Geochemical and Mineralogical Characteristics of the Middle Jurassic Coals from the Tongjialiang Mine in the Northern Datong Coalfield, Shanxi Province, China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Analytical Procedure
4. Results
4.1. Proximate Analysis
4.2. Geochemistry
4.2.1. Major Elements
4.2.2. Trace Elements
4.2.3. Rare Earth Elements
4.3. Abundances and Occurrence Modes of Minerals
4.3.1. Oxide Minerals
4.3.2. Clay Minerals
4.3.3. Sulfide Minerals
4.3.4. Carbonate Minerals
5. Discussion
5.1. Sediment Source Region
5.2. Injection of Low Temperature Hydrothermal Fluids
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Swaine, D.J. Trace Elements in Coals; Butterworths: Sydney, Australia, 1990. [Google Scholar]
- Ren, D.Y.; Zhao, F.H.; Dai, S.F.; Zhang, J.Y.; Luo, K.L. Geochemistry of Trace Elements in Coal; Science Press: Beijing, China, 2006; (In Chinese with English Abstract). [Google Scholar]
- Dai, S.F.; Ren, D.Y.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y.P. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Sun, Y.Z.; Zhao, C.L.; Qin, S.J.; Xiao, L.; Li, Z.S.; Lin, M.Y. Occurrence of some valuable elements in the unique “high-aluminium coals” from the Jungar coalfield, China. Ore Geol. Rev. 2016, 72, 659–668. [Google Scholar] [CrossRef]
- Dai, S.F.; Yan, X.Y.; Ward, C.R.; Hower, J.C.; Wang, X.B.; Zhao, L.; Ren, D.Y.; Finkelman, R.B. Valuable elements in Chinese coals: A review. Int. Geol. Rev. 2018, 60, 590–620. [Google Scholar] [CrossRef]
- Dai, S.F.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Qin, S.J.; Sun, Y.Z.; Li, Y.H.; Wang, J.X.; Zhao, C.; Gao, K. Coal deposits as promising alternative sources for gallium. Earth Sci. Rev. 2015, 150, 95–101. [Google Scholar] [CrossRef]
- Swain, D.J.; Goordarzi, F. Environmental Aspects of Trace Elements in Coal; Energy ampersand Environment volume 2; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Finkelman, R.B.; Tian, L.W. The Health Impacts of Coal Use in China. Int. Geol. Rev. 2018, 60, 579–589. [Google Scholar] [CrossRef]
- Tian, H.Z.; Lu, L.; Hao, J.M.; Gao, J.J.; Cheng, K.; Liu, K.Y.; Qin, P.P.; Zhu, C.Y. A review of key hazardous trace elements in Chinese coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts. Energy Fuels 2013, 27, 601–614. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Dai, S.F.; Wang, P.P.; Ward, C.R.; Tang, Y.G.; Song, X.L.; Jiang, J.H.; Hower, J.C.; Li, T.; Seredin, V.V.; Wagner, N.J.; et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2-CO2 mixed hydrothermal solutions. Int. J. Coal Geol. 2015, 152, 19–46. [Google Scholar] [CrossRef]
- Liu, J.J.; Yang, Z.; Yan, X.Y.; Ji, D.; Yang, Y.P.; Hu, L.C. Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel 2015, 156, 190–197. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T. Mineralogical composition of Late Permian coal seams in the Songzao Coalfield, southwestern China. Int. J. Coal Geol. 2013, 116, 208–226. [Google Scholar] [CrossRef]
- Dai, S.F.; Chekryzhov, I.Y.; Seredin, V.V.; Nechaev, V.P.; Graham, I.T.; Hower, J.C.; Ward, C.R.; Ren, D.Y.; Wang, X.B. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization (Review). Gondwana Res. 2016, 29, 60–82. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, W.F.; Song, D.Y. Migrating behavior and mechanism of deleterious elements in Taixi coals during cleaning process. J. Fuel Chem. Technol. 2002, 30, 147–150. [Google Scholar]
