Geochemical and Geochronological Discrimination of Biotite Types at the Detour Lake Gold Deposit, Canada
Abstract
:1. Introduction
2. Geological Setting
2.1. Abitibi Subprovince
2.2. Detour Lake Deposit
3. Analytical Methods
3.1. EMPA Geochemistry
3.2. 40Ar/39Ar Geochronology
4. Results
4.1. Petrography
4.2. Mineral Geochemistry
4.3. 40Ar/39Ar Geochronology
5. Discussion
5.1. Chemical Variations in Biotite
5.2. Post-Mineralization Hydrothermal Activity
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Souza, S.; Dubé, B.; McNicoll, V.J.; Dupuis, C.; Mercier-Langevin, P.; Creaser, R.A.; Kjarsgaard, I. Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Lode Gold Deposits and Implications for Exploration; Open File Report 7852; Geological Survey of Canada: Ottawa, ON, Canada, 2015; pp. 115–123. [Google Scholar]
- Gaillard, N.; William-Jones, A.E.; Clark, J.R.; Lypaczewski, P.; Salvi, S.; Perrouty, S.; Piette-Lauzière, N.; Guilmette, C.; Linnen, R.L. Mica Composition as a Vector for Gold Mineralization: Deciphering Hydrothermal and Metamorphic Effects in the Malartic District, Quebec. Ore Geol. Rev. 2018, 95, 789–820. [Google Scholar] [CrossRef]
- Belkabir, A.; Hubert, C.; Hoy, L.D. Gold emplacement and hydrothermal alteration in metabasix rocks at the Mouska mine, Bousquet district, Abitibi, Québec, Canada. Can. Mineral. 2004, 42, 1079–1096. [Google Scholar] [CrossRef]
- Marmont, S. The Geological Setting of the Detour Lake Gold Mine, Ontario, Canada. In Proceedings of the Gold ’86, an International Symposium on the Geology of Gold, Toronto, ON, Canada, 28 September–1 October 1986; pp. 3–22. [Google Scholar]
- Oliver, J.; Ayer, J.A.; Dubé, B.; Aubertin, R.; Burson, M.; Panneton, G.; Friedman, R.; Hamilton, M.A. Structure, Stratigraphy, U-Pb Geochronology and Alteration Characteristics of Gold Mineralization at the Detour Lake Deposit, Ontario, Canada. Explor. Min. Geol. 2011, 20, 1–30. [Google Scholar]
- Ayer, J.; Amelin, Y.; Corfu, F.; Kamo, S.; Ketchum, J.; Kwok, K.; Trowell, N. Evolution of the Southern Abitibi Greenstone Belt Based on U–Pb Geochronology: Autochthonous Volcanic Construction Followed by Plutonism, Regional Deformation and Sedimentation. Precambrian Res. 2002, 115, 63–95. [Google Scholar] [CrossRef]
- Ayer, J.A.; Thurston, P.C.; Bateman, R.; Dubé, B.; Gibson, H.L.; Hamilton, M.A.; Hathway, B.; Hocker, S.M.; Houle, M.G.; Hudak, G.; et al. Overview of Results from the Greenstone Architecture Project: Discover Abitibi Initiative; Open File Report 6154: 146; Ontario Geological Survey: Sudbury, ON, Canada, 2005. [Google Scholar]
- Ayer, J.A.; Goutier, J.; Thurston, P.C.; Dubé, B.; Kamber, B.S. Tectonic and Metallogenic Evolution of the Abitibi and Wawa Sub-Provinces; Open File Report 6260: 3.1–3.6; Ontario Geological Survey: Sudbury, ON, Canada, 2010. [Google Scholar]
- Goutier, J.; Melançon, M. Compilation Géologique de La Sous-Province de l’Abitibi (Version Préliminaire); Ressources Naturelles et Faune: Québec, QC, Canada, 2007. [Google Scholar]
