinum group minerals and associated chrome-spinels of the Alaskan-type Nizhny Tagil massif, Middle Urals. In Mineral Deposits: Processes to Processing; Stanley, C.J., Ed.; Taylor & Francis: Rotterdam, The Netherlands, 1999; pp. 787–790. [Google Scholar]
- Smirnov, S.V.; Moloshag, V.P. Two types of Platinum deposits of the Nuraly ultramafic pluton (South Urals). In Proceedings of the VII International Platinum Symp, Moskow, Russia, 1–4 August 1994. [Google Scholar]
- Thalhammer, T.V. The Kempirsai Ophiolite Complex, South Urals. Petrology, Geochemistry, Platinum-Group Minerals, Chromite Deposits. Ph.D. Thesis, University of Leoben, Leoben, Austria, 1996. [Google Scholar]
- Zaccarini, F. Comparative Study of Platinum-Group Minerals in Podiform Chromitites from Mesozoic, Paleozoic, and Precambrian Ophiolite Complexes: Examples from the Mediterranean Area, the Ural Chain, and the Egyptian Eastern Desert. Ph.D. Thesis, University of Bologna, Bologna, Italy, 1999; p. 135. (In Italian). [Google Scholar]
- Zaccarini, F.; Pushkarev, E.; Fershtater, G.B.; Garuti, G. Composition and mineralogy of PGE-rich chromitites in the Nurali Lherzolite-gabbro complex, southern Urals, Russia. Can. Mineral. 2004, 42, 545–562. [Google Scholar] [CrossRef]
- Zaccarini, F.; Pushkarev, E.; Garuti, G. Platinum-group element mineralogy and geochemistry of chromitite of the Kluchevskoy ophiolite complex, central Urals (Russia). Ore Geol. Rev. 2008, 33, 20–30. [Google Scholar] [CrossRef]
- Zaccarini, F.; Garuti, G.; Pushkarev, E. V. Unusually PGE-rich chromitite in the Butyrin vein of the Kytlym Uralian-Alaskan complex, Northern Urals, Russia. Can. Mineral. 2011, 49, 52–72. [Google Scholar] [CrossRef]
- Zaccarini, F.; Garuti, G.; Bakker, R.J.; Pushkarev, E.V. Electron microprobe and Raman Spectroscopy investigation of an oxygen-bearing Pt–Fe–Pd–Ni–Cu compound from Nurali chromitite (Southern Urals, Russia). Microsc. Microanal. 2015, 21, 1070–1079. [Google Scholar] [CrossRef] [PubMed]
- Zaccarini, F.; Bindi, L.; Pushkarev, E.V.; Garuti, G.; Bakker, R.J. Multi-analytical characterization of minerals of the bowieite-kashinite series from Svetly Bor complex, Urals (Russia) and comparison with worldwide occurrences. Can. Mineral. 2015, 54, 461–473. [Google Scholar] [CrossRef]
- Zaccarini, F.; Pushkarev, E.V.; Garuti, G.; Kazakov, I. Platinum-Group Minerals and other accessory phases in chromite deposits of the Alapaevsk ophiolite, Central Urals, Russia. Minerals 2016, 6, 108. [Google Scholar] [CrossRef]
- Zoloev, K.K.; Volchenko, Yu.A.; Koroteev, V.A.; Malakhov, I.A.; Mardirosyan, A.N.; Khripov, V.N. Platinum Ores in Different Complexes of the Urals; Ural State University Press: Ekaterinburg, Russia, 2001; p. 199. (In Russian) [Google Scholar]
