Strain-Induced Graphitization Mechanism of Coal-Based Graphite from Lutang, Hunan Province, China
Abstract
:1. Introduction
2. Geological Setting and Sample Locations
3. Methods
3.1. X-ray Diffraction
3.2. Optical Microscopy
3.3. Raman Spectroscopy
3.4. HRTEM
4. Results
4.1. Crystallization Degree as Determined Using XRD
4.2. Microscopical Characterization of CBG
4.3. Raman Spectroscopy
4.4. Nanostructural Characterization of CBG
5. Discussion
5.1. Evolution of Microstructures with Increasing Graphitization Degree
5.2. Different Graphitization Degree Caused by Deformation
5.3. Graphitization Induced by Deformation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cui, N.; Sun, L.; Bagas, L.; Xiao, K.Y.; Xia, J.S. Geological characteristics and analysis of known and undiscovered graphite resources of China. Ore Geol. Rev. 2017, 91, 1119–1129. [Google Scholar] [CrossRef]
- Sun, L.; Xu, C.P.; Xiao, K.Y.; Zhu, Y.S.; Yan, L.Y. Geological characteristics, metallogenic regularities and the exploration of graphite deposits in China. China Geol. 2018, 3, 425–434. [Google Scholar] [CrossRef]
- Cao, D.Y.; Zhang, H.; Dong, Y.J.; Yang, C.W. Nanoscale Microscopic Features and Evolution Sequence of Coal-Based Graphite. J. Nanosci. Nanotechnol. 2017, 17, 6276–6283. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Y.J.; Zhang, H.; Cao, D.Y. Factors affecting graphitization of coal and the experimental validation. J. Min. Sci. Technol. 2018, 3, 9–19. [Google Scholar]
- Beyssac, O.; Rumble, D. Graphitic carbon: A Ubiquitous, Diverse, and Useful Geomaterial. Elements 2014, 10, 415–420. [Google Scholar] [CrossRef]
- Seehra, M.S.; Pavlovic, A.S.; Babu, V.S.; Zondlo, J.W.; Stansberry, P.G.; Stiller, A.H. Measurements and control of anisotropy in ten coal-based graphites. Carbon 1994, 32, 431–435. [Google Scholar] [CrossRef]
- Seehra, M.S.; Pavlovic, A.S. X-Ray diffraction, thermal expansion, electrical conductivity, and optical microscopy studies of coal-based graphites. Carbon 1993, 31, 557–564. [Google Scholar] [CrossRef]
- González, D.; Montes-Moran, M.A.; García, A.B. Influence of inherent coal mineral matter on the structural characteristics of graphite materials prepared from anthracites. Energy Fuels 2005, 19, 263–269. [Google Scholar] [CrossRef]
- Rantitsch, G.; Grogger, W.; Teichert, C.; Ebner, F.; Hofer, C.; Maurer, E.M.; Schaffer, B.; Toth, M. Conversion of carbonaceous material to graphite within the greywacke zone of the eastern Alps. Int. J. Earth Sci. 2004, 93, 959–973. [Google Scholar] [CrossRef]
- Marques, M.; Suárez-Ruiz, I.; Flores, D.; Guedes, A.; Rodrigues, S. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite. Int. J. Coal Geol. 2009, 77, 377–382. [Google Scholar] [CrossRef]
- Li, K.; Rimmer, S.M.; Liu, F. Geochemical and petrographic analysis of graphitized coals from Central Hunan. China. Int. J. Coal Geol. 2018, 195, 267–279. [Google Scholar] [CrossRef]
