Mathematical Modelling of Fault Reactivation Induced by Water Injection
Abstract
:1. Introduction
2. Geological and Experimental Setting
3. Mathematical Modelling of Injection Test in Secondary Fault
3.1. Governing Equations
3.2. Hydro-Mechanical Characteristics of Rock Mass and Fault
3.3. Base Case Results for Simulation of Secondary Fault Injection Test
4. Parametric Study
4.1. Effects of Fault Shear Strength Parameters
- (1)
- a damage enhancement factor of 20 instead of 28
- (2)
- a dilation angle of 10° as compared to 17°
- (3)
- a friction angle of 20° instead of 22°
4.2. Effects of Fault Heterogeneity
4.3. Effects of In-Situ Stress
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McGarr, A.; Bekins, B.; Burkhardt, N.; Dewey, J.; Earle, P.; Ellsworth, W.; Ge, S.; Hickman, S.; Holland, A.; Majer, E.; et al. Coping with earthquakes induced by fluid injection. Science 2015, 347, 830–831. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, F.; Liu, G.; Feng, X.; Guo, J. Analytical investigation of hydraulic fracture-induced seismicity and fault activation. Environ. Earth Sci. 2018, 77, 526. [Google Scholar] [CrossRef]
- Noronha, J. Deep Geological Repository Design Report—Crystalline/Sedimentary Rock environment; Report APM-REP-00440-0015 R001; Nuclear Waste Management Organization: Toronto, ON, Canada, 2016; Available online: https://www.nwmo.ca/en/Reports (accessed on 6 May 2019).
- Posiva, O. Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto—Synthesis 2012. Posiva Oy 2012. Report POSIVA 2012-12. Available online: http://www.posiva.fi/en/final_disposal/safety/the_safety_case#.W_cCPrCoszs (accessed on 6 May 2019).
- ANDRA. Dossier options de Surete−Partie apres Fermeture. ANDRA 2016. Identification CG-TE-D-NTE-AMOA-SR2-0000-15-0062/A. Available online: https://www.andra.fr/cigeo/les-documents-de-reference (accessed on 6 May 2019).
- Kanamori, H. Energy budget of earthquakes and seismic efficiency. Int. Geophys. 2001, 76, 293–305. [Google Scholar] [CrossRef]
- Behnsen, J.; Faulkner, D. The effect of mineralogy and effective normal stress on frictional strength of sheet silicates. J. Struct. Geol. 2012, 4, 49–61. [Google Scholar] [CrossRef]
- Orellana, L.F.; Scuderi, M.M.; Collettini, C.; Violay, M. Do scaly clays control seismicity on faulted shale rocks? Earth Planet. Sci. Lett. 2018, 488, 59–67. [Google Scholar] [CrossRef]
- Orellana, L.F.; Scuderi, M.M.; Collettini, C.; Violay, M. Frictional Properties of Opalinus Clay: Implications for Nuclear Waste Storage. J. Geophys. Res. Solid Earth 2018, 123, 157–175. [Google Scholar] [CrossRef]
- Rutter, E.H.; Mecklenburgh, J. Influence of Normal and Shear Stress on the Hydraulic Transmissivity of Thin Cracks in a Tight Quartz Sandstone, a Granite, and a Shale. J. Geophys. Res. Solid Earth 2018, 123, 1262–1285. [Google Scholar] [CrossRef] [Green Version]
- Scuderi, M.M.; Collettini, C. Fluid Injection and the Mechanics of Frictional Stability of Shale-Bearing Faults. J. Geophys. Res. Solid Earth 2018, 123, 8364–8384. [Google Scholar] [CrossRef]
- Orellana, L.F.; Giorgetti, C.; Violay, M. Contrasting mechanical and hydraulic properties of wet and dry fault zones in a proposed shale-hosted nuclear waste repository. Geophys. Res. Lett. 2019, 46, 1357–1366. [Google Scholar] [CrossRef]
- Rutqvist, J.; Rinaldi, A.P.; Cappa, F.; Jeanne, P.; Mazzoldi, A.; Urpi, L.; GuGlielmi, Y.; Villarrasa, V. Fault activation and induced seismicity in geological carbon storage—Lesson learned from recent modeling studies. J. Rock Mech. Geotech. Eng. 2016, 8, 789–804. [Google Scholar] [CrossRef]