- Garuti, G.; Pushkarev, E.; Thalhammer, O.A.R.; Zaccarini, F. Chromitites of the Urals (Part 1): Overview of chromite mineral chemistry and geo-tectonic setting. Ofioliti 2012, 37, 27–53. [Google Scholar]
- Betekhtin, A.G. Mikroskopische Untersuchungen an Platinerzen aus dem Ural. N. Jb. Miner. Abh. 1961, 97, 1–34. [Google Scholar]
- Garuti, G.; Pushkarev, E.V.; Zaccarini, F. Diversity of chromite-PGE mineralization in ultramafic complexes of the Urals. In Proceedings of the Platinum-Group Elements—From Genesis to Beneficiation and Environmental Impact: 10th International Platinum Symposium, Oulu, Finland, 8–11 August 2005; Geological Survey of Finland: Esbo, Finland, 2005. [Google Scholar]
- Kojonen, K.; Zaccarini, F.; Garuti, G. Platinum-Group-Elements and gold geochemistry and mineralogy in the Ray–Iz ophiolitic chromitites, Polar Urals. In Mineral Exploration and Sustainable Development; Eliopoulos, D.G., Ed.; Millpress: Rotterdam, The Netherlands, 2003; pp. 599–602. [Google Scholar]
- Naldrett, A.J.; Duke, J.M. Platinum metals in magmatic sulfide ores. Science 1980, 208, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.A. Thermodynamic calculation of the volatility of the platinum group elements (PGE): The PGE content of fluids at magmatic temperatures. Geochim. Cosmochim. Acta. 1987, 51, 3041–3050. [Google Scholar] [CrossRef]
- Ferrario, A.; Garuti, G. Platinum-group mineral inclusions in chromitites of the Finero mafic-ultramafic complex (Ivrea-Zone, Italy). Mineral. Petrol. 1990, 41, 125–143. [Google Scholar] [CrossRef]
- Garuti, G.; Zaccarini, F.; Economou-Eliopoulos, M. Paragenesis and composition of laurite from chromitites of Othrys (Greece): Implication for Os–Ru fractionation in ophiolitic upper mantle of the Balkan Peninsula. Mineral. Deposita. 1999, 34, 312–319. [Google Scholar] [CrossRef]
- Chashchukhin, I.S.; Votyakov, S.L.; Uimin, S.G. Oxygen thermometry and barometry in chromite-bearing ultramafic rocks: An exmple of ultramafic massis on the Urals. II. Oxidation state of ultramafics and the composition of mineralizing fluids. Geochem. Int. 1998, 36, 783–791. [Google Scholar]
- Ballahaus, C.; Berry, R.F.; Green, D.H. High-pressure experimental calibration of the olivine-orthopyroxene.spinel geobarometer: Implications for the oxidation state of the upper mantle. Contr. Mineral. Petrol. 1991, 107, 27–40. [Google Scholar] [CrossRef]
- Westland, A.D. Inorganic chemistry of the platinum group elements. In Platinum Group Elements: Mineralogy, Geology, Recovery; Cabri, L.J., Ed.; Geology Division of CIM: Ottawa, ON, Canada, 1981; pp. 5–18. [Google Scholar]