- Spears, D.A. The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks. Int. J. Coal Geol. 2012, 94, 22–31. [Google Scholar] [CrossRef]
- Dai, S.F.; Yang, J.Y.; Ward, C.R.; Hower, J.C.; Liu, H.D.; Garrison, T.M.; French, D.; O’Keefe, J.M.K. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol. Rev. 2015, 70, 1–30. [Google Scholar] [CrossRef]
- Dou, G.M. Datong Coalfield Carboniferous-Permian Coal Seam Occurrence Characteristics and Control Effects; Taiyuan University of Technology: Taiyuan, China, 2013; (In Chinese with English Abstract). [Google Scholar]
- Liu, D.N. The Coupling Relationship of Coal Metamorphism and Sedimentary Tectonic Magmatic Activities for Datong Double Period Coal-Bearing Basin; Taiyuan University of Technology: Taiyuan, China, 2015; (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.X.; Dai, D.L. Sedimentary facies of Jurassic in Datong Coalfield in Shanxi Province. Acta Geol. Sin. 1962, 42, 321–332, (In Chinese with English Abstract). [Google Scholar]
- Yuan, Y.; Tang, S.H.; Zhang, S.H.; Yang, N. Mineralogical and Geochemical Characteristics of Trace Elements in the Yongdingzhuang Mine, Datong Coalfield, Shanxi Province, China. Minerals 2018, 8, 297. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, W.F.; Li, J.; Qin, Y. Deposit Features of Ge, Ga and U Elements in Northern Part of Datong Coalfield. Coal Sci. Technol. 2010, 38, 117–121, (In Chinese with English Abstract). [Google Scholar]
- Liu, D.N. The Study of Coal Petrology and Coal Geochemistry in Permo-Carboniferous Coals from Datong Coalfield; Taiyuan University of Technology: Taiyuan, China, 2007; (In Chinese with English Abstract). [Google Scholar]
- Liu, D.N.; Zhou, A.C.; Chang, Z.G. Geochemistry characteristics of major and rare earth elements in No. 8 raw and weathered coal from Taiyuan Formation of Datong Coalfield. J. China Coal Soc. 2015, 40, 422–430, (In Chinese with English Abstract). [Google Scholar]
- Liu, D.N.; Zhou, A.C.; Ma, M.L. Coal facies characteristics of No. 5 coal seam in Baidong Mine Area, Datong Coalfield. Coal Geol. China 2011, 23, 1–4, (In Chinese with English Abstract). [Google Scholar]
- ASTM Standard D3177-11. Test Method for Total sulfur in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM Standard D2492-02. Test Methods for Forms Sulfur in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- ASTM Standard D3173-11. Test Method for Moisture in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM Standard D3174-11. Test Method for Ash in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM Standard D3175-11. Test Method for Volatile Matter in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Taylor, J.C. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffr. 1991, 6, 2–9. [Google Scholar] [CrossRef]
- Ward, C.R.; Spears, D.A.; Booth, C.A.; Staton, I.; Gurba, L.W. Mineral matter and trace elements in coals of the Gunnedah Basin, New South Wales, Australia. Int. J. Coal Geol. 1999, 40, 281–308. [Google Scholar] [CrossRef]
- Ward, C.R.; Matulis, C.E.; Taylor, J.C.; Dale, L.S. Quantification of mineral matter in the Argonne Premium coals using interactive Rietveld-based X-ray diffraction. Int. J. Coal Geol. 2001, 46, 67–82. [Google Scholar] [CrossRef]
- Ruan, C.D.; Ward, C.R. Quantitative X-ray powder diffraction analysis of clay minerals in Australian coals using Rietveld methods. Appl. Clay Sci. 2002, 21, 227–240. [Google Scholar] [CrossRef]
