Structural Control of Ore Deposits: The Role of Pre-Existing Structures on the Formation of Mineralised Vein Systems
Abstract
:1. Introduction
2. Methodology: Structural Analysis Applied to Metallogeny
- -
- What tectonic context is responsible for trap formation? (the geometrical analysis)
- -
- What is the mode and condition of filling? (the internal analysis)
2.1. Trap Formation
2.2. Internal Texture
- -
- Massive or buck texture: rare examples of this texture have been interpreted to result where voids are filled after, not during their formation. This texture is frequently characterised by euhedral or anhedral grain of variable size throughout the vein [15] due to uniform growth rates. Grain orientation can also be highly variable. In fact, such a texture provides limited information about the tectonic conditions prevailing during vein formation.
- -
- A fibrous or comb crystal shape corresponds to crystallisation coeval with vein opening and represents the more interesting texture for the topics of this study (Figure 3). Whether comb or fibrous textures develop depends on the rate of trap opening versus crystal growth (see below).Comb quartz is commonly related to (Figure 3a) (i) a supersaturated fluid invading an open space (the initial fracture) with competitive crystal growth normal to the walls [16,25,26]; and (ii) a slow opening rate of the fracture keeping pace with the rate of crystal growth [15,27]. Veins formed by this process only differ from crack-seal veins [28,29,30] by the lack of fibrous crystallisation and evidence for incremental cracking, such as successive and parallel inclusion trails. Indeed, fibrous textures result from the same process as comb infilling, except that crystal growth is incremental instead of continuous. In this case, the crack is caused by fluid overpressure and crystallisation occurs immediately after the aperture with a unique free direction for crystal growth—the vein centre. The succession of cracking event and, consequently, of immediate filling, explains the continuous crystallisation and, therefore, the fibres (Figure 3b) [31]. By contrast, comb texture is supposed to form where the rate of crystallisation is lower than the opening rate. In this case, the crystallisation only covers the vein wall, and crystals are larger as in the case of fibrous veins and can develop during multiple growth stages (Figure 3a), sometimes associated with a change of fluid composition and chemistry [15].
- -
- Breccia textures are witnesses of complex processes for which we have to take into account three parameters based on the recognition between fragments and matrix in order to understand their process of formation:
- ○
- The nature of the matrix or cement (rock flour, sediment, volcanic, magmatic, hydrothermal, …);
- ○
- The nature and shape of the fragments (circularity, size, distribution, fabrics, monogenic or polygenic, lithological nature);
- ○
- The relationships between fragments and matrix/cement (matrix-supported or grain-supported).
- -
- Tectonic breccia is easily recognisable because of grain reduction and oriented fragments (Figure 4a). Depending of its maturity (function of the strain intensity), fragments can be in contact (grain-supported breccia, beginning of fragmentation and subsequent comminution) or finally flooded in a largely developed matrix (matrix-supported breccia). Tectonic breccia is more frequently monogenic. With respect to the intensity of the deformation and the presence or lack of clay minerals, they can be called cataclasite, ultracataclasite or gouge.
- -
- Hydrothermal breccia is characterised by more-or-less rounded fragments of the same nature (not always) in place within a hydrothermal matrix. Frequently, the final voids are filled by cement that can frequently contain some metals in economic contexts (Figure 4b).
- -
- Magmatic breccia is more or less similar to the hydrothermal ones, except that the matrix is only magmatic and there is no cement (Figure 4c). In this case, the fragments are rounded and never in contact (matrix supported breccia). Due to the explosive processes, magmatic breccias are frequently polygenic. The differentiation between matrix and fragments, both magmatic, is sometimes difficult, especially in thin sections.
- -
- Collapse breccia is easy to recognise because they show a large variation of fragment size, the presence of cement, and grain-supported texture (Figure 4d). Their geometry is clearly consistent with their mode of formation: (i) collapse of the fragments in response to an underlying explosion or void formation by dissolution and (ii) posterior cementation.
- -
- Crackle breccia is an early stage of what is going becoming a hydrothermal, tectonic or hydraulic breccia. Due to their mode of formation, they are monogenic, with a low matrix and they can be assimilated to early fragmentation in response to either tectonic stress or fluid-related fracturing. Some parts frequently exhibit the host rocks being not totally disrupted whether other parts can be more mature with well-expressed breccia texture (Figure 4e).