- Oberlin, A. Carbonization and graphitization. Carbon 1984, 22, 521–541. [Google Scholar] [CrossRef]
- Bonijoly, M.; Oberlin, M.; Oberlin, A. A possible mechanism for natural graphite formation. Int. J. Coal Geol. 1982, 1, 283–312. [Google Scholar] [CrossRef]
- Deurbergue, A.; Oberlin, A.; Oh, J.H.; Rouzaud, J.N. Graphitization of Korean anthracites as studied by transmission electron microscopy and X-ray diffraction. Int. J. Coal Geol. 1987, 8, 375–393. [Google Scholar] [CrossRef]
- Nyathi, M.S.; Clifford, C.B.; Schobert, H.H. Characterization of graphitic materials prepared from different rank Pennsylvania anthracites. Fuel 2013, 114, 244–250. [Google Scholar] [CrossRef]
- Buseck, P.R.; Beyssac, O. From organic matter to graphite: Graphitization. Elements 2014, 10, 421–426. [Google Scholar] [CrossRef]
- Rantitsch, G.; Lammerer, W.; Fisslthaler, E.; Mitsche, S.; Kaltenbock, H. On the discrimination of semi-graphite and graphite by Raman spectroscopy. Int. J. Coal Geol. 2016, 159, 48–56. [Google Scholar] [CrossRef]
- Rodrigues, S.; Suárez-Ruiz, I.; Marques, M.; Flores, D.; Camean, I.; Garcia, A.B. Development of graphite-like particles from the high temperature treatment of carbonized anthracites. Int. J. Coal Geol. 2011, 85, 219–226. [Google Scholar] [CrossRef]
- Rodrigues, S.; Marques, M.; Sua´rezRuiz, I.; Camean, I.; Flores, D.; Kwiecinska, B. Microstructural investigations of natural and synthetic graphites and semi-graphites. Int. J. Coal Geol. 2013, 111, 67–79. [Google Scholar] [CrossRef]
- Sua´rez-Ruiz, I.; Garcı´a, A.B. Optical parameters as a tool to study the microstructural evolution of carbonized anthracites during high-temperature treatment. Energy Fuels 2007, 21, 2935–2941. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, J.; Huang, J. Observations of microstructure and reflectivity of coal graphites for two locations in China. Int. J. Coal Geol. 1996, 30, 277–284. [Google Scholar] [CrossRef]
- Oberlin, A. High-Resilution TEM Studies of Carbonization and Graphitization. In In Chemisty and Physics of Carbon; Thrower, P.A., Ed.; Marcel Dekker: New York, NY, USA, 1989; Volume 22, pp. 1–143. [Google Scholar]
- Landis, C.A. Graphitization of dispersed carbonaceous material in metamorphic rocks. Contrib. Mineral. Petrol. 1971, 30, 34–45. [Google Scholar] [CrossRef]
- Inagaki, M.; Kaburagi, Y.; Hishiyama, Y. Thermal Management Material: Graphite. Adv. Eng. Mater. 2014, 16, 494–506. [Google Scholar] [CrossRef]
- Diessel, C.F.K.; Brothers, R.N.; Black, P.M. Coalification and graphitization in high-pressure schists in New Caledonia. Contrib. Mineral. Petrol. 1978, 68, 63–78. [Google Scholar] [CrossRef]
- Diessel, C.F.K.; Offler, R. Change in physical properties of coalifiled and graphitised phytoclasts with grade of metamorphism. N. Jb. Mineral. Mh. 1975, 1, 11–26. [Google Scholar]