- Garuti, G.; Fershtater, G.B.; Bea, F.; Montero, P.; Pushkarev, E.; Zaccarini, F. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals. Tectonophysics 1997, 276, 181–194. [Google Scholar] [CrossRef]
- Amossé, J.; Allibert, M.; Fisher, W.; Piboule, M. Experimental study of the solubility of platinum and iridium in basic silicate melts-implications for the differentiation of platinum group elements during magmatic processes. Chem. Geol. 1990, 81, 45–53. [Google Scholar] [CrossRef]
- Nixon, G.T.; Cabri, L.J.; Laflamme, J.H.G. Platinum group elements mineralization in lode and placer deposits associated with the Tulameen Alaskan type complex, British Columbia. Can. Mineral. 1990, 28, 503–535. [Google Scholar]
- Irvine, T.N. Chromian spinel as a petrogenetic indicator. Part 2. Petrologic applications. Can. J. Earth Sci. 1967, 4, 71–103. [Google Scholar] [CrossRef]
TiO2 | Al2O3 | Cr2O3 | #Cr | #Fe2 | #Fe3 | Host Rock | Magma Type | Geological Setting | |
---|---|---|---|---|---|---|---|---|---|
Type-1, Mantle.hosted ophiolitic chromitite | |||||||||
Ray-Iz high-Cr (8) | 0.10 | 9.69 | 59.19 | 0.80 | 0.33 | 0.05 | Hz-D | IA-bon | SSZ |
Kempirsai MOF high-Cr (21) | 0.16 | 9.76 | 59.69 | 0.80 | 0.30 | 0.05 | Hz-D | IA-bon | SSZ |
Kraka high-Cr (5) | 0.17 | 12.84 | 55.76 | 0.74 | 0.31 | 0.06 | L-H-(D) | picritic-thol | MOR/BA? |
Kluchevsk high-Cr (7) | 0.19 | 11.62 | 55.94 | 0.77 | 0.38 | 0.06 | D-tz | IA-bon | SSZ |
Alapaevsk high-Cr (5) | 0.21 | 10.55 | 57.78 | 0.79 | 0.38 | 0.07 | Hz-D | SSZ | |
Alapaevsk high-Al (9) | 0.27 | 22.42 | 44.63 | 0.57 | 0.31 | 0.06 | L-H-(D) | MORB | MOR? |
Type-2, Banded chromitite in supra-Moho cumulates of ophiolites | |||||||||
Kempirsai BAT (9) | 0.08 | 26.67 | 40.99 | 0.51 | 0.29 | 0.05 | D | MORB | MOR |
Kempirsai TAG (3) | 0.30 | 25.68 | 38.60 | 0.50 | 0.37 | 0.07 | D | MORB | MOR |
Kempirsai STEP (7) | 0.53 | 28.50 | 36.33 | 0.46 | 0.36 | 0.06 | D-T | MORB | MOR |
Nurali low-Ti (7) | 0.08 | 28.70 | 36.88 | 0.46 | 0.35 | 0.06 | D-Wr | picritic-thol | CM |
Nurali high-Ti (5) | 0.77 | 19.73 | 33.22 | 0.53 | 0.56 | 0.19 | Wr-Cpx | Fe-thol | CM |
Type-3, Chromitite lenses in Alaskan-type zoned intrusions | |||||||||
Kachkanar (5) | 0.50 | 7.64 | 50.60 | 0.82 | 0.47 | 0.17 | D | ankar | IA |
Nizhny Tagil (18) | 0.44 | 7.45 | 51.30 | 0.82 | 0.44 | 0.17 | D | ankar | IA |
Kytlym (8) | 0.77 | 10.57 | 42.13 | 0.73 | 0.47 | 0.23 | D | ankar | IA |
Kytlym Butyrin vein (6) | 1.84 | 6.30 | 30.12 | 0.76 | 0.71 | 0.43 | Cpx | IPB? | IA |
Uktus S-dunite (10) | 0.61 | 12.91 | 48.26 | 0.72 | 0.42 | 0.12 | D | ankar | CM? |