- -
- Hydraulic breccia is the result of hydraulic fracturing. It exhibits typical jigsaw geometry with a monogenic character and a very regular pattern (Figure 4f). The matrix is well represented, and fragments are never in contact. The mode of formation is only due to cracking due to fluid overpressure.Dilational breccia forms within extensional relay or pull-apart (Figure 1c, Figure 2 and Figure 5). In this case, breccia formation is explained by the fact that void creation causes the fragmentation of the hosted rock affected by the pull-apart formation. Fragments are weakly transported and sometimes rotated and the occurrence of cement is common. Why some pull-aparts are filled by fibrous/comb crystals or dilational breccia remains an open question (Figure 2c). The outcrop in Figure 5 can help because the two types of infilling have been observed within the same structure. Since dilational breccia has been observed on the wall of the secondary formed comb infilling (Figure 5b), we suspect that both types of texture can be developed in the same structural context. Field relationships demonstrate that dilational breccia texture can form at the beginning of the process, when rates of aperture are weak and late and rapid opening can explain the superposition of fibrous/comb infilling. Indeed, the alternative formation of dilational breccia or comb texture in the core of pull-apart can appear as a function of opening velocity, crystal growth rate, and fluid saturation.We guess that dilational breccia in the core of pull-apart can be created during all main tectonic contexts (i.e., compression, extension, transtension, etc.) and not restricted to the only case of wrench tectonics, as this has been established for the large-scale pull-apart-related basin formation along crustal-scale faults [40].
3. Vein Formation Process and Tectonics: Examples from Ore Deposit Study
3.1. Gold Concentration during Collapse Tectonics
3.2. Vein Opening and Filling Controlled by Regional-Scale Structures within Volcanic Domains
3.3. Tectonic Stockwork Development in Fold and Thrust Belt Environment
3.3.1. The Iberian Pyrite Belt Example
3.3.2. The Moroccan Palaeozoic High-Atlas Example
3.4. Rheological Control on Ore Concentration
3.4.1. Sn-rich Breccia Formation of the Achmmach Prospect (Moroccan Central Massif)
- -
- The first event is the formation of tourmaline-rich halos in core of the calc-schist. These halos have ellipsoidal shape resembling tension gashes and are supposed to have formed during E–W trending shortening. Since they follow the N070°E trend of the cleavage, most halos are “en echelon” and indicators of a right-lateral potential shearing. Conjugate left-lateral “en echelon” tourmaline halos also exist but are less common. The rock shown in Figure 10 was collected in the core of one of the alteration halos and is entirely affected by the tourmalinisation.
- -
- The second event is link to the development of right-lateral shearing only in levels affected by the tourmalinisation (Figure 10a,c). It is noteworthy that this deformation is consistent with the same tectonic context and therefore probably result from ongoing transtension controlled by E–W shortening. Main shear bands are oriented N070°E.
- -
- Third, we have evidence of transformation of the previously formed shear band in tourmaline-rich breccia levels (Figure 10a,c). Such levels can reach thickness of 2 or 3 meters. The breccia is matrix-supported with a well-developed tourmaline-rich matrix, and can exhibit some domains with fragment-preferred orientation thus translating to tectonic- and hydrothermal-type breccia.
- -
- The fourth texture is the most important because it is associated with cassiterite and thus representative of the economic stage. Transtension is transformed in extension and normal faults developed with the formation of a clast-supported breccia with numerous voids formation and cassiterite crystallisation (Figure 10b). These mineralised structures are systematically formed at the core of the first breccia levels and always in association with the tourmaline halos.
3.4.2. The Sn–W-rich Perigranitic Mineralisations of Beariz (Galicia, Spain)
3.5. Re-Use of Magmatic Structures: The Magmatic-Hydrothermal Transition
4. Discussion and Conclusions
- (i)
- Detailed study of geometry and composition of vein associated with ore deposits, combined with mineralogical and textural constraints, is indispensable in order to understand the mode of formation of mineralised systems. In the case of the epithermal veins of the Shila deposit, the model of formation suggests that the formation of the economic deposit is strongly dependent on the pre-existing structuring of the area.