- Křibek, B.; Hrabal, J.; Landais, P.; HLADÍKOVÁ, J. The association of poorly ordered graphite, coke and bitumens in greenschist facies rocks of the poniklá group, lugicum, Czech Republic: the result of graphitization of various types of carbonaceous matter. J. Metamorph. Geol. 1994, 12, 11. [Google Scholar] [CrossRef]
- Han, Y.; Xu, R.; Hou, Q.; Wang, J.; Pan, J. Deformation Mechanisms and Macromolecular Structure Response of Anthracite under Different Stress. Energy Fuel 2016, 30, 975–983. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, B.; Qu, M. Macromolecular evolution and structural defects in tectonically deformed coals. Fule 2019, 236, 1432–1445. [Google Scholar] [CrossRef]
- Wilks, K.R.; Mastalerz, M.; Bustin, R.M.; Ross, J.V. The role of shear strain in the graphitization of a high-volatile bituminous and an anthracitic coal. Int. J. Coal Geol. 1993, 22, 247–277. [Google Scholar] [CrossRef]
- Bustin, R.M.; Rouzaud, J.N.; Ross, J.V. Natural graphitization of anthracite: experimental considerations. Carbon 1995, 33, 679–691. [Google Scholar] [CrossRef]
- Ross, J.V.; Bustin, R.M. The role of strain energy in creep graphitization of anthracite. Nature 1990, 343, 58–60. [Google Scholar] [CrossRef]
- Buseck, P.R.; Huang, B.J. Conversion of carbonaceous material to graphite during metamorphism. Geochim. Cosmochim. Acta. 1985, 49, 2003–2016. [Google Scholar] [CrossRef]
- Kuo, L.W.; Huang, J.R.; Fang, J.N.; Si, J.L.; Li, H.B.; Song, S.R. Carbonaceous materials in the fault zone of the Longmenshan fault belt: 1. Signatures within the deep Wenchuan earthquake fault zone and their implications. Minerals 2018, 8, 385. [Google Scholar] [CrossRef]
- Kuo, L.W.; Huang, J.R.; Fang, J.N.; Si, J.L.; Song, S.R.; Li, H.B.; Yeh, E.C. Carbonaceous materials in the fault zone of the Longmenshan fault belt: 2. Charaterization of fault gouge from deep drilling and implications for fault maturity. Minerals 2018, 8, 393. [Google Scholar] [CrossRef]
- Si, J.L.; Li, H.B.; Kuo, L.W.; Huang, J.R.; Song, S.R.; Pei, J.L.; Wang, H.; Song, L.; Fang, J.N.; Sheu, H.S. Carbonaceous materials in the Longmenshan fault belt zone: 3. Records of seismic slip from the trench and implications for faulting mechanisms. Minerals 2018, 8, 457. [Google Scholar] [CrossRef]
- Poliak, E.I.; Jonas, J.J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 1996, 44, 127–136. [Google Scholar] [CrossRef]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura., H.; Jonas, J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar] [CrossRef]
- Tullis, J.; Yund, R.A. Dynamic recrystallization of feldspar: a mechanism for ductile shear zone formation. Geology 1985, 13, 238–241. [Google Scholar] [CrossRef]