- Dai, S.F.; Wang, X.B.; Zhou, Y.P.; Hower, J.C.; Li, D.H.; Chen, W.M.; Zhu, X.W.; Zou, J.H. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the Late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chem. Geol. 2011, 282, 29–44. [Google Scholar] [CrossRef]
- Li, X.; Dai, S.F.; Zhang, W.G.; Li, T.; Zheng, X.; Chen, W.M. Determination of as and Se in coal and coal combustion products using closed vessel microwave digestion and collision/reaction cell technology (CCT) of inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2014, 124, 1–4. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Total Fluorine in Coal and Coke by Pyrohydrolytic Extraction and Ion SelectiveElectrode or Ion Chromatograph Methods; Standard D5987-96, Reapproved 2007; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Dai, S.F.; Xie, P.P.; Ward, C.R.; Yan, X.Y.; Guo, W.M.; French, D.; Graham, I.T. Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield, Guangxi, China. Ore Geol. Rev. 2017, 88, 235–250. [Google Scholar] [CrossRef]
- GB/T 15224.1-2010. Classification for Quality of Coal, Part 1; Chinese National Standard; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2011. (In Chinese)
- GB/T 15224.2-2010. Classification for Quality of Coal, Part 2; Chinese National Standard; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2011. (In Chinese)
- China Coal Research Institute. MT/T849-2000, Classification for Volatile Matter of Coal; Chinese National Standard; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2000. (In Chinese)
- China Coal Science Research Institute. MT/T850-2000, Classification for Total Moisture in Coal; Chinese National Standard; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2000. (In Chinese)
- ASTM. Standard Classification of Coals by Rank, D388-2015; Reapproved 2007; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Chou, C.-L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- Hayashi, K.I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.G.; Zhong, Y.T.; Guan, J.P. The Guadalupian–Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: Implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism. Lithos 2010, 119, 10–19. [Google Scholar] [CrossRef]
- Dai, S.F.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.W.; Zhang, W.G.; Song, W.J.; Wang, P.P. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of clarkes for carbonaceous biolithes: World average for trace element concentrations in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.F. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: London, UK, 1985; p. 312. [Google Scholar]
- Dai, S.F.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Yan, X.Y.; Dai, S.F.; Graham, I.T.; He, X.; Shan, K.H.; Liu, X. Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2018, 19, 152–156. [Google Scholar] [CrossRef]
- Sykes, R.; Lindqvist, J.K. Diagenetic quartz and amorphous silica in New Zealand coals. Org. Geochem. 1993, 20, 855–866. [Google Scholar] [CrossRef]
- Dai, S.F.; Tian, L.W.; Chou, C.-L.; Zhou, Y.P.; Zhang, M.Q.; Zhao, L.; Wang, J.M.; Yang, Z.; Cao, H.Z.; Ren, D.Y. Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuanwei, Yunnan, China: Occurrence and origin of quartz and chamosite. Int. J. Coal Geol. 2008, 76, 318–327. [Google Scholar] [CrossRef]