- (ii)
- Without studying internal textures, the interpretation of (external) vein shape can be ambiguous and is not enough to constrain the vein formation process. The example shown of epithermal veins in southern Peru is highly illustrative in this sense. Vein geometry (main vein and associated cleavage) indicates left-lateral shearing, but the opposite conclusion is deduced when taking into account the fact that the veins and, particularly, the secondary ones, are characterised by aperture and stress-free textures that are not consistent with the classical status of what we call a cleavage.This highlights the importance of examining internal vein texture in addition to tectonic and geometrical analyses of any type of ore deposit. A similar conclusion can be drawn from the Passagem gold-bearing veins that were originally interpreted as pre-tectonic but later recognised to have formed during late-orogenic collapse affecting the area. This has significant implications for exploration and exploitation strategies because of the different age and predicted local geometries (angle, elongation) of the potential orebodies.
- (iii)
- Two examples demonstrate the existence of syntectonic stockwork, i.e., metal remobilisation within the huge VHMS of the Iberian Pyrite Belt and the copper mineralisation of the Moroccan High Atlas. Few studies have really demonstrated this hypothesis, but our results provide strong evidence for the synchronism between stockwork formation/emplacement and deformation. Even if secondary stockwork formation does not represent an economic goal within the Iberian Pyrite Belt, such a process led to the formation of the economic orebodies of Ifri (Moroccan High Atlas). This highlights the importance of detailed study of any type of mineralised veins, even if at first inspection they do not seem to be of direct economic interest.
- (iv)
- Although the term “magmatic-hydrothermal transition” may sound old fashioned [60], we demonstrate with the example of Bruès (the last one) that, even though we cannot prove that the mineralising fluid were magmatic, ore formation is intimately associated with the late evolution of magmatic systems in many orogenic and/or mesothermal gold deposits [61]. The Bruès outcrop is a wonderful demonstration of continuity between late magmatic process and hydrothermal mineralisation. It is remarkable that, although detailed absolute geochronology is lacking, the evidence for the same tectonic control from the earliest magmatic stages to the latest hydrothermal stage strongly favours a continuous process. This cannot be enough for affirming the link between mineralisation and granite activity but strongly argued for this and re-addressed the discussion concerning the characteristics of orogenic and intrusion-related gold deposit (IRGD) [62,63].
- (v)
- Competency contrasts in a volume of rock also appear to be a favourable factor for ore concentration and vein formation [64], as shown herein for the Achmmach tin deposit and Mina Soriana W. In these cases, rheological variation was not due to original lithological differences, but induced during early stages of the mineralisation event itself, by heterogeneous alteration. It has been argued that tin mineralisation could not have formed in the Achmmach domain without earlier development of a tourmaline halo within the monotonous calc-schist. These alteration halos, formed during an early stage of transtension tectonics, create a drastic contrast in competency contrast, which controlled the partitioning of ongoing deformation and, eventually, the mineralisation. The case of Mina Soriana is similar, but the link with magmatism is, here, highlighted by the occurrence of a granitic sill responsible for the tourmaline-rich alteration. Nonetheless, in both cases, a link with late magmatic activity can be inferred in view of the above discussion about the role of the magmatic-hydrothermal transition.