- Daigneault, R.; Mueller, W.U. Abitibi Greenstone Belt Plate Tectonics: A History of a Chronic Arc Development, Accretion and Collision. In The Precambrian Earth: Tempos and Events; Eriksson, K.A., Altermann, W., Nelson, D.R., Mueller, W.U., Catuneanu, O., Strand, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 88–103. [Google Scholar]
- Bleeker, W. Lode Gold Deposits in Ancient Deformed and Metamorphosed Terranes: The Role of Extension in the Formation of Timiskaming Basins and Large Gold Deposits, Abitibi Greenstone Belt—A Discussion; Open File Report 6280: 47.1–47.12; Ontario Geological Survey: Sudbury, ON, Canada, 2012. [Google Scholar]
- Goutier, J. Géologie de La Région de Destor (SNRC 32D/07); Open File Report RG96-13: 37; Ministère des Ressources Naturelles du Québec: Québec, QC, Canada, 1997. [Google Scholar]
- Benn, K.; Peschler, A.P. A Detachment Fold Model for Fault Zones in the Late Archean Abitibi Greenstone Belt. Tectonophysics 2005, 400, 85–104. [Google Scholar] [CrossRef]
- Bateman, R.; Ayer, J.; Dube, B. The Timmins-Porcupine Gold Camp, Ontario: Anatomy of an Archean Greenstone Belt and Ontogeny of Gold Mineralization. Econ. Geol. 2008, 103, 1285–1308. [Google Scholar] [CrossRef]
- Thurston, P.C.; Ayer, J.A.; Goutier, J.; Hamilton, M.A. Depositional Gaps in Abitibi Greenstone Belt Stratigraphy: A Key to Exploration for Syngenetic Mineralization. Econ. Geol. 2008, 103, 1097–1134. [Google Scholar] [CrossRef] [Green Version]
- Daigneault, R.; Mueller, W.U.; Chown, E.H. Oblique Archean Subduction: Accretion and Exhumation of an Oceanic Arc during Dextral Transpression, Southern Volcanic Zone, Abitibi Subprovince Canada. Precambrian Res. 2002, 115, 261–290. [Google Scholar] [CrossRef]
- Thompson, P.H. Metamorphism and Its Relationships to Gold Deposits in the Timmins-Kirkland Lake Area, Western Abitibi Greenstone Belt, Ontario; Discover Abitibi, Metamorphic Subproject Report 1; Open File Report 6120:37.1-37.8; Ontario Geological Survey: Sudbury, ON, Canada, 2003. [Google Scholar]
- Powell, W.G.; Hodgson, C.J.; Hanes, J.A.; Carmichael, D.M.; Mcbride, S.; Farrar, E. 40Ar/ 39Ar Geochronological Evidence for Multiple Postmetamorphic Hydrothermal Events Focused along Faults in the Southern Abitibi Greenstone Belt. Can. J. Earth Sci. 1995, 32, 768–786. [Google Scholar] [CrossRef]
- Johns, G.W. Geology of the Burntbush-Detour Lakes Area, District of Cochrane, Ontario; Open File Report 199: 82; Ontario Geological Survey: Sudbury, ON, Canada, 1982. [Google Scholar]
- Marmont, S. Geology of the Lower Detour Lake-Hopper-Sunday Lakes Area, Northeastern Ontario; Miscellaneous Paper 137; Ontario Geological Survey: Sudbury, ON, Canada, 1987; pp. 175–180. [Google Scholar]
- Bouchard, M. Predicting Stable Metamorphic Assemblages in P-T Space Using Phase Equilibria Modelling and Characterization of Mafic Metavolcanic Rocks South of Detour Lake Mine, Ontario, Canada. Bachelor’s Thesis, Laurentian University, Sudbury, ON, Canada, 2015. [Google Scholar]
- Dubosq, R.; Lawley, C.J.M.; Rogowitz, A.; Schneider, D.A.; Jackson, S. Pyrite Deformation and Connections to Gold Mobility: Insight from Micro-Structural Analysis and Trace Element Mapping. Lithos 2018, 310–311, 86–104. [Google Scholar] [CrossRef]