- Dai, S.F.; Li, T.J.; Jiang, Y.F.; Ward, C.R.; Hower, J.C.; Sun, J.H.; Liu, J.J.; Song, H.J.; Wei, J.; Li, Q.Q.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol. 2015, 137, 92–110. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Chou, C.-L.; Li, S.S.; Jiang, Y.F. Mineralogy and geochemistry of the No.6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, J.H.; Guo, W.M.; Wang, P.P.; Ji, D.P. Mineralogy of the Pennsylvanian coal seam in the Datanhao mine, Daqingshan Coalfield, Inner Mongolia, China: Genetic implications for mineral matter in coal deposited in an intermontane basin. Int. J. Coal Geol. 2016, 167, 201–214. [Google Scholar] [CrossRef]
- Dai, S.F.; Li, T.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhou, Y.P.; Zhang, M.Q.; Song, X.; Song, W.J.; Zhao, C.L. Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. Int. J. Coal Geol. 2014, 121, 53–78. [Google Scholar] [CrossRef]
- Querol, X.; Chinenon, S.; Lopez-Soler, A. Iron sulfide precipitation sequence in Albian coals from the Maestrazgo basin, southeastern Iberean range, northeastern Spain. Int. J. Coal Geol. 1989, 11, 171–189. [Google Scholar] [CrossRef]
- Dai, S.F.; Chou, C.-L.; Yue, M.; Luo, K.L.; Ren, D.Y. Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield, Guizhou, China: Influence from siliceous and iron-rich calcic hydrothermal fluids. Int. J. Coal Geol. 2005, 61, 241–258. [Google Scholar] [CrossRef]
- Dai, S.F.; Liu, J.J.; Ward, C.R.; Hower, J.C.; French, D.; Jia, S.H.; Hood, M.M.; Garrison, T.M. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. Int. J. Coal Geol. 2016, 166, 71–95. [Google Scholar] [CrossRef]
- Dai, S.F.; Hower, J.C.; Ward, C.R.; Guo, W.M.; Song, H.J.; O’Keefe, J.M.K.; Xie, P.P.; Hood, M.M.; Yan, X.Y. Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. Int. J. Coal Geol. 2015, 144, 23–47. [Google Scholar] [CrossRef]
- Dai, S.; Guo, W.; Nechaev, V.P.; French, D.; Ward, C.R.; Spiro, B.F.; Finkelman, R.B. Modes of occurrence and origin of mineral matter in the Palaeogene coal (No.19-2) from the Hunchun Coalfield, Jilin Province, China. Int. J. Coal Geol. 2018, 189, 94–110. [Google Scholar] [CrossRef]
- Hao, L.S. The origination and geological significance of siderite in Jurassic seams in Datong. Shanxi Ming Inst. Learn. J. 1988, 6, 413–422, (In Chinese with English Abstract). [Google Scholar]
- Gould, K.W.; Smith, J.W. The genesis and isotopic composition of carbonates associated with some Permian Australian coals. Chem. Geol. 1979, 24, 137–150. [Google Scholar] [CrossRef]
- Karayiğit, A.İ.; Littke, R.; Querol, X.; Jones, T.; Oskay, R.G.; Christanis, K. The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. Int. J. Coal Geol. 2017, 173, 110–128. [Google Scholar] [CrossRef]
- Wang, X.B.; Dai, S.F.; Chou, C.-L.; Zhang, M.Q.; Wang, J.; Song, X.L.; Wang, W.; Jiang, Y.F.; Zhou, Y.P.; Ren, D.Y. Mineralogy and geochemistry of Late Permian coals from the Taoshuping Mine, Yunnan Province, China: Evidences for the sources of minerals. Int. J. Coal Geol. 2012, 96–97, 49–59. [Google Scholar] [CrossRef]
- Dai, S.F.; Ji, D.P.; Ward, C.R.; French, D.; Hower, J.C.; Yan, X.Y.; Wei, Q. Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. Int. J. Coal Geol. 2018, 197, 84–114. [Google Scholar] [CrossRef]
- Johanneson, K.H.; Zhou, X. Geochemistry of the rare earth element in natural terrestrial waters: A review of what is currently known. Chin. J. Geochem. 1997, 16, 20–42. [Google Scholar] [CrossRef]
Sample | Thickness | Mad | Ad | Vdaf | St.d | Sp.d | Ss.d | So.d |
---|---|---|---|---|---|---|---|---|
TJL12-1 | 15 | 2.22 | 4.1 | 22.75 | 0.33 | 0.19 | 0.01 | 0.13 |