Funding
Acknowledgments
Conflicts of Interest
References
- Durney, D.W.; Ramsay, J.G. Incremental strains measured by syntectonic crystal growths. In Gravity and Tectonics; De Jong, K.A., Scholten, K., Eds.; Wiley: New York, NY, USA, 1973; pp. 67–96. [Google Scholar]
- Durney, D.W. Pressure solution and crystallization deformation. Philos. Trans. R. Soc. Lond. 1976, A283, 229–240. [Google Scholar] [CrossRef]
- Beach, A. The geometry of en-echelon vein arrays. Tectonophysics 1975, 28, 245–263. [Google Scholar] [CrossRef]
- Bons, P.D. The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics 2001, 336, 1–17. [Google Scholar] [CrossRef]
- Bons, P.D.; Elburg, M.A.; Gomez-Rivas, E. A review of the formation of tectonic veins and their microstructures. J. Struct. Geol. 2012, 43, 33–62. [Google Scholar] [CrossRef]
- Fisher, D.; Byrne, T. The character and distribution of mineralized fractures in the Kodiak Formation, Alaska: Implications for fluid flow in an underthrust sequence. J. Geophys. Res. 1990, 95, 9069–9080. [Google Scholar] [CrossRef]
- McCaffrey, K.; Lonergan, L.; Wilkinson, J. Fractures, Fluid Flow and Mineralization; Geological Society of London Special Publication: London, UK, 1999; 155p. [Google Scholar]
- Richards, J.P.; Tosdal, R.M. Structural controls on ore genesis. Rev. Econ. Geol. 2001, 14, 181. [Google Scholar]
- Smith, J.V. En echelon sigmoidal vein arrays hosted by faults. J. Struct. Geol. 1996, 18, 1173–1179. [Google Scholar] [CrossRef]
- Smith, J.V. Geometry and kinematics of convergent conjugate vein array systems. J. Struct. Geol. 1996, 18, 1291–1300. [Google Scholar] [CrossRef]
- Cox, S.F. Deformational controls on the dynamics of fluid flow in mesothermal gold systems. In Fractures, Fluid Flow and Mineralization; McCaffrey, K., Lonergan, L., Wilkinson, J., Eds.; Geological Society of London Special Publication: London, UK, 1999; Volume 155, pp. 123–140. [Google Scholar]
- Spencer, S. The use of syntectonic fibres to determine strain estimates and deformation paths: An appraisal. Tectonophysics 1991, 194, 13–34. [Google Scholar] [CrossRef]
- Hilgers, C.; Urai, J.L. Microstructural observations on natural syntectonic fibrous veins: Implications for the growth process. Tectonophysics 2002, 352, 257–274. [Google Scholar] [CrossRef]
- Barker, S.L.L.; Cox, S.F.; Eggins, S.M.; Gagan, M.K. Microchemical evidence for episodic growth of antitaxial veins during fracture-controlled fluid flow. Earth Planet. Sci. Lett. 2006, 250, 331–344. [Google Scholar] [CrossRef]
- Dowling, K.; Morrison, G. Application of quartz textures to the classification of gold deposits using North Queensland examples. Econ. Geol. Monogr. 1990, 6, 342–255. [Google Scholar]
- Dong, G.; Morrison, G.; Jaireth, S. Quartz textures in epithermal veins, Queensland—Classification, origin, and implication. Econ. Geol. 1995, 90, 1841–1856. [Google Scholar] [CrossRef]
- Taylor, R. Ores Textures, Recognition and Interpretation; Economic Geology Research Unit and Springer: Berlin, Germany, 2009; 288p. [Google Scholar]
- Funedda, A.; Naitza, S.; Buttau, C.; Cocco, F.; Dini, A. Structural Controls of Ore Mineralization in a Polydeformed Basement: Field Examples from the Variscan Baccu Locci Shear Zone (SE Sardinia, Italy). Minerals 2018, 8, 456. [Google Scholar] [CrossRef]
- De Roo, J.A. Mass transfer and preferred orientation development during extensional microcracking in slate-belt folds, Elura Mine, Australia. J. Metamorph. Geol. 1989, 7, 311–322. [Google Scholar] [CrossRef]
- Davis, B.K.; Hippertt, J.F.M. Relationships between gold concentration and structure in quartz veins fr’om the Hodgkinson Province, northeastern Australia. Miner. Depos. 1998, 33, 391–405. [Google Scholar] [CrossRef]