Uktus W-dunite (2) | 0.55 | 11.45 | 50.70 | 0.75 | 0.50 | 0.11 | D | ankar | CM? |
Uktus N-dunite (7) | 1.00 | 11.66 | 40.53 | 0.69 | 0.54 | 0.22 | D | ankar | CM? |
Mineral Species | Ideal Composition |
---|---|
Sulfides | Laurite (RuOsIr)S2, Erlichmanite (OsRuIr)S2, Kashinite Ir2S3, Bowieite Rh2S3, Cuproiridsite CuIr2S4, Cuprorhodsite CuRh2S4, Malanite CuPt2S4, Cooperite (PtPdNi)S, Braggite (PtPdNi)S, Vysotskite (PtPtNi)S, unknown Ir–Rh–Ni–Fe thiospinels and monosulfides; |
PGE-bearing Base Metal Sulfides | Ru-Pentlandite (NiFeRu)9S8, Rh-Pentlandite (NiFeRh)9S8, Pt-pyrrhotite (FePt)1−xS, Ir–Rh–Heazlewoodite (NiIrRh)3S2 |
Sulfarsenides, Arsenides | Irarsite IrAsS, Osarsite OsAsS, Ruarsite RuAsS, Hollingworthite RhAsS, Platarsite PtAsS, Omeiite OsAs2, Ruthenarsenite (RuNi)As, Cherepanovite RhAs, Zaccariniite RhNiAs, Sperrylite PtAs2, unknown Ir-Rh-Os arsenides |
PGE-bearing Base Metal Arsenides | Rh-Orcelite (NiIrRh)5−xAs2, Rh-Maucherite (NiIrRh)11As8 |
Alloys | Osmium, Iridium, Ruthenium, Rutheniridosmine (OsIrRu), Platinum, Isoferroplatinum Pt3Fe, (Pt2.5(FeNiCu)1.5, Tetraferroplatinum PtFe, Pt(FeNiCu), Ferronickelplatinum Pt2FeNi, Tulameenite Pt2FeCu, Potarite HgPd, unknown Pt–Cu, Pt–Pd–Cu–Ni–Fe, Ru–Ir–Os–Fe–Ni |
PGE-bearing Base Metal Alloys | Ru-Awaruite NiFeRu, Garutiite NiFeIr |
Tellurides, Antimonides | Merenskyite PdTe2, Tolvkite IrSbS, Geversite PtSb2, Stibiopalladinite Pd5+xSb2−x, unknown Ir–Sb, Pt–Fe–Sb, Rh–Te, Rh-Sb |
PGE-bearing oxides | Unknown Ru–Os–Ir–Fe–Ni–O |
Sample Locality | PGM | Figure | Os | Ir | Ru | Rh | Pt | Pd | Fe | Ni | Cu | S | As | Tot |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kempirsai | osmium | 4A | 89.43 | 5.51 | 1.51 | 0.01 | 0.00 | 0.00 | 1.27 | 1.02 | 0.17 | 0.41 | 1.20 | 100.53 |
Kempirsai | iridium | 4B | 32.08 | 64.53 | 0.56 | 0.47 | 0.74 | 0.09 | 0.41 | 0.11 | 0.00 | 0.00 | 0.00 | 98.99 |
Kempirsai | osmium | 4B | 53.99 | 42.98 | 0.99 | 0.08 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.08 | 0.00 | 98.41 |
Kempirsai | laurite | 4B | 15.91 | 8.30 | 43.11 | 0.00 | 0.00 | 0.20 | 0.12 | 0.00 | 0.00 | 33.71 | 0.00 | 101.35 |
Kempirsai | laurite | 4C | 7.39 | 6.91 | 46.58 | 1.12 | 0.00 | 0.69 | 0.71 | 0.27 | 0.18 | 34.14 | 1.17 | 99.16 |
Kempirsai | laurite | 4C | 7.35 | 6.87 | 45.61 | 1.18 | 0.08 | 0.44 | 0.67 | 0.30 | 0.15 | 37.16 | 1.05 | 100.86 |
Kempirsai | iridium | 4E | 34.19 | 37.28 | 8.66 | 0.25 | 0.00 | 0.00 | 6.44 | 0.00 | 0.54 | 7.51 | 3.58 | 98.45 |
Kempirsai | cuproiridsite | 4E | 0.06 | 64.99 | 0.28 | 1.46 | 0.00 | 0.29 | 0.00 | 0.29 | 10.79 | 20.39 | 0.00 | 98.55 |