TJL12-2 | 15 | 2.23 | 14.38 | 23.09 | 0.33 | 0.28 | 0.01 | 0.04 |
TJL12-3 | 15 | 2.12 | 6.79 | 18.58 | 0.25 | 0.24 | 0.01 | 0.00 |
TJL12-4 | 15 | 2.58 | 4.78 | 19.78 | 0.25 | 0.22 | 0.01 | 0.02 |
TJL12-5 | 15 | 2.16 | 5.08 | 15.73 | 0.31 | 0.28 | 0.01 | 0.02 |
TJL12-6 | 15 | 2.51 | 3.63 | 20.97 | 0.29 | 0.25 | 0.01 | 0.03 |
TJL12-7 | 10 | 2.58 | 4.76 | 25.26 | 0.25 | 0.18 | 0.01 | 0.06 |
TJL12-8p | 10 | 0.77 | 85.36 | 73.09 | 0.08 | 0.08 | 0.00 | 0.00 |
TJL12-9 | 10 | 2.2 | 15.71 | 14.1 | 0.19 | 0.14 | 0.00 | 0.05 |
TJL12-10 | 15 | 2.34 | 7.15 | 16.29 | 0.21 | 0.16 | 0.01 | 0.04 |
TJL12-11 | 15 | 2.47 | 4.17 | 23.65 | 0.27 | 0.13 | 0.01 | 0.13 |
TJL12-12 | 20 | 2.17 | 11.81 | 16.35 | 0.29 | 0.14 | 0.01 | 0.14 |
TJL12-13 | 20 | 2.1 | 10.56 | 16.57 | 0.19 | 0.14 | 0.01 | 0.04 |
TJL12-14 | 20 | 1.3 | 34.29 | 39.67 | 0.13 | 0.12 | 0.01 | 0.00 |
TJL12-15f | 10 | 0.73 | 88.9 | 78.58 | 0.05 | 0.04 | 0.01 | 0.00 |
AVE | - | 2.23 | 9.79 | 20.98 | 0.25 | 0.19 | 0.01 | 0.05 |
Sample | LOI | SiO2 | TiO2 | Al2O3 | Fe2O3 | MgO | CaO | MnO | Na2O | K2O | P2O5 | SiO2/Al2O3 | Al2O3/TiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TJL12-1 | 95.9 | 3.20 | 0.02 | 0.48 | 0.11 | 0.03 | 0.08 | 0.001 | 0.02 | 0.02 | 0.05 | 6.63 | 20.36 |
TJL12-2 | 85.62 | 11.60 | 0.04 | 2.35 | 0.13 | 0.05 | 0.03 | 0.001 | 0.02 | 0.11 | 0.01 | 4.93 | 56.19 |
TJL12-3 | 93.21 | 5.36 | 0.03 | 1.13 | 0.08 | 0.05 | 0.07 | 0.001 | 0.02 | 0.05 | 0.04 | 4.74 | 44.49 |
TJL12-4 | 95.22 | 3.60 | 0.03 | 0.68 | 0.07 | 0.10 | 0.09 | bdl | 0.07 | 0.03 | 0.06 | 5.26 | 23.46 |
TJL12-5 | 94.92 | 4.29 | 0.03 | 0.66 | 0.02 | 0.01 | 0.01 | 0.000 | 0.01 | 0.02 | 0.03 | 6.54 | 24.09 |
TJL12-6 | 96.37 | 2.60 | 0.03 | 0.68 | 0.03 | 0.02 | 0.12 | 0.000 | 0.01 | 0.03 | 0.10 | 3.79 | 22.93 |
TJL12-7 | 95.24 | 1.35 | 0.01 | 0.83 | 0.48 | 0.48 | 0.99 | 0.004 | 0.01 | 0.04 | 0.08 | 1.62 | 70.93 |
TJL12-8p | 14.64 | 42.73 | 0.59 | 35.59 | 2.23 | 1.19 | 1.37 | 0.009 | 0.22 | 0.82 | 0.18 | 1.20 | 60.32 |
TJL12-9 | 84.29 | 11.55 | 0.04 | 3.58 | 0.09 | 0.11 | 0.13 | 0.001 | 0.05 | 0.12 | 0.08 | 3.23 | 86.62 |
TJL12-10 | 92.85 | 5.18 | 0.02 | 1.37 | 0.11 | 0.05 | 0.11 | 0.001 | 0.01 | 0.05 | 0.18 | 3.79 | 56.37 |
TJL12-11 | 95.83 | 2.65 | 0.03 | 0.85 | 0.15 | 0.03 | 0.20 | 0.001 | 0.01 | 0.03 | 0.20 | 3.12 | 25.17 |
TJL12-12 | 88.19 | 6.45 | 0.08 | 3.12 | 0.78 | 0.31 | 0.73 | 0.004 | 0.02 | 0.08 | 0.01 | 2.07 | 38.57 |
TJL12-13 | 89.44 | 5.14 | 0.04 | 1.10 | 3.14 | 0.22 | 0.46 | 0.031 | 0.02 | 0.01 | 0.28 | 4.66 | 27.16 |
TJL12-14 | 65.71 | 7.70 | 0.08 | 3.19 | 11.44 | 3.43 | 5.28 | 0.109 | 0.08 | 0.03 | 0.34 | 2.41 | 39.28 |
TJL12-15f | 11.1 | 53.27 | 0.88 | 28.95 | 0.92 | 0.63 | 0.15 | 0.004 | 0.10 | 3.61 | 0.16 | 1.84 | 33.06 |
AVE | 90.21 | 5.44 | 0.04 | 1.54 | 1.28 | 0.38 | 0.64 | 0.01 | 0.03 | 0.05 | 0.11 | 4.06 | 41.20 |
Chinese coal | - | 8.47 | 0.33 | 5.98 | 4.85 | 0.22 | 1.23 | 0.015 | 0.16 | 0.19 | 0.09 | 1.42 | 18.12 |
Sample | Li | Be | F | Sc | V | Cr | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Rb | Sr | Zr |
TJL12-1 | 84.18 | 235.02 | 521.11 | 76.17 | 2585.85 | 1065.64 | 502.39 | 1030.38 | 98.87 | 657.33 | 91.96 | 551.46 | 5.90 | 4.20 | 22.55 | 257.47 | 1219.75 |
TJL12-2 | 105.86 | 41.66 | 454.57 | 14.92 | 40.70 | 137.07 | 164.64 | 192.81 | 28.71 | bdl | 23.19 | 20.88 | 2.76 | 3.66 | 16.75 | 146.20 | 229.11 |
TJL12-3 | 95.05 | 27.43 | 293.47 | 7.10 | 25.67 | 92.41 | 147.33 | 181.86 | 34.71 | 96.23 | 13.11 | 12.50 | 2.04 | 0.25 | 9.92 | 204.48 | 182.04 |