- Forde, A. The late orogenic timing of mineralisation in some slate belt gold deposits, Victoria, Australia. Miner. Depos. 1991, 26, 257–266. [Google Scholar] [CrossRef]
- Cox, S.F.; Knackstedt, M.A.; Braun, J. Principles of structural control on permeability and fluid flow in hydrothermal systems. In Structural Controls on Ore Genesis; Richards, J.P., Tosdal, R.M., Eds.; Reviews in Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 2001; Volume 14, pp. 1–24. [Google Scholar]
- Gratier, J.P.; Vialon, P. Deformation pattern in a heterogeneous material: Folded and cleaved sedimentary cover immediately overlying a crystalline basement (Oisans, French Alps). Tectonophysics 1980, 65, 151–180. [Google Scholar] [CrossRef]
- Chauvet, A.; Onézime, J.; Charvet, J.; Barbanson, L.; Faure, M. Syn- to late-tectonic stockwork emplacement within the Spanish section of the Iberian Pyrite Belt: Structural, textural and mineralogical constraints in the Tharsis—La Zarza areas. Econ. Geol. 2004, 99, 1781–1792. [Google Scholar] [CrossRef]
- Cox, S.F.; Etheridge, M.A. Crack-seal fibre growth mechanism and their significance in the development of oriented layer silicate microstructures. J. Struct. Geol. 1983, 92, 147–170. [Google Scholar] [CrossRef]
- Fisher, D.M.; Brantley, S.L. Models of quartz overgrowth and vein formation: Deformation and episodic fluid flow in an ancient subduction zone. J. Geoph. Res. 1992, 97, 20043–20061. [Google Scholar] [CrossRef]
- Hilgers, C.; Köhn, D.; Bons, P.D.; Urai, J.L. Development of crystal morphology during unitaxial growth in a progressively widening vein: II. Numerical simulations of the evolution of antitaxial fibrous veins. J. Struct. Geol. 2001, 23, 873–885. [Google Scholar] [CrossRef]
- Ramsay, J.G. The crack-seal mechanism of rock deformation. Nature 1980, 284, 135–139. [Google Scholar] [CrossRef]
- Cox, S.F. Antitaxial crack-seal vein microstructures and their relationship to displacement paths. J. Struct. Geol. 1987, 9, 779–787. [Google Scholar] [CrossRef]
- Hilgers, C.; Urai, J.L. On the arrangement of solid inclusions in fibrous veins and the role of the crack-seal mechanism. J. Struct. Geol. 2005, 27, 481–494. [Google Scholar] [CrossRef]
- Boullier, A.M.; Robert, F. Paleoseismic events recorded in Archean gold quartz vein networks, Val-Dor, Abitibi, Quebec, Canada. J. Struct. Geol. 1992, 14, 161–177. [Google Scholar] [CrossRef]
- Bons, P.D.; Jessell, M.W. Experimental simulation of the formation of fibrous veins by localised dissolution-precipitation creep. Mineral. Mag. 1997, 61, 53–63. [Google Scholar] [CrossRef]
- Jébrak, M. Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution. Ore Geol. Rev. 1997, 12, 111–134. [Google Scholar] [CrossRef]
- Sibson, R.H. Brecciation Processes in Fault Zones: Inferences from Earthquake Rupturing. Pure Appl. Geophys. 1986, 124, 159–175. [Google Scholar] [CrossRef]
- Taylor, R.G.; Pollard, P.J. Mineralized Breccia Systems—Methods of Recognition and Interpretation, Economic Geology Research Unit Contribution 46; James Cook University of North Queensland: Douglas, Australia, 1993; 36p. [Google Scholar]
- Clark, C.; James, P. Hydrothermal brecciation due to fluid pressure fluctuations: Examples from the Olary Domain, South Australia. Tectonophysics 2003, 366, 187–206. [Google Scholar] [CrossRef]
- Tarasewicz, J.P.T.; Woodcok, N.H.; Disckson, J.A.D. Carbonate dilation breccias: Examples from the damage zone to the Dent Fault, northwest England. Geol. Soc. Am. Bull. 2005, 117, 736–745. [Google Scholar] [CrossRef]
- Davies, A.G.S.; Cooke, D.R.; Gemmell, J.B.; Van Leeuwen, T.; Cesare, P.; Hartshorn, G. Hydrothermal Breccias and Veins at the Kelian Gold Mine, Kalimantan, Indonesia: Genesis of a Large Epithermal Gold Deposit. Econ. Geol. 2008, 103, 717–757. [Google Scholar] [CrossRef]