- Huang, J.Z.; Liu, Y.R.; Wu, G.Y.; Ma, T.Q.; Wang, X.H. Framework of Mesozoic tectonic evolution in southeastern Hunan and the Hunan-Guangdong-Jiangxi border area. Chin. Geol. 2005, 4, 33–46. [Google Scholar]
- Zhu, J.C.; Wang, R.C.; Zhang, P.H.; Xie, C.F.; Zhang, W.L.; Zhao, K.D.; Xie, L.; Yang, C.; Che, X.D.; Yu, A.P.; et al. Zircon U-Pb geochronological framework of Qitianling granite batholith, middle part of Nanling Range, South China. Sci. China Ser. D Earth Sci. 2009, 52, 1279–1294. [Google Scholar] [CrossRef]
- Li, C.; Wang, D.H.; Zhou, L.M.; Zhao, H.; Li, X.W.; Qu, W.J. Study on the Re-Os isotope in graphite of Lutang graphite deposit Hunan. Rock Miner. Anal. 2017, 36, 297–304. [Google Scholar]
- Shao, Z.F.; Che, Q.J. Geological characteristics of HEYE graphite deposit of Guiyang country. Hunan Geol. 1988, 7, 25–30. [Google Scholar]
- Ju, Y.W.; Lin, H.; Li, X.S.; Fan, J.J. Tectonic deformation and dynamic metamorphism of coal. Front. Earth Sci. 2009, 16, 158–166. [Google Scholar]
- Tagiri, M. A measurement of the graphitizing-degree by the X-ray powder diffractometer. J. Mineral. Petrol. Econ. Geol. 1981, 76, 345–352. [Google Scholar] [CrossRef]
- Vidano, R.; Fischbach, D.B. Cheminform abstract: new lines in the Raman spectra of carbons and graphite. Chem. Inf. 1978, 9, 9. [Google Scholar] [CrossRef]
- Beyssac, O.; Bruno, G.; Petitet, J.P.; Froigneux, E.; Moreau, M.; Rouzaud.Moreau, J.-N. On the characterization of disordered and heterogeneous carbonaceous materials by raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 2267–2276. [Google Scholar] [CrossRef]
- Su, X.; Si, Q.; Song, J. Characteristics of coal Raman spectrum. J. China Coal Soc. 2016, 41, 1197–1202. [Google Scholar]
- Potgieter-Vermaak, S.; Maledi, N.; Wagner, N.; Heerden, J.H.; Grieken, R.V.; Potgieter, J.H. Raman spectroscopy for the analysis of coal: a review. J. Raman Spectrosc. 2015, 42, 123–129. [Google Scholar] [CrossRef]
- Sonibare, O.O.; Haeger, T.; Foley, S.F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy 2010, 35, 5347–5353. [Google Scholar] [CrossRef]
- Quirico, E.; Rouzaud, J.N.; Bonal, L.; Montagnac, G. Maturation grade of coals as revealed by raman spectroscopy: progress and problems. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 2368–2377. [Google Scholar] [CrossRef]
- Kwiecińska, B.; Petersen, H.I. Graphite, semi-graphite, natural coke, and natural char classification—ICCP system. Int. J. Coal Geol. 2004, 57, 99–116. [Google Scholar] [CrossRef]
- Okabe, K.; Shiraishi, S.; Oya., A. Mechanism of heterogeneous graphitization observed in phenolic resin-derived thin carbon fibers heated at 3000 °C. Carbon 2004, 42, 667–669. [Google Scholar] [CrossRef]
- Presswood, S.M.; Rimmer, S.M.; Anderson, K.B.; Filiberto, J. Geochemical and petrographic alteration of rapidly heated coals from the herrin (No. 6) coal seam, illinois basin. Int. J. Coal Geol. 2016, 165, 243–256. [Google Scholar] [CrossRef]