- Nachit, H.; Ibhi, A.; Abia, E.H.; Ben Ohoud, M. Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites. C. R. Géosci. 2005, 337, 1415–1420. [Google Scholar] [CrossRef]
- Vidal, O.; Parra, T.; Trotet, F. A Thermodynamic Model for Fe-Mg Aluminous Chlorite Using Data from Phase Equilibrium Experiments and Natural Pelitic Assemblages in the 100 to 600 °C, 1 to 25 Kb Range.(Iron, Magnesium). Am. J. Sci. 2001, 301, 557. [Google Scholar] [CrossRef]
- Parra, T.; Vidal, O.; Agard, P. A Thermodynamic Model for Fe–Mg Dioctahedral K White Micas Using Data from Phase-Equilibrium Experiments and Natural Pelitic Assemblages. Contrib. Mineral. Petrol. 2002, 143, 706–732. [Google Scholar] [CrossRef]
- Donovan, J.J.; Tingle, T.N. An Improved Mean Atomic Number Background Correction for Quantitative Microanalysis. Microsc. Microanal. 1996, 2, 1–7. [Google Scholar] [CrossRef]
- Donovan, J.J.; Singer, J.W.; Armstrong, J.T. A New EPMA Method for Fast Trace Element Analysis in Simple Matrices. Am. Mineral. 2016, 101, 1839–1853. [Google Scholar] [CrossRef]
- Dazé, A.; Lee, J.K.W.; Villeneuve, M. An Intercalibration Study of the Fish Canyon Sanidine and Biotite 40Ar/ 39Ar Standards and Some Comments on the Age of the Fish Canyon Tuff. Chem. Geol. 2003, 199, 111–127. [Google Scholar] [CrossRef]
- Kuiper, K.F.; Deino, A.; Hilgen, F.J.; Krijgsman, W.; Renne, P.R.; Wijbrans, J.R. Synchronizing Rock Clocks of Earth History. Science 2008, 320, 500–504. [Google Scholar] [CrossRef] [Green Version]
- Best, M.G.; Christiansen, E.H.; Deino, A.L.; Grommé, C.S.; Tingey, D.G. Correlation and Emplacement of a Large, Zoned, Discontinuously Exposed Ash Flow Sheet: The 40Ar/39Ar Chronology, Paleomagnetism, and Petrology of the Pahranagat Formation, Nevada. J. Geophys. Res. Solid Earth 1995, 100, 24593–24609. [Google Scholar] [CrossRef]
- Jourdan, F.; Verati, C.; Féraud, G. Intercalibration of the Hb3gr 40Ar/39Ar Dating Standard. Chem. Geol. 2006, 231, 177–189. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jäger, E. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Roddick, J.C. High Precision Intercalibration of 40Ar/39Ar Standards. Geochim. Cosmochim. Acta 1983, 47, 887–898. [Google Scholar] [CrossRef]
- Renne, P.R.; Swisher, C.C.; Deino, A.L.; Karner, D.B.; Owens, T.L.; DePaolo, D.J. Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating. Chem. Geol. 1998, 145, 117–152. [Google Scholar] [CrossRef]
- Renne, P.R.; Norman, E.B. Determination of the Half-Life of 37 Ar by Mass Spectrometry. Phys. Rev. C 2001, 63, 047302. [Google Scholar] [CrossRef]
- Ross, J. Pychron Documentation; New Mexico Institute of Mining and Technology: Socorro, NM, USA, 2017. [Google Scholar]
- Deino, A.L. Geochronology. In A Companion to Paleoanthropology; Begun, D.R., Ed.; Wiley: Hoboken, NJ, USA, 2013; pp. 244–264. [Google Scholar]
- Abrecht, J.; Hewitt, D.A. Experimental Evidence on the Substitution of Tin in Biotite. Am. Mineral. 1988, 73, 1275–1284. [Google Scholar]
