Gem-Quality Zircon Megacrysts from Placer Deposits in the Central Highlands, Vietnam—Potential Source and Links to Cenozoic Alkali Basalts
Abstract
:1. Introduction
2. Geological Setting
3. Sample Description and Methods
4. Results
4.1. Inclusion Features
4.2. Internal Texture of Zircon Megacrysts
4.3. Geochemical Characteristics
4.4. Geochronology
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoskin, P.W.O.; Schaltegger, J.M. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Hinton, R.W.; Upton, B.G.J. The chemistry of zircon: Variation within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta 1991, 55, 3287–3302. [Google Scholar] [CrossRef]
- Hoang, N.; Han, N.X. Petrochemistry of Quaternary basalts of Xuan Loc area (South Vietnam). In Geology of Cambodia, Laos, Vietnam; Geological Survey of Vietnam: Hanoi, Vietnam, 1990; Volume 2, pp. 77–88. [Google Scholar]
- Hoang, N.; Flower, M. Petrogenesis of Cenozoic basalts from Vietnam: Implication for origins of a ‘Diffuse igneous province’. J. Petrol. 1998, 39, 369–395. [Google Scholar] [CrossRef]
- Qiu, Z.; Yang, J.; Yang, Y.; Yang, S.; Li, C.; Wang, Y.; Lin, W.; Yang, X. Trace element and Hafnium isotopes of Cenozoic basalt-related zircon megacrysts at Muling, Heilongjiang province. Northeast China. Acta Pet. Sin. 2007, 23, 481–492. [Google Scholar]
- Izokh, A.E.; Smirnov, S.Z.; Egorova, V.V.; Anh, T.T.; Kovyazin, S.V.; Phuong, N.T.; Kalinina, V.V. The condition of formation of sapphire and zircon in the areas of alkali-basaltoid volcanism in Central Vietnam. Russ. Geol. Geophys. 2010, 51, 719–733. [Google Scholar] [CrossRef]
- Shigley, J.E.; Laurs, B.M.; Janse, A.J.A.; Elen, S.; Dirlam, D.M. Gem localities of the 2000s. Gems Gemol. 2010, 46, 188–216. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, X.; Chen, X. Genesis of zircon megacrysts in Cenozoic alkali basalts and the heterogeneity of subcontinetal lithospheirc mantle, eastern China. Mineral. Petrol. 2010, 1000, 75–94. [Google Scholar] [CrossRef]
- Chen, T.; Ai, H.; Yang, M.; Zheng, S.; Liu, Y. Brownish red zircon from Muling, China. Gems Gemol. 2011, 47, 36–41. [Google Scholar] [CrossRef]
- Cong, F.; Li, S.Q.; Lin, F.C.; Shi, M.F.; Zhu, H.P.; Siebel, W.; Chen, F. Origin of Zircon Megacrysts from Cenozoic Basalts in Northeastern Cambodia: Evidence from U-Pb Age, Hf-O Isotopes, and Inclusions. J. Geol. 2016, 124, 221–234. [Google Scholar] [CrossRef]
- Sutherland, L.; Graham, I.; Yaxley, G.; Armstrong, R.; Giuliani, G.; Hoskin, P.; Nechaev, V.; Woodhead, J. Major zircon megacryst suites of the Indo-Pacific lithospheric margin (ZIP) and their petrogenetic and regional implications. Mineral. Petrol. 2016, 110, 399–420. [Google Scholar] [CrossRef]
- Zeug, M.; Nasdala, L.; Wanthanachaisaeng, B.; Balmer, W.A.; Corfu, F.; Wildner, M. Blue Zircon from Ratanakiri, Cambodia. J. Gemmol. 2018, 36, 112–132. [Google Scholar] [CrossRef]
- Huong, L.T.T.; Vuong, B.T.S.; Thuyet, N.T.M.; Khoi, N.N.; Somruedee, S.; Bhuwado, W.; Hofmeister, W.; Tobias, H.; Hauzenbeger, C. Geology, gemological properties and preliminary heat treatment of gem-quality zircon from the Central Highlands of Vietnam. J. Gemmol. 2016, 35, 308–318. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Bosshart, G.; Fanning, C.M.; Hoskin, P.W.O.; Coenraads, R.R. Sapphire crystallization, age and origin, Ban Huai Sai, Laos: Age based on zircon inclusions. J. Asian Earth Sci. 2002, 20, 841–849. [Google Scholar] [CrossRef]