- Rimmer, S.M.; Crelling, J.C.; Yoksoulian, L.E. An occurrence of coked bitumen, Raton Formation, Purgatoire River Valley, Colorado, U.S.A. Int. J. Coal Geol. 2015, 141–142, 63–73. [Google Scholar] [CrossRef]
- Taylor, G.; Teichmüller, M.; Davis, A.; Diessel, G.F.K.; Littke, R.; Robert, P. Organic Petrology; Gebruder Borntraeger: Berlin, Germany, 1998; pp. 162–174. [Google Scholar]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cancado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. [Google Scholar] [CrossRef] [PubMed]
- Angoni, K. Remarks on the structure of carbon materials on the basis of Raman spectra. Carbon 1993, 31, 537–547. [Google Scholar] [CrossRef]
- Okuyama-Kusunose, Y. Metamorphism of carbonaceous material in the tono contact aureole, Kitakami Mountains, Japan. J. Metamorph. Geol. 1987, 5, 121–139. [Google Scholar]
- Gonza´lez, D.; Montes-Mora´n, M.A.; Garcia, A.B. Graphite materials prepared from an anthracite: A structural characterization. Energy Fuels 2003, 17, 1324–1329. [Google Scholar]
- Pusz, S.; Borrego, A.G.; Alvarez, D.; Camean, I.D.; Cann, V.; Duber, S.; Kalkreuth, W.; Komorek, J.; Kus, J.; Kwiecińska, B.K.; et al. Applicationof reflectance parameters in the estimation of the structural order of coals and carbo-naceous materials. Precision and bias of measurements derived from the ICCP structural working group. Int. J. Coal Geol. 2014, 131, 147–161. [Google Scholar] [CrossRef]
- Stach, E.; Mackowsky, M.-H.; Teichmüller, M.; Taylor, G.H.; Chandra, D.; Teichmüller, R. Stach’s Textbook of Coal Petrology; Gebruder Borntraeger: Berlin, Germany, 1982. [Google Scholar]
- González, D.; Montes-Morán, M.A.; Young, R.J.; Garcia, A.B. Effect of temperature on the graphitization process of a semianthracite. Fuel Process. Technol. 2002, 79, 245–250. [Google Scholar] [CrossRef]
- Kribek, B.; Sykorova, I.; Machovic, V.; Laufek, F. Graphitization of organic matter and fluid-deposited graphite in Palaeoproterozoic (Birimian) black shales of the Kaya-Goren greenstone belt (Burkina Faso, West Africa). J. Metamorph. Geol. 2008, 26, 937–958. [Google Scholar] [CrossRef]
- Crespo, F.E.; Rodas, M. Influence of grinding on graphite crystallinity from experimental and natural data: implications for graphite thermometry and sample preparation. Mineral. Mag. 2006, 70, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, M.I. Natural graphite-experimental evidence for its formation and novel applications. Earth Sci. Front. 2005, 12, 171–181. [Google Scholar]
- Bustin, R.M. The effect of shearing on quality of some coals in the southeastern Canadian Cordillera. Can. Inst. Min. Metall. Pet. 1982, 75, 76–83. [Google Scholar]
- Pan, J.N.; Hou, Q.L.; Ju, Y.W.; Bai, H.L.; Zhao, Y.Q. Coalbed methane sorption related to coal deformation structures at different temperatures and pressures. Fuel 2012, 102, 760–765. [Google Scholar] [CrossRef]