- Johan, Z.; Le Bel, L.; McMillan, W.J. Evolution Géologique et Pétrologique Des Complexes Granitiques Fertiles. Pétrologie Des Dykes et Des Phases Porphyriques. Mém. BRGM 1980, 99, 71–83. [Google Scholar]
- Johan, Z.; Le Bel, L. Paragenèses d’altération. Conséquences Sur Les Paramètres Physico-Chimiques Relatifs Aux Fluides Hydrothermaux. Mém. BRGM 1980, 99, 95–119. [Google Scholar]
- Robert, J.-L. Titanium Solubility in Synthetic Phlogopite Solid Solutions. Chem. Geol. 1976, 17, 213–227. [Google Scholar] [CrossRef]
- Schneider, J.; Bosch, D.; Monié, P. Individualization of Textural and Reactional Microdomains in Eclogites from the Bergen Arcs (Norway): Consequences for Rb/Sr and Ar/Ar Radiochronometer Behavior during Polymetamorphism. Geochem. Geophys. Geosystems 2008, 9. [Google Scholar] [CrossRef]
- Sanchez, G.; Rolland, Y.; Schneider, J.; Corsini, M.; Oliot, E.; Goncalves, P.; Verati, C.; Lardeaux, J.-M.; Marquer, D. Dating Low-Temperature Deformation by 40Ar/ 39Ar on White Mica, Insights from the Argentera-Mercantour Massif (SW Alps). Lithos 2011, 125, 521–536. [Google Scholar] [CrossRef]
- Uunk, B.; Brouwer, F.; Ter Voorde, M.; Wijbrans, J. Understanding Phengite Argon Closure Using Single Grain Fusion Age Distributions in the Cycladic Blueschist Unit on Syros, Greece. Earth Planet. Sci. Lett. 2018, 484, 192–203. [Google Scholar] [CrossRef]
- Coleman, M.; Dubosq, R.; Schneider, D.A.; Grasemann, B.; Soukis, K. Along-strike Consistency of an Extensional Detachment System, West Cyclades, Greece. Terra Nova 2019, 31, 220–233. [Google Scholar] [CrossRef]
- Imeokparia, E.G. Chemical Variations in Biotites—An Exploration Tool to Distinguish between Mineralized and Barren Rocks in the Nigerian Tin Bearing Province. J. Afr. Earth Sci. 1984, 2, 327–331. [Google Scholar] [CrossRef]
- Zacharias, J. Compositional Trends in Magmatic and Hydrothermal Silicates of the Petráčkova Hora Intrusive Complex, Bohemian Massif - Link between the Magmatic Processes and Intrusion-Related Gold Mineralization. J. Geosci. 2008, 53, 105–117. [Google Scholar] [CrossRef]
- McDougall, I.; Harrison, T.M. Geochronology and Thermochronology by the 40Ar/39Ar Method; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Kerrich, R.; Cassidy, K.F. Temporal Relationships of Lode Gold Mineralization to Accretion, Magmatism, Metamorphism and Deformation—Archean to Present: A Review. Ore Geol. Rev. 1994, 9, 263–310. [Google Scholar] [CrossRef]
- Feng, R. Tectonic Jusxtaposition of the Archean Abitibi Greenstone Belt and Pontiac Subprovince: Evidence from Geobarometry, Geochemistry, and Ar-Ar Geochronology of Metasedimentary Rocks and Granitoids. Ph.D. Thesis, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada, 1992. [Google Scholar]
- Manson, M.L.; Halls, H.C. Proterozoic Reactivation of the Southern Superior Province and Its Role in the Evolution of the Midcontinent Rift. Can. J. Earth Sci. 1997, 34, 562–575. [Google Scholar] [CrossRef]
- Kalbfleisch, N. Crustal-Scale Shear Zones Recording 400 m.y. of Tectonic Activity in the North Caribou Greenstone Belt, Western Superior Province of Canada. Master’s Thesis, Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada, 2012. Unpublished. [Google Scholar]