TJL12-4 | 41.42 | 56.10 | 316.04 | 4.78 | 28.17 | 641.20 | 405.62 | 681.03 | 67.58 | bdl | 18.11 | 39.95 | bdl | bdl | bdl | 385.29 | 139.32 |
TJL12-5 | 128.60 | 45.05 | 784.97 | 45.48 | 14.04 | 193.26 | 138.47 | 282.18 | 40.36 | bdl | 17.75 | 15.98 | bdl | 3.93 | 76.69 | 1169.27 | 197.72 |
TJL12-6 | 48.83 | 86.82 | 1261.28 | 9.29 | 36.07 | 275.59 | 246.34 | 599.02 | 111.51 | bdl | 24.47 | 48.33 | 3.65 | 7.12 | bdl | 631.79 | 126.69 |
TJL12-7 | 25.83 | 66.41 | 888.53 | 14.54 | 21.47 | 51.87 | 107.92 | 457.11 | 32.89 | bdl | 25.49 | 15.28 | bdl | 5.72 | 1.94 | 984.48 | 2336.15 |
TJL12-8p | 39.00 | 1.53 | 1058.77 | 1.77 | 11.24 | 12.46 | 1.21 | 18.85 | 11.49 | 19.31 | 35.10 | 4.74 | 0.82 | 0.36 | 9.99 | 136.12 | 5.11 |
TJL12-9 | 235.94 | 9.90 | 620.90 | 8.45 | 17.16 | 58.49 | 6.19 | 51.74 | 17.88 | bdl | 12.92 | bdl | 0.64 | 3.35 | 13.07 | 96.05 | bdl |
TJL12-10 | 97.99 | 23.38 | 1417.30 | 13.99 | 27.83 | 132.04 | 24.64 | 196.42 | 49.69 | bdl | 21.25 | 12.16 | 3.36 | 12.41 | 3.87 | 1218.38 | 396.74 |
TJL12-11 | 59.78 | 24.99 | 2392.36 | 14.33 | 31.94 | 160.44 | 73.25 | 499.59 | 59.88 | bdl | 16.50 | 22.39 | 9.20 | 3.56 | bdl | 906.16 | 285.07 |
TJL12-12 | 236.77 | 6.67 | 493.66 | 12.48 | 34.53 | 61.25 | 18.34 | 121.37 | 24.03 | bdl | 17.46 | 2.18 | 10.65 | 1.15 | 9.35 | 193.50 | 147.76 |
TJL12-13 | 93.18 | 5.03 | 1411.02 | 6.65 | 11.68 | 119.53 | 21.26 | 107.38 | 22.11 | bdl | 4.50 | 1.85 | 3.67 | 3.80 | bdl | 229.84 | 79.54 |
TJL12-14 | 61.57 | 1.63 | 213.60 | 1.57 | 2.09 | 69.26 | 37.90 | 107.84 | 7.99 | 81.89 | 8.23 | 4.30 | 0.25 | 0.30 | 11.62 | 453.61 | 12.87 |
TJL12-15f | 80.78 | 1.83 | 1272.03 | 5.78 | 163.06 | 210.96 | 17.61 | 62.60 | 75.31 | 134.98 | 38.44 | 2.08 | 1.03 | 1.25 | 87.41 | 122.59 | 163.99 |
AVE | 101.15 | 48.47 | 851.45 | 17.67 | 221.32 | 235.23 | 145.71 | 346.83 | 45.86 | 278.48 | 22.69 | 62.27 | 3.83 | 4.12 | 18.42 | 528.96 | 446.06 |
World 1 | 82 | 12 | 630 | 24 | 170 | 82 | 26 | 52 | 74 | 110 | 36 | 18 | 48 | 7.60 | 110 | 730 | 230 |
CC 2 | 1.23 | 4.04 | 1.35 | 0.74 | 1.30 | 2.87 | 5.60 | 6.67 | 0.62 | 2.53 | 0.63 | 3.46 | 0.08 | 0.54 | 0.17 | 0.72 | 1.94 |
Sample | Nb | Mo | Cd | In | Sn | Sb | Cs | Ba | Hf | Ta | W | Hg | Tl | Pb | Bi | Th | U |
TJL12-1 | 79.84 | bdl | 2.08 | 0.05 | 1.16 | 2.46 | 0.72 | 548.18 | 23.86 | bdl | bdl | 0.37 | bdl | 170.83 | bdl | 4.30 | 8.55 |
TJL12-2 | 17.00 | 2.57 | 0.22 | 0.08 | 4.17 | 0.28 | 1.46 | 306.04 | 6.80 | 2.99 | bdl | 0.16 | 3.12 | 37.31 | bdl | 12.98 | 6.08 |
TJL12-3 | 10.56 | 1.79 | 0.59 | 0.03 | 1.17 | bdl | 0.47 | 354.99 | 4.81 | bdl | bdl | 0.10 | 1.64 | 36.88 | bdl | 4.72 | 5.08 |
TJL12-4 | 8.51 | 3.02 | bdl | 0.04 | 1.34 | bdl | bdl | 2088.53 | 2.89 | bdl | bdl | 0.08 | bdl | 17.82 | bdl | 0.84 | 4.36 |
TJL12-5 | 5.13 | bdl | 0.32 | 0.04 | 1.50 | bdl | 3.63 | 3587.73 | 4.46 | bdl | bdl | 0.07 | bdl | 20.59 | bdl | 67.06 | 6.59 |
TJL12-6 | 10.45 | 23.81 | bdl | 0.05 | 5.28 | bdl | bdl | 1977.09 | 3.02 | bdl | bdl | 0.11 | bdl | 25.13 | bdl | 9.46 | 19.80 |
TJL12-7 | 125.97 | 21.95 | bdl | 0.08 | 205.68 | 3.59 | 0.34 | 3469.39 | 80.99 | 58.22 | 44.72 | 0.07 | bdl | 53.81 | bdl | 3.34 | 13.86 |
TJL12-8p | 0.23 | bdl | 0.23 | 0.07 | bdl | bdl | 1.77 | 262.38 | 0.10 | bdl | 0.71 | 0.14 | 0.16 | 52.94 | 1.28 | 30.25 | 5.71 |
TJL12-9 | bdl | bdl | 0.19 | bdl | bdl | bdl | 0.40 | 232.01 | bdl | bdl | bdl | 0.05 | 0.28 | 27.68 | bdl | 13.58 | 8.45 |