- Pan, J.N.; Wang, S.; Ju, Y.W.; Hou, Q.L.; Niu, Q.H.; Wang, K.; Li, M.; Shi, X.H. Quantitative study of the macromolecular structures of tectonically deformed coal using high-resolution transmission electron microscopy. J. Nat. Gas Sci. Eng. 2015, 27, 1852–1862. [Google Scholar] [CrossRef]
- Qu, Z.H.; Jiang, B.; Wang, J.J.; Dou, X.Z.; Li, M. Evolution of Textures and Stress-Strain Environments of Tectonically-Deformed Coals. Geol. J. China Univ. 2012, 18, 453–459. [Google Scholar]
- Liu, H.W.; Jiang, B.; Liu, J.G.; Song, Y. The evolutionary characteristics and mechanisms of coal chemical structure in micro deformed domains under sub-high temperatures and high pressures. Fuel 2018, 222, 258–268. [Google Scholar] [CrossRef]
- Oohashi, K.; Hirose, T.; Shimamoto, T. Shear-induced graphitization of carbonaceous materials during seismic fault motion: experiments and possible implications for fault mechanics. J. Struct. Geol. 2011, 33, 1122–1134. [Google Scholar] [CrossRef]
- Babu, V.S.; Seehra, M.S. Modeling of disorder and x-ray diffraction in coal-based graphitic carbons. Carbon 1996, 34, 1259–1265. [Google Scholar] [CrossRef]
- Cancado, L.G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.A.; Mizusaki, H.; Speziali, N.L.; Jorio, A.; Pimenta, M.A. Measuring the degree of stacking order in graphite by raman spectroscopy. Carbon 2008, 46, 272–275. [Google Scholar] [CrossRef]
- Nakamura, Y.; Oohashi, K.; Toyoshima, T.; Satisch-Kumar, M.; Akai, J. Strain-induced amorphization of graphite in fault zones of the Hidaka metamorphic belt, Hokkaido, Japan. J. Struct. Geology. 2015, 72, 142–161. [Google Scholar] [CrossRef]
- Lin, Q.Y.; Li, T.Q.; Liu, Z.J.; Song, Y.; He, L.L.; Hu, Z.J.; Guo, Q.G.; Ye, H.Q. High-resolution TEM observations of isolated rhombohedral crystallites in graphite blocks. Carbon 2012, 50, 2369–2371. [Google Scholar] [CrossRef]
- Collettini, C.; André, N.; Viti, C.; Marone, C. Fault zone fabric and fault weakness. Nature 2009, 462, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Atria, J.V.; Rusinko, F.; Schobert, H.H. Structural ordering of Pennsylvania anthracites on heat treatment to 2000–2900 °C. Energy Fuels 2002, 16, 1343–1347. [Google Scholar] [CrossRef]
- Harris, P.J.F. New perspectives on the structure of graphitic carbons. Crit. Rev. Solid State Mater. Sci. 2005, 30, 235–253. [Google Scholar] [CrossRef]
- Oberlin, A.; Terriere, G. Graphitization studies of anthracites by high resolution electron microscopy. Carbon 1975, 13, 367–376. [Google Scholar] [CrossRef]
- Urai, J.L.; Means, W.D.; Lister, G.S. Dynamic recrystallization of minerals. Miner. Rock Deform. Lab. Stud. 1986, 36, 161–199. [Google Scholar]
- Wenk, H.R.; Tomé, C.N. Modeling dynamic recrystallization of olivine aggregates deformed in simple shear. J. Geophys. Res. Solid Earth 1999, 104, 25513–25527. [Google Scholar] [CrossRef]