- Biczok, J.; Hollings, P.; Klipfel, P.; Heaman, L.; Maas, R.; Hamilton, M.; Kamo, S.; Friedman, R. Geochronology of the North Caribou Greenstone Belt, Superior Province Canada: Implications for Tectonic History and Gold Mineralization at the Musselwhite Mine. Precambrian Res. 2012, 192, 209–230. [Google Scholar] [CrossRef]
- Gallagher, S.; Camacho, A.; Fayek, M.; Epp, M.; Spell, T.; Armstrong, R. Geology, Geochemistry, and Geochronology of the East Bay Gold Trend, Red Lake, Ontario, Canada. Miner. Depos. 2018, 53, 127–141. [Google Scholar] [CrossRef]
- Corfu, F.; Andrews, A.J. Geochronological Constraints on the Timing of Magmatism, Deformation, and Gold Mineralization in the Red Lake Greenstone Belt, Northwestern Ontario. Can. J. Earth Sci. 1987, 24, 1302–1320. [Google Scholar] [CrossRef]
- McMaster, D. A Preliminary 40Ar/39Ar Study of the Thermal History and Age of Gold in the Red Lake Greenstone Belt. Master’s Thesis, Department of Physics, University of Toronto, Toronto, ON, Canada, 1987. [Google Scholar]
- Percival, J.A.; Skulski, T. Tectonothermal evolution of the Northern Minto Block, Superior Province, Québec, Canada. Can. Mineral. 2000, 38, 345–378. [Google Scholar] [CrossRef]
- Kerrich, R.; Ludden, J. The Role of Fluids during Formation and Evolution of the Southern Superior Province Lithosphere: An Overview. Can. J. Earth Sci. 2000, 37, 135–164. [Google Scholar] [CrossRef]
- Frape, S.K.; Fritz, P. The Chemistry and Isotopic Composition of Saline Groundwaters from the Sudbury Basin, Ontario. Can. J. Earth Sci. 1982, 19, 645–661. [Google Scholar] [CrossRef]
- Heaman, L.M. Global Mafic Magmatism at 2.45 Ga: Remnants of an Ancient Large Igneous Province? Geology 1997, 25, 299. [Google Scholar] [CrossRef]
- Halls, H.C.; Bates, M.P. The Evolution of the 2.45 Ga Matachewan Dyke Swarm, Canada. In Mafic Dykes and Emplacement Mechanisms; Parker, A.J., Rickwood, P.C., Tucker, D.H., Eds.; Balkema: Leiden, The Netherlands, 1990; pp. 237–250. [Google Scholar]
- Skipton, D.R.; Warren, C.J.; Hanke, F. Numerical Models of P–T, Time and Grain-Size Controls on Ar Diffusion in Biotite: An Aide to Interpreting 40Ar/39Ar Ages. Chem. Geol. 2018, 496, 14–24. [Google Scholar] [CrossRef]
- Mcdannell, K.T.; Zeitler, P.K.; Schneider, D.A. Instability of the Southern Canadian Shield during the Late Proterozoic. Earth Planet. Sci. Lett. 2018, 490, 100–109. [Google Scholar] [CrossRef]
- Claoué-Long, J.C.; King, R.W.; Kerrich, R. Reply to Comment by F. Corfu and D.W. Davis on “Archaean Hydrothermal Zircon in the Abitibi Greenstone Belt: Constraints on the Timing of Gold Mineralisation”. Earth Planet. Sci. Lett. 1992, 109, 601–609. [Google Scholar]
- Jemielita, R.A.; Davis, D.W.; Krogh, T.E. U-Pb Evidence for Abitibi Gold Mineralization Postdating Greenstone Magmatism and Metamorphism. Nature 1990, 346, 831. [Google Scholar] [CrossRef]
