Geology, Fluid Inclusions and Stable Isotopes of the Xialiugou Polymetallic Deposit in North Qilian, Northwest China: Constraints on its Metallogenesis
Abstract
:1. Introduction
2. Regional Geology
3. Ore Deposit Geology
4. Samples and Analytical Methods
4.1. Sampling
4.2. Microthermometry of Fluid Inclusions
4.3. H–O Isotope Analysis
4.4. S and Pb Isotope A nalytical Methods
5. Results
5.1. Fluid Inclusions
5.1.1. Fluid Inclusions Classifications and Characteristics
5.1.2. Microthermometric Data of Fluid Inclusions
5.2. Isotope Geochemistry
5.2.1. H–O Isotopes
5.2.2. S Isotope
5.2.3. Pb Isotope
6. Discussion
6.1. Characteristics and Source of Ore-Forming Fluids
6.2. Ore-Forming Material Source
6.3. Metallogenesis
7. Conclusions
- The Xialiugou mineralization was hosted in the volcanic rocks (the Middle Cambrian Heicigou Group), between the mafic and felsic volcanic rocks. The orebodies showed a dual-layered structure with “black” orebodies (galena–sphalerite) on the upper zone and “yellow” orebodies (pyrite–chalcopyrite–tennantite) in the lower zone, showing a typical feature of VMS type deposit of “upper layered and lower veins”.
- The mineralization at Xialiugou could be divided into three stages: Stage I (vein–veinlet and disseminated pyrite), Stage II (vein, disseminated, and layered chalcopyrite–tennantite–sphalerite), and Stage III (layered, and massive galena–sphalerite). The corresponding alteration assemblages were characterized by quartz–sericite in the ore-proximal zone and chlorite in the ore-distal zone.
- The microthermometry of the fluid inclusions and the H–O isotopic data indicate that the ore-forming fluids had the characteristics of medium–low temperature, and low salinity; the main components of the ore-forming fluids were probably from the evolved seawater and a small amount of magmatic and meteoric fluids may be involved the ore-forming processes. The S and Pb isotopic data revealed that the ore-bearing volcanic rocks may be an important source of ore-forming materials.
- The Xialiugou deposit can be interpreted as a “black ore” type VMS deposit.
Author Contributions
Funding
Conflicts of Interest
References
- Hannington, M.D.; de Ronde, C.E.J.; Petersen, S. Seafloor Tectonics and Submarine Hydrothermal Systems; Economic Geology 100th Ann; Society of Economic Geologists: Littelton, CO, USA, 2005; pp. 111–141. [Google Scholar]
- Piercey, S.J. The setting, style, and role of magmatism in the formation of volcanogenic massive sulfide deposits. Miner. Depos. 2011, 46, 449–471. [Google Scholar] [CrossRef]
- Cook, N.J.; Klemd, R.; Okrusch, M. Sulphide mineralogy, metamorphism and deformation in the Matchless massive sulphide deposit, Namibia. Miner. Depos. 1994, 29, 1–15. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.J.; Chen, H.Y.; Lin, Z.W.; Hou, W.S.; Li, D.F. Micro-textural and fluid inclusion data constraints on metallic remobilization of the Ashele VMS Cu-Zn deposit, Altay, NW China. J. Geochem. Explor. 2016, 171, 113–123. [Google Scholar] [CrossRef]
- Peng, L.G.; Ren, Y.X.; Li, Z.P. The Metallogenic Model of Copper Polymetallic Deposit in Baiyinchang, Gansu Province; Geological Publishing House: Beijing, China, 1995. (In Chinese) [Google Scholar]
- Feng, Y.M. Geotectonics and Orogeny of the Qinling Mountains, China; Geological Publication House: Beijing, Chine, 1996; pp. 1–135. (In Chinese) [Google Scholar]
- Li, W.Y. Metallogenesis and Prospecting of Metal Sulfide Deposits Related to Magmatic Action in Qilian Mountain; Geological Publishing House: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Jia, Z.Q. Metallogenic Regularity and Metallogenic Prediction of Copper-Gold-Tungsten-Lead-Zinc Deposits in Qilian Mountain; Geological Publishing House: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Qi, Z.L.; Li, Y.Y. Investigation on the forming reason of the copper multi-metal deposit in the Xialiugou-Gadaban area of Northen Qilian. J. Qinghai Univ. 2010, 28, 37–41. (In Chinese) [Google Scholar]
- Wu, J.R.; Yu, P.S.; Huang, Y.C. Analysis for metallogenic and geological condition of copper-multi-metal in Qingshuigou to Bailiugou region, North Qilian. Northwest Geosci. 1995, 16, 50–68. (In Chinese) [Google Scholar]