- Cao, Y.; Mitchell, G.D.; Davis, A.; Wang, D. Deformation metamorphism of bituminous and anthracite coals from China. Int. J Coal Geol. 2000, 43, 227–242. [Google Scholar] [CrossRef]
- Sun, Y.; Alemany, L.B.; Billups, W.E.; Lu, J.; Yakobson, B.I. Structural dislocations in anthracite. J. Phys. Chem. Lett. 2011, 2, 2521–2524. [Google Scholar] [CrossRef]
- Xu, R.T.; Li, H.J.; Guo, C.C.; Hou, Q.L. The mechanisms of gas generation during coal de-formation: Preliminary observations. Fuel 2014, 117, 326–330. [Google Scholar] [CrossRef]
- Oberlin, A. Crystallite growth in graphitizing and non-graphitizing carbons. Proc. R. Soc. Lond. 1951, 209, 196–218. [Google Scholar]
D (m) | Samples | Proximate Analysis (%) | Ultimate Analysis (%) | H/C | Deformation Type | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | FCdaf | S | C | H | N | O | ||||
1340 | B8-1 | 8.22 | 14.67 | 3.14 | 96.86 | 0.25 | 96.74 | 0.48 | 0.13 | 2.41 | 0.06 | Brittle |
B8-2 | 0.22 | 47.45 | 9.50 | 90.49 | 0.61 | 92.75 | 1.05 | 0.69 | 4.91 | 0.13 | Brittle | |
840 | B7-1 | 0.99 | 61.21 | 13.22 | 86.77 | 0.03 | 89.51 | 1.08 | 0.79 | 8.60 | 0.15 | Brittle |
760 | B6-1 | 1.9 | 51.04 | 6.74 | 93.26 | 0.20 | 96.96 | 1.37 | 0.16 | 1.29 | 0.17 | Brittle |
F6-1 | 2.34 | 13.55 | 6.47 | 93.53 | 0.06 | 95.11 | 0.32 | 0.45 | 4.06 | 0.04 | Ductile | |
630 | B5-1 | 3.82 | 10.35 | 6.08 | 93.93 | 0.07 | 95.27 | 0.81 | 0.07 | 3.78 | 0.10 | Brittle |
F5-1 | 3.68 | 16.69 | 5.36 | 94.63 | 0.07 | 96.76 | 0.19 | 0.12 | 2.84 | 0.02 | Ductile | |
F5-2 | 2.24 | 39.95 | 6.95 | 93.04 | 0.20 | 95.35 | 0.58 | 0.17 | 3.68 | 0.07 | Ductile | |
480 | B4-1 | 7.56 | 24.99 | 4.43 | 95.57 | 0.15 | 97.69 | 0.35 | 0.11 | 1.72 | 0.04 | Brittle |
F4-1 | 5.3 | 5.91 | 4.78 | 95.22 | 0.04 | 96.29 | 0.35 | 0.09 | 3.22 | 0.04 | Ductile | |
430 | F3-1 | 0.82 | 23.95 | 3.13 | 96.87 | 0.03 | 98.13 | 0.34 | 0.11 | 1.39 | 0.04 | Ductile |
F3-2 | 3.64 | 11.77 | 2.68 | 97.33 | 0.01 | 99.38 | 0.48 | 0.07 | 0.06 | 0.06 | Ductile | |
330 | B2-1 | 0.58 | 14.38 | 4.03 | 95.97 | 0.01 | 96.71 | 0.09 | 0.36 | 2.83 | 0.01 | Brittle |
F2-1 | 1.10 | 28.46 | 5.65 | 94.34 | 0.63 | 96.16 | 0.17 | 0.38 | 2.41 | 0.02 | Ductile | |
F2-2 | 3.44 | 11.59 | 1.94 | 98.05 | 0.01 | 93.51 | 0.07 | 0.08 | 6.31 | 0.01 | Ductile | |
F2-3 | 1.38 | 27.4 | 3.58 | 96.43 | 0.01 | 98.10 | 0.32 | 0.08 | 1.47 | 0.04 | Ductile | |
200 | B1-1 | 8.48 | 12.87 | 2.85 | 97.15 | 0.07 | 98.62 | 0.09 | 0.09 | 1.03 | 0.01 | Brittle |
F1-1 | 5.71 | 11.07 | 3.82 | 96.18 | 0.05 | 97.81 | 0.17 | 0.09 | 1.89 | 0.02 | Ductile |
Distance (m) | Samples | d002 (nm) | FWHM (°) | Lc (nm) | La (nm) | Rmax (%) | Rmin (%) | Rb (%) |
---|---|---|---|---|---|---|---|---|
1540 | D60 | 0.3363 | 0.278 | 29.36 | 65.55 | / | / | / |
1340 | B8-1 | 0.3506 | 3.065 | 8.52 | 5.86 | 7.17 | 2.81 | 4.36 |