- Sutherland, F.L. Alkaline rocks and gemstones, Australia: A review and synthesis. Aust. J. Earth Sci. 1996, 43, 323–343. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Garnier, V.; Ohnenstetter, D.; Giuliani, G.; Fallick, A.E.; Phan Trong, T.; Quang, V.H.; Van, L.P.; Schwarz, D. Basalt petrology, zircon ages and sapphire genesis from Dak Nong, southern Vietnam. Mineral. Mag. 2005, 69, 21–38. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Meffre, S. Zircon megacryst ages and chemistry, from a placer, Dunedin volcanic area, eastern Otago, New Zealand. N. Z. J. Geol. Geophys. 2009, 52, 185–194. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; Van Achterbergh, E.; O’Reilly, S.R.; Shee, S.Y. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Visonà, D.; Caironi, V.; Carraro, A.; Dallai, L.; Fioretti, A.M.; Fanning, M. Zircon megacrysts from basalts of the Venetian Volcanic Province (NE Italy): U-Pb ages, oxygen isotopes and REE data. Lithos 2007, 94, 168–180. [Google Scholar] [CrossRef]
- Upton, B.G.J.; Hinton, R.W.; Aspen, P.; Finch, A.; Valley, J.W. Megacrysts and associated xenoliths: Evidence for migration of geochemically enriched melts in the upper mantle beneath Scotland. J. Petrol. 1999, 40, 935–956. [Google Scholar] [CrossRef]
- Piilonen, P.C.; Sutherland, F.L.; Danisik, M.; Poirier, G.; Valley, J.W.; Rowe, R. Zircon xenocryst from Cenozoic Alkaline Basalts of the Ratanakiri Volcanic Province (Cambodia), Southeast Asia—Trace Element Geochemistry, O-Hf Isotopic Composition, U-Pb and (U-Th)/He Geochronology—Revelations into the Underlyi Lithospheric Mantle. Minerals 2018, 8, 556. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Osanai, Y.; Nakano, N.; Owada, M.; Nam, T.N.; Miyamoto, T.; Minh, N.T.; Nam, N.V.; Tri, T.V. Collision zone metamorphism in Vietnam and adjacent South-eastern Asia: Proposition for Trans Vietnam Orogenic Belt. J. Mineral. Petrol. Sci. 2008, 103, 226–241. [Google Scholar] [CrossRef]
- Hutchison, C.S. Geological Evolution of Southeast Asia. Oxf. Monogr. Geol. Geophys. 1989, 13, 368. [Google Scholar]
- Barr, S.M.; Macdonald, A.S. Geochemistry and geochronology of late Cenozoic basalts of Southeast Asia. Bull. Geol. Soc. Am. 1981, 92, 1069–1142. [Google Scholar] [CrossRef]
- Rangin, C.; Huchon, P.; Le Pichon, X.; Bellon, H.; Lepvrier, C.; Roques, D.; Hoe, N.D.; Quynh, P.V. Cenozoic deformation of central and south. Tectonophysics 1995, 251, 179–196. [Google Scholar] [CrossRef]
- Hoang, N.; Flower, M.F.J.; Carlson, R.W. Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of enriched mobile asthenosphere with the continental lithosphere. Geochim. Cosmochim. Acta 1996, 60, 4329–4351. [Google Scholar] [CrossRef]
- Lenz, C.; Nasdala, L.; Talla, D.; Hauzenberger, C.; Seitz, R.; Kolitsch, U. Laser-induced REE3+ photoluminescence of selected accessory minerals—An “advantageous artefact” in Raman spectroscopy. Chem. Geol. 2015, 415, 1–16. [Google Scholar] [CrossRef]