Kempirsai | laurite | 4E | 24.77 | 9.44 | 28.30 | 0.75 | 0.00 | 0.15 | 4.29 | 0.00 | 0.16 | 30.23 | 1.53 | 99.62 |
Kempirsai | laurite | 4E | 26.98 | 8.96 | 32.29 | 0.00 | 0.00 | 0.36 | 0.70 | 0.00 | 0.00 | 29.98 | 0.00 | 99.27 |
Kempirsai | Ir–Ni monosulfide | 4H | 0.00 | 43.16 | 0.00 | 0.34 | 0.00 | 0.13 | 6.81 | 18.31 | 6.81 | 25.51 | 0.00 | 101.07 |
Kempirsai | Ir–Ni monosulfide | 4H | 0.00 | 43.29 | 0.00 | 0.36 | 0.00 | 0.11 | 6.49 | 18.02 | 6.96 | 24.74 | 0.00 | 99.97 |
Kempirsai | Ir–Ni monosulfide | 4H | 0.00 | 45.89 | 0.00 | 0.46 | 0.00 | 0.08 | 5.77 | 14.28 | 7.78 | 24.82 | 0.00 | 99.08 |
Ray-Iz | laurite | 14.51 | 7.57 | 39.21 | 1.13 | 1.37 | 0.30 | 0.04 | 0.00 | 0.00 | 34.86 | 0.00 | 98.99 | |
Ray-Iz | laurite | 4.94 | 8.17 | 50.23 | 0.86 | 0.00 | 0.00 | 0.31 | 0.23 | 0.13 | 35.45 | 0.00 | 100.32 | |
Ray-Iz | laurite core | 1.72 | 2.98 | 57.63 | 0.02 | 0.00 | 0.21 | 0.00 | 0.06 | 0.29 | 35.79 | 0.00 | 98.70 | |
Ray-Iz | laurite rim | 14.51 | 7.57 | 39.21 | 1.13 | 1.37 | 0.30 | 0.04 | 0.00 | 0.00 | 34.86 | 0.00 | 98.99 | |
Ray-Iz | erlichmanite | 4F | 27.88 | 12.87 | 26.83 | 0.68 | 0.00 | 0.00 | 0.02 | 0.18 | 0.16 | 30.98 | 0.00 | 99.60 |
Ray-Iz | Ir–Ni sulfide | 4F | 0.04 | 44.35 | 0.00 | 1.22 | 0.96 | 0.21 | 3.93 | 18.26 | 4.52 | 26.33 | 0.12 | 99.94 |
Ray-Iz | erlichmanite | 4G | 45.11 | 10.71 | 13.42 | 0.06 | 0.00 | 0.04 | 0.13 | 0.11 | 0.05 | 31.50 | 0.50 | 101.63 |
Ray-Iz | Ir–Ni thiosp | 4G | 0.16 | 43.18 | 0.05 | 0.37 | 0.45 | 0.00 | 5.25 | 16.56 | 5.03 | 28.84 | 0.04 | 99.93 |
Ray-Iz | Ir–Ni thiospin | 0.00 | 43.56 | 0.00 | 3.85 | 0.08 | 0.24 | 5.12 | 11.87 | 6.46 | 29.08 | 0.02 | 100.28 | |
Ray-Iz | cuproiridsite | 0.00 | 55.97 | 0.04 | 5.95 | 1.63 | 0.11 | 0.00 | 0.22 | 10.52 | 26.26 | 0.02 | 100.72 | |
Kraka | laurite | 14.26 | 6.61 | 39.13 | 0.83 | 0.00 | 0.57 | 0.00 | 0.00 | 0.08 | 36.54 | 0.99 | 99.01 | |
Kraka | laurite | 16.40 | 6.15 | 41.65 | 0.12 | 0.00 | 0.00 | 0.20 | 0.24 | 0.02 | 34.87 | 0.00 | 99.65 | |
Nurali | laurite core | 4D | 19.10 | 5.41 | 39.92 | 0.00 | 0.00 | 0.00 | 0.36 | 0.35 | 0.00 | 34.88 | 0.00 | 100.02 |
Nurali | erlichmanite rim | 4D | 64.18 | 2.01 | 9.01 | 0.21 | 0.00 | 0.00 | 0.09 | 0.02 | 0.00 | 26.10 | 0.00 | 101.62 |
Kluchevsk | rutheniridosmine | 4I | 54.55 | 16.02 | 24.76 | 0.62 | 0.00 | 0.29 | 0.00 | 2.29 | 0.00 | 0.00 | 1.88 | 100.41 |
Kluchevsk | ruthenarsenite | 4I | 7.49 | 1.29 | 40.18 | 1.41 | 0.57 | 0.54 | 0.28 | 5.91 | 0.00 | 0.02 | 41.32 | 99.01 |
Locality | PGM | Figure | Os | Ir | Ru | Rh | Pt | Pd | Fe | Ni | Cu | S | As | Tot |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Uktus | Laurite | 8.12 | 5.46 | 47.50 | 2.16 | 0.00 | 0.00 | 0.74 | 0.04 | 0.00 | 35.60 | 99.62 | ||