- Eaton, D.W.; Schultz, R. Increased likelihood of induced seismicity in highly overpressured shale formations. Geophys. J. Int. 2018, 214, 751–757. [Google Scholar] [CrossRef]
- Ellsworth, W. Injection-induced earthquakes. Science 2013, 341, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, Y.; Cappa, F.; Avouac, J.P.; Henry, P.; Elsworth, D. Seismicity triggered by fluid injection-induced aseismic slip. Science 2015, 348, 1224–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guglielmi, Y.; Elsworth, D.; Cappa, F.; Henry, P.; Gout, C.; Dick, P.; Durand, J. In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales. J. Geophys. Res. 2015, 120, 7729–7748. [Google Scholar] [CrossRef]
- Guglielmi, Y.; Henry, P.; Nussbaum, C.; Dick, P.; Gout, C.; Amann, F. Underground Research Laboratories for Conducting Fault Activation Experiments in Shales. In Proceedings of the 49th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 28 June–1 July 2015. [Google Scholar]
- Guglielmi, Y.; Birkholtzer, J.; Rutqvist, J.; Jeanne, P.; Nussbaum, C. Can fault leakage occur before or without reactivation? Results from an in-situ reactivation at Mont Terri. Energy Procedia 2017, 114, 3167–3174. [Google Scholar] [CrossRef]
- Thury, M.; Bossart, P. The Mont Terri rock laboratory, a new international research project in a Mesozoic shale formation, in Switzerland. Eng. Geol. 1999, 52, 347–359. [Google Scholar] [CrossRef]
- Bossart, P.; Bernier, F.; Birkholzer, J.; Bruggeman, C.; Connolly, P.; Dewonck, S.; Fukaya, M.; Herfort, M.; Jensen, M.; Matray, J.-M.; et al. Mont Terri rock laboratory, 20 years of research: Introduction, site characteristics and overview of experiments. Swiss J. Geosci. 2017, 110, 3–22. [Google Scholar] [CrossRef]
- Jaegg, D.; Laurich, B.; Nussbaum, C.; Sschuster, K.; Connolly, P. Tectonic structure of the “Main Fault” in the Opalinus Clay, Mont Terri rock laboratory (Switzerland). Swiss J. Geosci. 2017. [Google Scholar] [CrossRef]
- Laurich, B.; Urai, J.L.; Desbois, G.; Vollmer, C.; Nussbaum, C. Microstructural evolution of an incipient fault zone in Opalinus Clay: Insights from an optical and electron microscopic study of ion-beam polished samples from the Main Fault in the Mt-Terri Underground Research Laboratory. J. Struct. Geol. 2014, 67, 107–128. [Google Scholar] [CrossRef]
- Laurich, B.; Urai, J.L.; Nussbaum, C. Microstructures and deformation mechanisms in Opalinus Clay: Insights from scaly clay from the Main Fault in the Mont Terri Rock Laboratory (CH). Solid Earth 2017, 8, 27–44. [Google Scholar] [CrossRef]
- Nussbaum, C.; Kloppenburg, A.; Caër, T.; Bossart, P. Tectonic evolution around the Mont Terri rock laboratory, northwestern Swiss Jura: Constraints from kinematic forward modelling. Swiss J. Geosci. 2017, 110, 39–66. [Google Scholar] [CrossRef]
- Nussbaum, C.; Bossart, P.; Amann, F.; Aubourg, C. Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland). Swiss J. Geosci. 2011, 104, 187–210. [Google Scholar] [CrossRef]
- Guglielmi, Y.; Cappa, F.; Lançon, H.; Janowczyk, J.B.; Rutqvist, J.; Tsang, C.F.; Wang, J.S.Y. ISRM Suggested Method for Step-Rate Injection Method for Fracture In-Situ Properties (SIMFIP): Using a 3-Components Borehole Deformation Sensor. Rock Mech. Rock Eng. 2013, 47, 303–311. [Google Scholar] [CrossRef]
- Zimmerman, R.W.; Bodvarsson, G.S. Hydraulic Conductivity of Rock Fractures; Report LBL-35976; Earth Sciences Division, Lawrence Berkeley Laboratory: Berkeley, CA, USA, 1994.