- Adachi, T.; Osanai, Y.; Nakano, N.; Owada, M. La-ICP-MS U-Pb zircon and FE-EPMA U-Th-Pb monazite dating of pelitic granulites from the Mt. Ukidake area, Sefuri Mountains, northern Kyushu. J. Geol. Soc. Jpn. 2012, 118, 29–52. [Google Scholar]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsh, R.J.; Foudoulis, C. TEMORA1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Paces, J.P.; Miller, J.D.J. U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. J. Geophys. Res. 1993, 98, 13997–14013. [Google Scholar] [CrossRef]
- Griffin, W.L.; Powell, W.J.; Pearson, N.J.; O’Reilly, S.Y. GLITTER: Data reduction software for laser ablation ICP-MS. Mineral. Assoc. Can. Short Course 2008, 40, 308–311. [Google Scholar]
- Ludwig, K.R. User’s Mnual for Isoplot 3.70: A geochronological toolkit for Microsoft Excel. Berkeley Geochronl. Cent. Spec. Publ. 2008, 4, 1–77. [Google Scholar]
- Nakano, N.; Osanai, Y.; Adachi, T. Major and trace element zoning of euhedral garnet in high-grade (>900 °C) mafic granulite from the Song Ma Suture zone, northern Vietnam. J. Mineral. Petrol. Sci. 2010, 105, 268–273. [Google Scholar] [CrossRef]
- Elhlou, S.; Belousova, E.; Griffin, W.L.; Pearson, N.J.; O’Reilly, S.Y. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim. Cosmochim. Acta Suppl. 2006, 70, A158. [Google Scholar] [CrossRef]
- Jackson, S.E.; Longerich, H.P.; Dunning, G.R.; Freyer, B.J. The application of laser-ablation microprobe; inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals. Can. Mineral. 1992, 30, 1049–1064. [Google Scholar]
- Andersen, T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–76. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Lenz, C.; Nasdala, L. A photoluminescence study of REE3+ emissions in radiation-damaged zircon. Am. Mineral. 2015, 100, 1123–1133. [Google Scholar] [CrossRef]
- Shnukov, S.E.; Andreev, A.V.; Savenok, S.P. Admixture Elements in Zircons and Apatites: A Tool for Provenance Studies of Terrigenous Sedimentary Rocks; European Union of Geosciences (EUG 9): Strasbourg, France, 1997; Volume 65. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Snyder, G.A.; Taylor, L.A.; Crozaz, G. Rare earth element selenochemistry of immiscible liquids and zircon at Apollo 14: An iron probe study of evolved rocks on the Moon. Geochim. Cosmochim. Acta 1993, 57, 1143–1149. [Google Scholar] [CrossRef]
- Li, X.H.; Liang, X.R.; Sun, M.; Liu, Y.; Tu, X.L. Geochronology and geochemistry of single-grain zircons: Simultaneous in-situ analysis of U-Pb age and trace elements by LAM-ICP-MS. Eur. J. Mineral. 2000, 12, 1015–1024. [Google Scholar] [CrossRef]
- Borghini, G.; Fumagalli, P.; Rampone, E. The stability of plagioclase in the upper mantle: Subsolidus experiments on fertile and depleted lherzolite. J. Petrol. 2010, 51, 229–254. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; Pearson, N.J. Trace element composition and cathodoluminescence properties of southern African kimberlitic zircon. Mineral. Mag. 1998, 62, 355–366. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: A consideration and comparison of two broadly competitive techniques. J. Trace Microprobe Tech. 1998, 16, 301–326. [Google Scholar]
- Pupin, J.P. Granite genesis related to geodynamics from Hf-Y in zircon. Trans. R. Soc. Edinb. Earth Sci. 2000, 91, 245–256. [Google Scholar] [CrossRef]
- Saava, E.V.; Belyatsky, B.V.; Antonov, A.B. Carbonatitic Zircon-Myth or Reality: Mineralogical-Geochemical Analyses. Available online: http://alkaline09.narod.ru/abstracts/Savva_Belyatsky.htm (accessed on 30 December 2018).