- Kerrich, R.; Kyser, T.K. 100 Ma Timing Paradox of Archean Gold, Abitibi Greenstone Belt (Canada): New Evidence from U-Pb and Pb-Pb Evaporation Ages of Hydrothermal Zircons. Geology 1994, 22, 1131. [Google Scholar] [CrossRef]
- Maurice, C.; David, J.; O’neil, J.; Francis, D. Age and Tectonic Implications of Paleoproterozoic Mafic Dyke Swarms for the Origin of 2.2 Ga Enriched Lithosphere beneath the Ungava Peninsula, Canada. Precambrian Res. 2009, 174, 163–180. [Google Scholar] [CrossRef]
Biotite Type | Mineralogy (%) | Analyses | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Rock Type | Vein | Halo | Host Rock | Distal | Qz | Cal | Ab | Mc | Chl | Bt | Ms | Act | Ap(?) | Sulphides | EMPA | WDS Mapping | 40Ar/39Ar | |
Mineralized | FW-03 | Bt schist | ✓ | 30 | 20 | 20 | <1 | 20 | 10 | <1 | ✓ | ✓ | ✓ | ||||||
FW-10 | Bt schist | ✓ | 5 | 5 | 80 | 10 | <1 | ✓ | ✓ | ✓ | |||||||||
FW-11 | Bt schist | ✓ | 35 | 20 | 30 | 15 | <1 | ✓ | ✓ | ✓ | |||||||||
FW-13 | Bt schist | ✓ | ✓ | ✓ | 45 | 10 | <1 | 20 | 25 | <1 | ✓ | ✓ | ✓ | ||||||
MV-02 | mafic volcanic | ✓ | ✓ | ✓ | 30 | 20 | 10 | 35 | 5 | ✓ | ✓ | ✓ | |||||||
MV-04 | mafic volcanic | ✓ | 25 | 35 | 25 | 15 | ✓ | ✓ | ✓ | ||||||||||
MV-12 | mafic volcanic | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||
RD15-118-10 | mafic volcanic | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||
RD15-118-255 | mafic volcanic | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||
RD15-265-43 | mafic volcanic | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||
RD15-429-27 | mafic volcanic | ✓ | 30 | 10 | <5 | 10 | 45 | <1 | ✓ | ||||||||||
RD15-429-92 | mafic volcanic | ✓ | 30 | 5 | <5 | 10 | 50 | <1 | ✓ | ||||||||||
Barren | DLR-01 | meta-syenite/Bt schist | ✓ | 10 | 50 | <1 | 40 | <1 | ✓ | ✓ | |||||||||
DLR-02A | meta-granite/Bt schist | ✓ | 45 | 35 | <1 | 20 | ✓ | ✓ | ✓ | ||||||||||
DLR-02B | meta-granite | ✓ | 40 | 35 | 5 | <1 | 20 | ✓ | ✓ | ✓ | |||||||||
DLR-03 | Kfs granit | ✓ | 20 | 30 | 45 | <1 | 5 | ✓ | ✓ | ✓ | |||||||||
WL-01 | Bt-Act schist | ✓ | 20 | 15 | <1 | 5 | 60 | ✓ | ✓ |
Vein | Halo | Host Rock | Distal | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Mean | Max | Std | Min | Mean | Max | Std | Min | Mean | Max | Std | Min | Mean | Max | Std | |
wt% | ||||||||||||||||
SiO2 | 33.99 | 38.30 | 40.68 | 2.23 | 31.36 | 36.04 | 40.04 | 2.61 | 33.67 | 37.53 | 55.00 | 3.48 | 7.22 | 33.24 | 36.15 | 6.72 |
TiO2 | 1.22 | 1.52 | 1.99 | 0.25 | 0.22 | 1.50 | 1.98 | 0.49 | 0.29 | 1.42 | 2.14 | 0.49 | 1.29 | 2.48 | 3.46 | 0.52 |
Al2O3 | 17.16 | 18.31 | 19.40 | 0.73 | 15.93 | 17.93 | 21.65 | 1.46 | 12.43 | 17.24 | 20.62 | 1.23 | 4.41 | 15.34 | 16.75 | 2.84 |
FeO | 15.66 | 17.45 | 19.63 | 1.28 | 16.44 | 18.67 | 22.48 | 1.71 | 14.66 | 17.84 | 21.46 | 1.90 | 8.89 | 21.13 | 24.73 | 3.47 |
Fe2O3 | ||||||||||||||||
MnO | 0.07 | 0.11 | 0.16 | 0.03 | 0.12 | 0.15 | 0.22 | 0.03 | 0.05 | 0.15 | 0.27 | 0.06 | 0.13 | 0.26 | 0.47 | 0.09 |
MgO | 9.03 | 10.96 | 12.66 | 1.07 | 10.10 | 12.37 | 16.47 | 1.58 | 9.05 | 11.46 | 15.23 | 1.34 | 3.82 | 8.59 | 10.71 | 1.81 |
CaO | 0.00 | 0.02 | 0.04 | 0.01 | 0.00 | 0.16 | 2.28 | 0.42 | 0.00 | 0.07 | 1.72 | 0.24 | 0.00 | 0.12 | 1.00 | 0.25 |