TJL12-10 | 27.75 | 4.43 | 0.50 | 0.03 | 0.87 | 0.81 | bdl | 4367.22 | 9.87 | bdl | 0.22 | 0.07 | bdl | 61.75 | bdl | 6.28 | 17.83 |
TJL12-11 | 12.21 | 4.20 | 0.24 | 0.10 | 1.16 | bdl | bdl | 3052.17 | 7.04 | bdl | 33 | 0.19 | 1.16 | 69.96 | bdl | 5.45 | 3.96 |
TJL12-12 | 8.08 | 0.86 | 0.41 | 0.03 | 2.91 | bdl | 0.47 | 263.17 | 4.54 | 3.56 | bdl | 0.07 | 0.83 | 5.52 | bdl | 18.12 | 3.08 |
TJL12-13 | 5.94 | 0.04 | 0.13 | bdl | 0.79 | bdl | bdl | 1660.81 | 1.97 | 0.08 | bdl | 0.04 | 0.72 | 0.74 | bdl | 7.67 | 1.64 |
TJL12-14 | 0.60 | 2.43 | 0.13 | 0.01 | 0.27 | bdl | 0.69 | 1008.96 | 0.32 | 1.24 | 17.69 | 0.02 | 0.03 | 10.92 | bdl | 0.31 | 0.28 |
TJL12-15f | 15.88 | 2.50 | 0.46 | 0.11 | 1.95 | 0.11 | 7.84 | 486.70 | 4.48 | 1.24 | 1.51 | 0.03 | 0.79 | 50.20 | 0.19 | 6.16 | 3.00 |
AVE | 26.00 | 6.51 | 0.37 | 0.04 | 18.86 | 1.78 | 0.82 | 1762.79 | 12.55 | 13.22 | 23.91 | 0.11 | 1.11 | 41.46 | bdl | 11.86 | 7.66 |
World 1 | 22 | 14 | 1.10 | 0.11 | 8 | 5 | 8 | 980 | 9 | 2 | 7.80 | 0.62 | 4.60 | 38 | 4.30 | 23 | 1.90 |
CC2 | 1.18 | 0.46 | 0.34 | 0.38 | 2.36 | 0.36 | 0.10 | 1.80 | 1.39 | 6.61 | 3.07 | 0.17 | 0.24 | 1.09 | bdl | 0.52 | 0.51 |
Elements | TJL12-1 | TJL12-2 | TJL12-3 | TJL12-4 | TJL12-5 | TJL12-6 | TJL12-7 | TJL12-8p | TJL12-9 | TJL12-10 | TJL12-11 | TJL12-12 | TJL12-13 | TJL12-14 | TJL12-15f | AVE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | 17.53 | 22.08 | 13.08 | 189.71 | 194.96 | 76.10 | 72.24 | 43.71 | 5.32 | 308.95 | 59.30 | 5.50 | 26.10 | 2.49 | 48.10 | 76.41 |
Ce | 43.90 | 54.75 | 36.47 | 270.42 | 559.35 | 127.57 | 133.24 | 65.20 | 10.50 | 489.90 | 157.25 | 10.25 | 49.79 | 4.23 | 105.87 | 149.82 |
Pr | 6.23 | 6.87 | 4.84 | 26.54 | 37.83 | 13.47 | 14.92 | 10.67 | 1.19 | 48.91 | 21.66 | 1.03 | 5.58 | 0.44 | 10.93 | 14.58 |
Nd | 28.88 | 26.41 | 19.80 | 94.54 | 122.09 | 52.18 | 55.33 | 35.99 | 5.10 | 172.34 | 87.29 | 4.28 | 24.01 | 1.64 | 39.63 | 53.38 |
Sm | 8.02 | 5.92 | 4.05 | 16.73 | 18.03 | 11.55 | 11.37 | 5.63 | 1.48 | 29.12 | 11.34 | 1.32 | 5.10 | 0.29 | 6.49 | 9.56 |
Eu | 3.28 | 1.13 | 0.56 | 2.10 | 2.96 | 2.31 | 1.78 | 0.65 | 0.27 | 4.43 | 1.79 | 0.29 | 0.85 | 0.07 | 1.43 | 1.68 |
Gd | 12.94 | 6.94 | 4.20 | 14.25 | 21.93 | 17.32 | 14.79 | 4.64 | 2.54 | 30.41 | 12.64 | 1.80 | 4.67 | 0.39 | 6.23 | 11.14 |
Tb | 3.33 | 1.05 | 0.59 | 0.96 | 2.37 | 2.69 | 1.94 | 0.43 | 0.58 | 2.72 | 1.35 | 0.20 | 0.49 | 0.05 | 0.75 | 1.41 |
Dy | 27.00 | 6.98 | 5.05 | 5.28 | 14.79 | 19.36 | 12.22 | 1.61 | 4.75 | 11.58 | 9.36 | 2.51 | 3.35 | 0.41 | 3.65 | 9.43 |
Y | 152.48 | 44.95 | 32.18 | 31.49 | 94.84 | 126.74 | 61.33 | 6.69 | 28.35 | 57.37 | 72.47 | 15.09 | 20.11 | 4.02 | 17.30 | 57.03 |
Ho | 5.75 | 1.52 | 0.85 | 0.84 | 3.04 | 3.57 | 2.16 | 0.29 | 0.93 | 1.99 | 1.88 | 0.49 | 0.59 | 0.09 | 0.69 | 1.82 |
Er | 18.45 | 4.87 | 3.08 | 2.81 | 9.35 | 9.90 | 6.30 | 0.82 | 3.28 | 6.08 | 6.80 | 1.86 | 2.02 | 0.31 | 1.86 | 5.78 |
Tm | 2.56 | 0.73 | 0.35 | 0.29 | 1.46 | 1.10 | 0.76 | 0.12 | 0.45 | 0.87 | 0.92 | 0.25 | 0.25 | 0.05 | 0.27 | 0.77 |
Yb | 19.22 | 5.11 | 3.11 | 2.81 | 11.60 | 8.47 | 6.47 | 0.87 | 3.38 | 6.95 | 7.29 | 2.25 | 2.38 | 0.35 | 1.63 | 6.11 |
Lu | 2.85 | 0.72 | 0.32 | 0.21 | 1.54 | 0.93 | 0.63 | 0.13 | 0.48 | 0.84 | 0.97 | 0.30 | 0.28 | 0.05 | 0.22 | 0.78 |
∑REY | 352.43 | 190.02 | 128.53 | 658.97 | 1096.13 | 473.27 | 395.48 | 177.46 | 68.60 | 1172.47 | 452.31 | 47.43 | 145.56 | 14.87 | 245.06 | 399.70 |