- Woodcok, N.H.; Mort, K. Classification of fault breccias and related fault rocks. Geol. Mag. 2008, 145, 435–440. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Stewart, J.H. “Pull-apart” origin of the central segment of Death Valley, California. Geol. Soc. Am. Bull. 1966, 77, 439–442. [Google Scholar] [CrossRef]
- Chauvet, A.; Piantone, P.; Barbanson, L.; Nehlig, P.; Pedroletti, I. Gold deposit formation during collapse tectonics: Structural, mineralogical, geochronological, and fluid inclusion constraints in the Ouro Preto gold mines, Quadrilátero Ferrífero, Brazil. Econ. Geol. 2001, 96, 25–48. [Google Scholar] [CrossRef]
- Souza Martins, B.; Lobato, L.M.; Rosière, C.A.; Hagemann, S.G.; Schneider Santos, J.O.; dos Santos Peixoto Villanova, F.L.; Figueiredo e Silva, R.C.; de Ávila Lemos, L.H. The Archean BIF-hosted Lamego gold deposit, Rio das Velhas greenstone belt, Quadrilátero Ferrífero: Evidence for Cambrian structural modification of an Archean orogenic gold deposit. Ore Geol. Rev. 2016, 72, 963–988. [Google Scholar] [CrossRef]
- Kerrich, R. Geodynamic setting and hydraulic regimes: Shear zone hosted mesothermal gold deposits. In Mineralisation and Shear Zones; Bursnall, J.T., Ed.; Geological Association of Canada Short Course Notes; Mineralogical Association of Canada: Quebec City, QC, Canada, 1989; Volume 6, pp. 89–128. [Google Scholar]
- Poulsen, K.H.; Robert, F. Shear Zones and Gold: Practical Examples from the Southern Canadian Shield. In Mineralisation and Shear Zones; Bursnall, J.T., Ed.; Geological Association of Canada Short Course Notes; Mineralogical Association of Canada: Quebec City, QC, Canada, 1989; Volume 6, pp. 239–266. [Google Scholar]
- Cabral, A.R.; Zeh, A. Detrital zircon without detritus: A result of 496-Ma-old fluid–rock interaction during the gold-lode formation of Passagem, Minas Gerais, Brazil. Lithos 2015, 212–215, 415–427. [Google Scholar] [CrossRef]
- Cassard, D.; Chauvet, A.; Bailly, L.; Llosa, F.; Rosas, J.; Marcoux, E.; Lerouge, C. Structural control and K/Ar dating of the Au-Ag epithermal veins in the Shila Cordillera, southern Peru. C. R. Acad. Sci. Paris 2000, 330, 23–30. [Google Scholar] [CrossRef]
- Chauvet, A.; Bailly, L.; André, A.S.; Moni#xE9;, P.; Cassard, D.; Llosa Tajada, F.; Rosas Vargas, J.; Tuduri, J. Internal vein texture and vein evolution of the epithermal Shila-Paula district, southern Peru. Miner. Depos. 2006, 41, 387–410. [Google Scholar] [CrossRef] [Green Version]
- Onézime, J.; Charvet, J.; Faure, M.; Bourdier, J.L.; Chauvet, A. A new geodynamic interpretation for the South Portuguese Zone (SW Iberia) and the Iberian Pyrite Belt genesis. Tectonics 2003, 22, 1027. [Google Scholar] [CrossRef]
- Barbanson, L.; Chauvet, A.; Gaouzi, A.; Badra, L.; Mechiche, M.; Touray, J.C.; Oukarou, S. Les minéralisations Cu–(Ni–Bi–U–Au–Ag) d’Ifri (district du Haut Seksaoua, Maroc): Apport de l’étude texturale au débat syngenèse versus épigenèse. C. R. Géosci. 2003, 335, 1021–1029. [Google Scholar] [CrossRef]
- Gaouzi, A.; Chauvet, A.; Barbanson, L.; Badra, L.; Touray, J.C.; Oukarou, S.; El Wartiti, M. Mise en place syntectonique des minéralisations cuprifères du gîte d’Ifri (District du Haut Seksaoua, Haut-Atlas occidental, Maroc). C. R. Acad. Sci. Paris 2001, 333, 277–284. [Google Scholar]
- Chauvet, A.; Barbanson, L.; Gaouzi, A.; Badra, L.; Touray, J.C.; Oukarou, S. Example of a structurally controlled copper deposit from ther Hercynian Western High-Atlas (Morocco): The High Seksaoua mining district. In The Timing and Location of Major Ore Deposits in an Evolving Orogen; Blundell, D.J., Neuber, F., Von Quadt, A., Eds.; Geological Society of London Special Publication: London, UK, 2002; Volume 204, pp. 247–271. [Google Scholar]