- Campbell, L.S.; Compston, W.; Sircombe, K.N.; Wilkinson, C.C. Zircon from the East Orebody of the Bayan Obo Fe-Nb-REE deposit, China, and SHRIMP ages for carbonatite-related magmatism and REE mineralization events. Contrib. Mineral. Petrol. 2014, 168, 1041. [Google Scholar] [CrossRef]
- Foley, S.F.; Yaxley, G.M.; Rosenthal, A.; Buhre, S.; Kiseeva, E.S.; Rapp, R.P.; Jacob, D.E. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 2009, 112, 274–283. [Google Scholar] [CrossRef]
- Le Bas, M.J. Carbonatite magmas. Mineral. Mag. 1981, 44, 133–140. [Google Scholar] [CrossRef]
- Baldwin, L.C.; Tomaschek, F.; Ballhaus, C.; Gerdes, A.; Fonseca, R.O.C.; Wirth, R.; Geisler, T.; Nagel, T. Petrogeneis of alkaline basalt-hosted sapphires megacrysts. Petrological and geochemical investigations of in situ sapphire occurrences from the Siebengebirge volcanic field Western Germany. Contrib. Mineral. Petrol. 2017, 172, 43. [Google Scholar] [CrossRef]
- Chi, N.T.; Flower Martin, J.F.; Hung, D.T. Carbonatites in Phong Tho, Lai Chau Province, north–west Vietnam: Their petrogenesis and relationship with Cenozoic potassic alkaline magmatism. In Proceedings of the 33rd International Geological Congress, Oslo, Norway, 6–14 August 2008; pp. 1–45. [Google Scholar]
- Thi, T.N.; Wada, H.; Ishikawa, T.; Shimano, T. Geochemistry and petrogenesis of carbonatites from South Nam Xe, Lai Chau area, northwest Vietnam. Mineral. Petrol. 2014, 108, 371–390. [Google Scholar]
- Geisler, T.; Schaltegger, U.; Tomaschek, F. Re-equilibration of zircon in aqueous fluids and melts. Elements 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B. Pb diffusion in zircon. Chem. Geol. 2000, 172, 5–24. [Google Scholar] [CrossRef]
- Lewerentz, A. Experimental Zircon Alteration and Baddeleyite Formation in Silica Saturated Systems: Implications for Dating Hydrothermal Events. Master’s Thesis, Lund University, Lund, Sweden, 2011. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui Thi Sinh, V.; Osanai, Y.; Lenz, C.; Nakano, N.; Adachi, T.; Belousova, E.; Kitano, I. Gem-Quality Zircon Megacrysts from Placer Deposits in the Central Highlands, Vietnam—Potential Source and Links to Cenozoic Alkali Basalts. Minerals 2019, 9, 89. https://doi.org/10.3390/min9020089
Bui Thi Sinh V, Osanai Y, Lenz C, Nakano N, Adachi T, Belousova E, Kitano I. Gem-Quality Zircon Megacrysts from Placer Deposits in the Central Highlands, Vietnam—Potential Source and Links to Cenozoic Alkali Basalts. Minerals. 2019; 9(2):89. https://doi.org/10.3390/min9020089
Chicago/Turabian StyleBui Thi Sinh, Vuong, Yasuhito Osanai, Christoph Lenz, Nobuhiko Nakano, Tatsuro Adachi, Elena Belousova, and Ippei Kitano. 2019. "Gem-Quality Zircon Megacrysts from Placer Deposits in the Central Highlands, Vietnam—Potential Source and Links to Cenozoic Alkali Basalts" Minerals 9, no. 2: 89. https://doi.org/10.3390/min9020089
APA StyleBui Thi Sinh, V., Osanai, Y., Lenz, C., Nakano, N., Adachi, T., Belousova, E., & Kitano, I. (2019). Gem-Quality Zircon Megacrysts from Placer Deposits in the Central Highlands, Vietnam—Potential Source and Links to Cenozoic Alkali Basalts. Minerals, 9(2), 89. https://doi.org/10.3390/min9020089