Uktus | Laurite | 23.20 | 7.91 | 34.80 | 0.60 | 0.00 | 0.00 | 0.62 | 0.01 | 0.00 | 31.90 | 99.04 | ||
Uktus | kashinite | 7A | 1.54 | 52.40 | 0.30 | 18.40 | 0.28 | 0.00 | 1.40 | 0.37 | 0.18 | 22.90 | 97.77 | |
Uktus | Ir–Ni–S | 7A | 0.32 | 34.50 | 0.01 | 10.10 | 0.43 | 0.00 | 6.43 | 14.50 | 3.84 | 25.20 | 95.33 | |
Uktus | Pt3Fe | 7C | 0.23 | 1.49 | 0 | 0.79 | 84.90 | 0 | 8.50 | 0.28 | 0.36 | 0.00 | 0.02 | 96.57 |
Uktus | cuprorhodsite | 7E | 0.21 | 32.20 | 0.00 | 26.30 | 0.92 | 0.00 | 0.48 | 0.98 | 9.36 | 26.90 | 0.04 | 97.39 |
Uktus | Pt3Fe | 7E | 0 | 0.96 | 0 | 0.36 | 88.70 | 0.33 | 8.90 | 0.28 | 0.21 | 0.00 | 0 | 99.74 |
Uktus | Pt3Fe | 7F | 0.18 | 1.33 | 0.01 | 0.88 | 84.10 | 0.17 | 8.40 | 0.35 | 0.23 | 0.00 | 0.13 | 95.78 |
Uktus | Osmium | 7I | 96.90 | 1.29 | 0.18 | 0.13 | 2.00 | 0.00 | 0.02 | 0.04 | 0.00 | 0.00 | 0.01 | 100.57 |
Uktus | Pt3Fe | 7I | 0.13 | 0.80 | 0.05 | 1.19 | 84.56 | 0.02 | 10.27 | 0.28 | 0.39 | 97.68 | ||
Kytlym | Pt3Fe | 7B | 2.5 | 2.04 | 0.09 | 1.35 | 84.76 | 0.19 | 8.56 | 0.23 | 0.19 | 0.00 | 0.04 | 99.95 |
Kytlym | erlichmanite | 7B | 42.01 | 3.55 | 16.28 | 2.31 | 6.77 | 0.23 | 0 | 0.09 | 0.01 | 26.04 | 0 | 97.29 |
Kytlym | Pt3Fe | 7D | 0.18 | 0.24 | 0.62 | 87.30 | 0.86 | 9.00 | 0.39 | 0.45 | 99.04 | |||
Kytlym | erlichmanite | 7D | 53.33 | 3.16 | 5.53 | 5.08 | 0.00 | 0.65 | 0.00 | 2.11 | 0.28 | 26.96 | 0.00 | 97.10 |
Kytlym | Rh-lr sulfide | 7D | 11.90 | 12.40 | 0.63 | 13.30 | 6.61 | 0.00 | 11.90 | 9.76 | 4.04 | 26.30 | 0.02 | 96.86 |
Kytlym | PtFe | 7G | 0.11 | 0.87 | 0.04 | 1.29 | 83.10 | 0.33 | 12.00 | 2.98 | 1.09 | 101.81 | ||
Kytlym | Osmium | 7H | 87.00 | 6.24 | 0.40 | 0.44 | 2.98 | 0.07 | 0.29 | 0.19 | 0.00 | 0.05 | 97.66 | |
Kytlym | PtFe | 7H | 0.18 | 1.01 | 0.00 | 1.04 | 75.14 | 0.33 | 14.52 | 4.84 | 2.37 | 0.00 | 0.11 | 99.54 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaccarini, F.; Garuti, G.; Pushkarev, E.; Thalhammer, O. Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals. Minerals 2018, 8, 379. https://doi.org/10.3390/min8090379
Zaccarini F, Garuti G, Pushkarev E, Thalhammer O. Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals. Minerals. 2018; 8(9):379. https://doi.org/10.3390/min8090379
Chicago/Turabian StyleZaccarini, Federica, Giorgio Garuti, Evgeny Pushkarev, and Oskar Thalhammer. 2018. "Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals" Minerals 8, no. 9: 379. https://doi.org/10.3390/min8090379
APA StyleZaccarini, F., Garuti, G., Pushkarev, E., & Thalhammer, O. (2018). Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals. Minerals, 8(9), 379. https://doi.org/10.3390/min8090379