∑LREY | 104.56 | 116.03 | 78.24 | 597.93 | 932.26 | 280.87 | 287.10 | 161.20 | 23.58 | 1049.23 | 336.84 | 22.39 | 110.57 | 9.09 | 211.02 | 303.75 |
∑MREY | 199.03 | 61.06 | 42.57 | 54.08 | 136.89 | 168.42 | 92.06 | 14.02 | 36.49 | 106.51 | 97.61 | 19.88 | 29.47 | 4.94 | 29.36 | 80.69 |
∑HREY | 48.83 | 12.94 | 7.72 | 6.96 | 26.98 | 23.97 | 16.32 | 2.24 | 8.54 | 16.73 | 17.85 | 5.17 | 5.52 | 0.85 | 4.67 | 15.26 |
LaN/LuN | 0.07 | 0.33 | 0.43 | 9.65 | 1.35 | 0.87 | 1.22 | 3.56 | 0.12 | 3.92 | 0.66 | 0.19 | 0.98 | 0.57 | 2.29 | 1.57 |
LaN/SmN | 0.33 | 0.56 | 0.48 | 1.70 | 1.62 | 0.99 | 0.95 | 1.17 | 0.54 | 1.59 | 0.78 | 0.63 | 0.77 | 1.28 | 1.11 | 0.94 |
GdN/LuN | 0.39 | 0.79 | 0.78 | 2.94 | 1.09 | 1.18 | 1.32 | 3.08 | 0.43 | 2.53 | 1.00 | 0.46 | 1.13 | 0.64 | 2.22 | 1.13 |
δEu | 1.28 | 0.90 | 0.70 | 0.80 | 0.86 | 0.84 | 0.75 | 0.69 | 0.58 | 0.88 | 0.85 | 1.09 | 0.95 | 1.18 | 1.20 | 0.90 |
Type | H | H | H | L | L | M-H | L-M | L | H | L | M-H | H | M-H | H | L | - |
Samples | LTA | Quartz | Kaolinite | Illite | I/S | Pyrite | Siderite | Ankerite | Calcite | Rutile | Anorthite | Goyazite | Bassanite |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TJL12-1 | 8.1 | 61.4 | 30.4 | - | - | 1.7 | 4.2 | 2.3 | - | - | - | - | - |
TJL12-2 | 14.63 | 66.4 | 32.3 | - | - | 0.4 | 0.4 | 0.5 | - | - | - | - | - |
TJL12-3 | 8.93 | 65.5 | 30.7 | - | - | 0.6 | 2.7 | 0.5 | - | - | - | - | - |
TJL12-4 | 1.96 | 56.4 | 22.6 | - | - | 0.6 | 3.8 | 7.3 | 0.7 | - | - | - | - |
TJL12-5 | 4.77 | 75.1 | 21.1 | - | - | 0.8 | 2 | 1 | - | - | - | - | - |
TJL12-6 | 4.55 | 28.5 | 20.3 | - | 7.6 | 2.9 | 3.6 | 35 | 2 | - | 8.7 | - | - |
TJL12-7 | 3.64 | 27.7 | 18.9 | - | 8.1 | 1.6 | 3.9 | 38.2 | 1.6 | - | - | - | - |
TJL12-8p | 94.29 | 2.6 | 85.2 | - | - | - | 9 | 3.2 | - | - | - | - | - |
TJL12-9 | 15.82 | 51 | 46.1 | - | - | - | - | 2.8 | - | - | - | - | - |
TJL12-10 | 9.26 | 57.8 | 30.5 | - | - | - | 3 | 5.2 | - | - | - | 3.5 | - |
TJL12-11 | 4.08 | 49.4 | 36.5 | - | - | 2.4 | 6 | 3.1 | - | - | - | - | 2.7 |
TJL12-12 | 12.8 | 26.1 | 41.4 | - | - | 0.6 | 5.2 | 26.6 | - | - | - | - | - |
TJL12-13 | 7.82 | 27.3 | 9.8 | - | - | 0.9 | 58 | 4.1 | - | - | - | - | - |
TJL12-14 | 19.3 | 0.5 | - | - | - | - | 79.4 | 6.3 | 13.8 | - | - | - | - |
TJL12-15f | 93.33 | 24.6 | 43.4 | 24.6 | - | - | 3.3 | 1.4 | - | 2.6 | - | - | - |
AVE | - | 45.62 | 28.38 | - | 7.85 | 1.25 | 14.35 | 10.22 | 4.53 | - | 8.70 | 3.50 | 2.70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Tang, S.; Zhang, S. Geochemical and Mineralogical Characteristics of the Middle Jurassic Coals from the Tongjialiang Mine in the Northern Datong Coalfield, Shanxi Province, China. Minerals 2019, 9, 184. https://doi.org/10.3390/min9030184
Yuan Y, Tang S, Zhang S. Geochemical and Mineralogical Characteristics of the Middle Jurassic Coals from the Tongjialiang Mine in the Northern Datong Coalfield, Shanxi Province, China. Minerals. 2019; 9(3):184. https://doi.org/10.3390/min9030184
Chicago/Turabian StyleYuan, Yue, Shuheng Tang, and Songhang Zhang. 2019. "Geochemical and Mineralogical Characteristics of the Middle Jurassic Coals from the Tongjialiang Mine in the Northern Datong Coalfield, Shanxi Province, China" Minerals 9, no. 3: 184. https://doi.org/10.3390/min9030184
APA StyleYuan, Y., Tang, S., & Zhang, S. (2019). Geochemical and Mineralogical Characteristics of the Middle Jurassic Coals from the Tongjialiang Mine in the Northern Datong Coalfield, Shanxi Province, China. Minerals, 9(3), 184. https://doi.org/10.3390/min9030184