Na2O | 0.05 | 0.11 | 0.18 | 0.04 | 0.00 | 0.09 | 0.20 | 0.05 | 0.01 | 0.08 | 0.27 | 0.06 | 0.01 | 0.12 | 0.63 | 0.15 |
K2O | 7.33 | 9.33 | 9.90 | 0.77 | 0.81 | 7.14 | 9.99 | 2.87 | 4.12 | 8.96 | 10.31 | 1.31 | 3.69 | 8.83 | 9.79 | 1.48 |
F | 0.00 | 0.04 | 0.15 | 0.06 | 0.00 | 0.04 | 0.16 | 0.05 | 0.00 | 0.04 | 0.19 | 0.05 | 0.06 | 0.24 | 0.32 | 0.09 |
Cl | 0.00 | 0.02 | 0.04 | 0.01 | 0.00 | 0.02 | 0.03 | 0.01 | 0.00 | 0.52 | 9.35 | 2.07 | 0.00 | 0.03 | 0.09 | 0.03 |
H2O | ||||||||||||||||
Total | 91.99 | 96.17 | 98.58 | 2.15 | 89.31 | 94.11 | 97.86 | 2.23 | 90.67 | 94.80 | 99.63 | 2.01 | 32.10 | 90.16 | 95.82 | 15.04 |
Structural formulae calculation on 22 positive charges | ||||||||||||||||
Si | 2.64 | 2.84 | 2.95 | 0.10 | 2.39 | 2.39 | 2.92 | 0.14 | 2.62 | 2.83 | 3.67 | 0.17 | 1.91 | 2.70 | 2.81 | 0.20 |
Ti | 0.07 | 0.08 | 0.11 | 0.01 | 0.01 | 0.01 | 0.11 | 0.03 | 0.02 | 0.08 | 0.12 | 0.03 | 0.12 | 0.16 | 0.28 | 0.04 |
Al | 1.47 | 1.60 | 1.76 | 0.10 | 1.42 | 1.42 | 1.95 | 0.14 | 0.98 | 1.54 | 1.81 | 0.12 | 1.38 | 1.48 | 1.55 | 0.05 |
Fe2+ | 0.97 | 1.08 | 1.20 | 0.07 | 1.03 | 1.03 | 1.46 | 0.12 | 0.82 | 1.13 | 1.41 | 0.14 | 1.24 | 1.48 | 2.02 | 0.16 |
Fe3+ | ||||||||||||||||
Mn | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.01 | 0.02 | 0.04 | 0.01 |
Mg | 0.99 | 1.21 | 1.43 | 0.13 | 1.11 | 1.40 | 1.87 | 0.20 | 0.90 | 1.29 | 1.78 | 0.17 | 0.73 | 1.07 | 1.52 | 0.19 |
Ca | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.19 | 0.03 | 0.00 | 0.01 | 0.12 | 0.02 | 0.00 | 0.01 | 0.09 | 0.02 |
Na | 0.01 | 0.02 | 0.03 | 0.01 | 0.00 | 0.01 | 0.03 | 0.01 | 0.00 | 0.01 | 0.04 | 0.01 | 0.00 | 0.01 | 0.10 | 0.02 |
K | 0.69 | 0.88 | 0.97 | 0.07 | 0.08 | 0.69 | 0.95 | 0.27 | 0.39 | 0.86 | 0.97 | 0.13 | 0.38 | 0.98 | 2.08 | 0.31 |
F | 0.00 | 0.01 | 0.03 | 0.01 | 0.00 | 0.01 | 0.04 | 0.01 | 0.00 | 0.01 | 0.05 | 0.01 | 0.00 | 0.01 | 0.08 | 0.02 |
Cl | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 1.23 | 0.27 | 0.00 | 0.00 | 0.01 | 0.00 |
Mg# | 0.45 | 0.53 | 0.57 | 0.04 | 0.52 | 0.54 | 0.59 | 0.02 | 0.48 | 0.53 | 0.61 | 0.04 | 0.31 | 0.42 | 0.50 | 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubosq, R.; Schneider, D.A.; Camacho, A.; Lawley, C.J.M. Geochemical and Geochronological Discrimination of Biotite Types at the Detour Lake Gold Deposit, Canada. Minerals 2019, 9, 596. https://doi.org/10.3390/min9100596
Dubosq R, Schneider DA, Camacho A, Lawley CJM. Geochemical and Geochronological Discrimination of Biotite Types at the Detour Lake Gold Deposit, Canada. Minerals. 2019; 9(10):596. https://doi.org/10.3390/min9100596
Chicago/Turabian StyleDubosq, Renelle, David A. Schneider, Alfredo Camacho, and Christopher J.M. Lawley. 2019. "Geochemical and Geochronological Discrimination of Biotite Types at the Detour Lake Gold Deposit, Canada" Minerals 9, no. 10: 596. https://doi.org/10.3390/min9100596
APA StyleDubosq, R., Schneider, D. A., Camacho, A., & Lawley, C. J. M. (2019). Geochemical and Geochronological Discrimination of Biotite Types at the Detour Lake Gold Deposit, Canada. Minerals, 9(10), 596. https://doi.org/10.3390/min9100596