B8-2 | 0.3522 | 3.097 | 2.63 | 6.65 | 6.23 | 2.49 | 3.74 | |
840 | B7-1 | 0.3410 | 3.048 | 2.68 | 6.10 | 7.11 | 1.43 | 5.69 |
760 | B6-1 | 0.3361 | 0.607 | 13.44 | 55.14 | 5.08 | 3.52 | 1.55 |
F6-1 | 0.3360 | 0.539 | 15.14 | 27.01 | 5.32 | 2.45 | 2.87 | |
630 | B5-1 | 0.3363 | 0.569 | 14.34 | 32.57 | 4.92 | 1.95 | 2.97 |
F5-1 | 0.3366 | 0.451 | 18.10 | 35.34 | 5.8 | 2.13 | 3.67 | |
F5-2 | 0.3363 | 0.467 | 17.48 | 46.09 | 6.76 | 2.46 | 4.3 | |
480 | B4-1 | 0.3365 | 0.502 | 16.29 | 47.09 | 6.48 | 2.37 | 4.11 |
F4-1 | 0.3363 | 0.409 | 19.95 | 39.96 | 7.26 | 3.82 | 3.44 | |
430 | F3-1 | 0.3358 | 0.323 | 25.26 | 55.13 | 6.99 | 1.52 | 5.47 |
F3-2 | 0.3363 | 0.368 | 22.18 | 49.78 | 7.51 | 1.7 | 5.82 | |
330 | B2-1 | 0.3363 | 0.450 | 19.02 | 32.20 | 6.26 | 1.88 | 4.39 |
F2-1 | 0.3358 | 0.329 | 24.81 | 51.85 | 5.85 | 1.76 | 4.09 | |
F2-2 | 0.3358 | 0.316 | 25.83 | 62.65 | 7.34 | 1.49 | 5.85 | |
F2-3 | 0.3361 | 0.324 | 25.19 | 40.89 | 4.44 | 2.36 | 2.08 | |
200 | B1-1 | 0.3360 | 0.352 | 23.19 | 40.52 | 6.88 | 1.25 | 5.63 |
F1-1 | 0.3358 | 0.360 | 22.67 | 44.55 | 7.72 | 1.35 | 6.38 |
Distance (m) | Samples | Vitrinite (%) | Inertinite (%) | Pyrolytic Carbons (%) | Granular Particles (%) | Flakes (%) | Silk-Like Graphite (%) |
---|---|---|---|---|---|---|---|
1340 | B8-1 | 74 | 26 | 0 | 0 | 0 | 0 |
B8-2 | 71 | 29 | 0 | 0 | 0 | 0 | |
840 | B7-1 | 60 | 22 | 12 | 5 | 0 | 0 |
760 | B6-1 | 9 | 15 | 10 | 65 | 0 | 0 |
F6-1 | 10 | 8 | 9 | 70 | 0 | 3 | |
630 | B5-1 | 3 | 2 | 22 | 71 | 1 | 1 |
F5-1 | 1 | 4 | 12 | 82 | 0 | 1 | |
F5-2 | 0 | 1 | 21 | 71 | 2 | 6 | |
480 | B4-1 | 0 | 1 | 7 | 72 | 10 | 10 |
F4-1 | 0 | 1 | 10 | 71 | 10 | 8 | |
430 | F3-1 | 0 | 0 | 9 | 70 | 13 | 8 |
F3-2 | 0 | 0 | 5 | 65 | 16 | 14 | |
330 | B2-1 | 0 | 0 | 8 | 76 | 10 | 6 |
F2-1 | 0 | 0 | 4 | 77 | 13 | 5 | |
F2-2 | 0 | 0 | 6 | 71 | 15 | 9 | |
F2-3 | 0 | 0 | 3 | 68 | 14 | 15 | |
200 | B1-1 | 0 | 0 | 5 | 71 | 12 | 13 |
F1-1 | 0 | 0 | 4 | 69 | 16 | 11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Cao, D.; Peng, Y.; Ding, Z.; Li, Y. Strain-Induced Graphitization Mechanism of Coal-Based Graphite from Lutang, Hunan Province, China. Minerals 2019, 9, 617. https://doi.org/10.3390/min9100617
Wang L, Cao D, Peng Y, Ding Z, Li Y. Strain-Induced Graphitization Mechanism of Coal-Based Graphite from Lutang, Hunan Province, China. Minerals. 2019; 9(10):617. https://doi.org/10.3390/min9100617
Chicago/Turabian StyleWang, Lu, Daiyong Cao, Yangwen Peng, Zhengyun Ding, and Yang Li. 2019. "Strain-Induced Graphitization Mechanism of Coal-Based Graphite from Lutang, Hunan Province, China" Minerals 9, no. 10: 617. https://doi.org/10.3390/min9100617
APA StyleWang, L., Cao, D., Peng, Y., Ding, Z., & Li, Y. (2019). Strain-Induced Graphitization Mechanism of Coal-Based Graphite from Lutang, Hunan Province, China. Minerals, 9(10), 617. https://doi.org/10.3390/min9100617