- Gens, A.; Vaunat, J.; Garitte, B.; Wileveau, Y. In-situ behaviour of a stiff layered clay subject to thermal loading: Observations and interpretation. Geotechnique 2007, 57, 207–228. [Google Scholar] [CrossRef]
- Corkum, A.; Martin, D. The mechanical behavior of weak mudstone (Opalinus Clay) at low stresses. Int. J. Rock Mech. Min. Sci. 2007, 44, 196–209. [Google Scholar] [CrossRef]
- Martin, C.D.; Lanyon, G.W. Measurement of in-situ stress in weak rocks at Mont Terri Rock Laboratory, Switzerland. Int. J. Rock Mech. Min. Sci. 2003, 40, 1077–1088. [Google Scholar] [CrossRef]
- Sjodin, B. How to Generate Random Surfaces in COMSOL Multiphysics®, COMSOL blog. Available online: https://www.comsol.com/blogs/how-to-generate-random-surfaces-in-comsol-multiphysics/ (accessed on 6 May 2019).
- Peitgen, H.O.; Saupe, D. The Science of Fractal Images; Springer-Verlag: New York, NY, USA, 1988. [Google Scholar]
Property | Rock Mass | Fault |
---|---|---|
Young’s modulus | 6.3 GPa | 12 GPa perpendicular to fault 60 GPa parallel to fault plane |
Poisson ratio | 0.32 | |
Shear modulus | 4 GPa (for shear movement between fault walls) 30 GPa (for shear in fault plane) | |
Permeability | 10−20 m2 | 10−20 m2 for flow perpendicular to fault Equations (3) and (4) for flow parallel to fault plane |
Friction angle | 22° | |
Cohesion | 0 | |
Dilation angle | 17° | |
Initial fracture hydraulic aperture | 5 mm | |
Fracture spacing | 1.66 cm | |
Fault thickness | 20 cm | |
Damage enhancement Factor A | 28 [-] |
Stress | Magnitude (MPa) | Strike⁄Dip Orientation (o) |
---|---|---|
Major | 6–7 | 210⁄70 |
Intermediate | 4–5 | 320⁄10 |
Minor | 2–3 | 50⁄20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.S.; Guglielmi, Y.; Graupner, B.; Rutqvist, J. Mathematical Modelling of Fault Reactivation Induced by Water Injection. Minerals 2019, 9, 282. https://doi.org/10.3390/min9050282
Nguyen TS, Guglielmi Y, Graupner B, Rutqvist J. Mathematical Modelling of Fault Reactivation Induced by Water Injection. Minerals. 2019; 9(5):282. https://doi.org/10.3390/min9050282
Chicago/Turabian StyleNguyen, Thanh Son, Yves Guglielmi, Bastian Graupner, and Jonny Rutqvist. 2019. "Mathematical Modelling of Fault Reactivation Induced by Water Injection" Minerals 9, no. 5: 282. https://doi.org/10.3390/min9050282
APA StyleNguyen, T. S., Guglielmi, Y., Graupner, B., & Rutqvist, J. (2019). Mathematical Modelling of Fault Reactivation Induced by Water Injection. Minerals, 9(5), 282. https://doi.org/10.3390/min9050282