- Mahjoubi, E.M.; Chauvet, A.; Badra, L.; Sizaret, S.; Barbanson, L.; El Maz, A.; Chen, Y.; Amman, M. Structural, mineralogical, and paleoflow velocity constraints on Hercynian tin mineralization: The Achmmach prospect of the Moroccan Central Massif. Miner. Depos. 2015, 51, 431–451. [Google Scholar] [CrossRef]
- Chauvet, A.; Volland-Tuduri, N.; Lerouge, C.; Bouchot, V.; Monié, P.; Charonnat, X.; Faure, M. Geochronological and geochemical characterization of magmatic-hydrothermal events within the southern Variscan external domain. Intern. J. Earth Sci. 2012, 101, 69–86. [Google Scholar] [CrossRef]
- Poulsen, K.H.; Robert, F.; Dubé, B. Geological Classification of Canadian Gold Deposits; Geological Survey of Canada, Bulletin: Ottawa, ON, Canada, 2000; Volume 540, 113p. [Google Scholar]
- Bouchot, V.; Milési, J.P.; Lescuyer, J.L.; Ledru, P. Les minéralisations aurifères de la France dans leur cadre géologique autour de 300 Ma. Chron. Rech. Min. 1997, 528, 13–62. [Google Scholar]
- Bouchot, V.; Ledru, P.; Lerouge, C.; Lescuyer, J.L.; Milési, J.P. Late Variscan mineralizing systems related to orogenic processes: The French Massif. Ore Geol. Rev. 2005, 27, 169–197. [Google Scholar] [CrossRef]
- Gloaguen, E. Apport D’une Étude Intégrée sur les Relations Entre Granites et Minéralisations Filoniennes (Au et Sn-W) en Contexte Tardi Orogénique (Chaîne Hercynienne, Galice Centrale, Espagne). Ph.D. Thesis, University of Orléans, Orléans, France, 2006; 359p. [Google Scholar]
- Gloaguen, E.; Branquet, Y.; Chauvet, A.; Bouchot, V.; Barbanson, L.; Vigneresse, J.L. Tracing the magmatic/hydrothermal transition in regional low-strain zones: The role of magma dynamics in strain localization at pluton roof, implications for intrusion-related gold deposits. J. Struct. Geol. 2014, 58, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Sizaret, S.; Branquet, Y.; Gloaguen, E.; Chauvet, A.; Barbanson, L.; Arbaret, L.; Chen, Y. Estimating the local paleo-fluid flow velocity: New textural method and application to metasomatism. Earth Planet. Sci. Lett. 2009, 280, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Audétat, A.; Günther, D.; Heinrich, C.A. Formation of magmatic-hydrothermal ore deposits: Insights from LA-ICP-MS analysis of fluid inclusions. Science 2008, 279, 2091–2094. [Google Scholar]
- Pe-Piper, G.; Piper, D.J.W.; McFarlane, C.R.M.; Sangster, C.; Zhang, Y.; Boucher, B. Petrology, chronology and sequence of vein systems: Systematic magmatic and hydrothermal history of a major intracontinental shear zone, Canadian Appalachians. Lithos 2018, 304–307, 299–310. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Lang, J.R.; Baker, T. Intrusion-related gold systems: The present level of understanding. Miner. Depos. 2001, 36, 477–489. [Google Scholar] [CrossRef]
- Everall, T.J.; Sanislav, I.V. The Influence of Pre-Existing Deformation and Alteration Textures on Rock Strength, Failure Modes and Shear Strength Parameters. Geosciences 2018, 8, 124. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
CHAUVET, A. Structural Control of Ore Deposits: The Role of Pre-Existing Structures on the Formation of Mineralised Vein Systems. Minerals 2019, 9, 56. https://doi.org/10.3390/min9010056
CHAUVET A. Structural Control of Ore Deposits: The Role of Pre-Existing Structures on the Formation of Mineralised Vein Systems. Minerals. 2019; 9(1):56. https://doi.org/10.3390/min9010056
Chicago/Turabian StyleCHAUVET, Alain. 2019. "Structural Control of Ore Deposits: The Role of Pre-Existing Structures on the Formation of Mineralised Vein Systems" Minerals 9, no. 1: 56. https://doi.org/10.3390/min9010056
APA StyleCHAUVET, A. (2019). Structural Control of Ore Deposits: The Role of Pre-Existing Structures on the Formation of Mineralised Vein Systems. Minerals, 9(1), 56. https://doi.org/10.3390/min9010056