- Hou, Z.Q.; Khin, Z.; Peter, R.; Li, Y.Q.; Qu, X.M.; Song, S.H.; Peng, L.G.; Huang, J.J. Geology, Fluid Inclusions, and Oxygen Isotope Geochemistry of the Baiyinchang Pipe-Style Volcanic-Hosted Massive Sulfide Cu Depositin Gansu Province, Northwestern China. Econ. Geol. 2008, 103, 269–292. [Google Scholar]
- Yu, J.Y.; Li, X.M.; Ma, Z.P.; Sun, J.M. Chronological study of meta-acidic volcanics in Qingshuigou-Bailiugou orefield, Qilian county of Qinghai province. Adv. Earth Sci. 2010, 25, 55–60. (In Chinese) [Google Scholar]
- Xia, L.Q.; Xia, Z.C.; Ren, Y.X.; Zuo, G.C.; Qiu, J.X. Volcanism and Mineralization of Qilian Mountain and Adjacent Area; Geological Publishing House: Beijing, China, 1998. (In Chinese) [Google Scholar]
- Ren, Y.X.; Peng, L.G.; Li, Z.P.; Li, X.M.; Luo, Y.P.; Yang, J.G. Metallogenic Prediction and Optimizd Target Area of the Massive Sulfide Deposit of Qilian-Jinfosi, North Qilian Mountain; Xi’an Institute of Geology and Mineral Resources: Xi’an, China, 1997; pp. 1–114. (In Chinese) [Google Scholar]
- Xia, L.Q.; Xia, L.Q.; Ren, Y.X.; Xu, X.Y.; Yang, H.Q. Tectonic-Volcanic Magmatism-Metallogenic Dynamics of North Qilian Mountain; Geological Publishing House: Beijing, China, 2001; pp. 1–288. (In Chinese) [Google Scholar]
- Peng, S.X.; Yin, C.M.; Liu, J.C.; Zhang, H.D. An Analytical Overview of the Precambrian Basement Properties, Source Area Characteristics of Volcanic Rocks and Some Prospecting Problems in the North Qilian Orogenic Belt. Geol. Prospect 2012, 48, 250–258. (In Chinese) [Google Scholar]
- Xia, L.Q.; Xia, Z.C.; Ren, Y.X.; Xu, X.Y.; Peng, L.G.; Li, W.Y.; Yang, Z.P.; Zhao, D.H.; Song, Z.B.; Li, X.M. The paleosubmarine volcanism and mineralization in North Qilian mountains. Acta Geosci. Sin. 1999, 20, 259–264. (In Chinese) [Google Scholar]
- Xu, X.Y.; He, S.P.; Wang, H.L.; Zhang, E.P.; Chen, X.L.; Sun, J.M. Tectonic framework of North Qinling mountain and North Qilian mountain conjunction area in early Paleozoic, A study of the evidences from strata and tectonic-magmatic events. Northwestern Geol. 2008, 41, 1–21. (In Chinese) [Google Scholar]
- Mao, J.W. Metallogenic Series and Metallogenic Evaluation of Cu-Fe-W Polymetallic Deposit in the West Section of North Qilian Mountain; Geological Publishing House: Beijing, China, 2003. (In Chinese) [Google Scholar]
- Zhang, R.L. Early Paleozoic Marine Volcanic Sedimentary Facies and Geological Prospecting in North Qilian Mountains; Geological Publishing House: Beijing, China, 1997. (In Chinese) [Google Scholar]
- Peng, S.X.; Chen, J.L.; Cheng, J.X.; Yu, J.Y.; Zhang, S.N.; Zhang, H.D. Mineralization environment of the massive Fe-S type and Pb-Zn-Cu type sulfide deposits in Qingshuigou-Bailiugou, North Qilian, NW China. Acta Geol. Sin. 2013, 87, 1003–1012. (In Chinese) [Google Scholar]
- Yan, Z.; Xiao, W.J.; Windley, B.F.; Wang, Z.Q.; Li, J.L. Silurian clastic sediments in the North Qilian Shan, NW China: Chemical and isotopic constraints on their forearc provenance with implications for the Paleozoic evolution of the Tibetan Plateau. Sediment. Geol. 2010, 231, 98–114. [Google Scholar] [CrossRef]
- Yan, Z.; Xiao, W.; Wang, Z.; Li, J. Integrated analyses constraining the provenance of sandstones, mudston. Can. J. Earth Sci. 2007, 44, 961–986. [Google Scholar] [CrossRef]
- Zhang, X.J.; Tao, M.X.; Dong, X.; Wei, X.H. Neotectonic movement and mineralization of the North Qilian area. Northwestern Geol. 2003, 36, 8–15. (In Chinese) [Google Scholar]
- Peng, S.X.; Cheng, J.X.; Yu, J.Y.; Zhang, H.D.; Xiao, C.Y.; Hei, H. The Metallogenic Characteristic and Prospecting of the Massive Sulfide Deposit in Qingshuigou-Bailiugou Ore Field, North Qilian Mountain. Northwestern Geol. 2013, 46, 142–150. (In Chinese) [Google Scholar]
- Li, W.Z.; Yuan, G.L.; Gong, Z.Y.; Gong, Z.Y.; Dong, L.; Li, Q. Tectonic Sense and Geochemical Behavior of Volcanic Rock in Xialiugou-xiagou Area of North Qilian Area. Gansu Metall. 2017, 39, 27–31. (In Chinese) [Google Scholar]
- Guo, Y.R.; Jin, W. Characteristics and Forming Setting Analysis of Gadaban Kuroko-type Deposit in Northern Qilian. Northwestern Geol. 2014, 47, 191–197. (In Chinese) [Google Scholar]
- Ren, Y.X. Metallogenic Conditions and Predictions of Massive Sulfide Deposits in Qingguigou-Bailiugou ore Field in North Qilian Mountains; Geological Publishing House: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Cao, D.Z.; Wang, Y.D.; Ma, Z.L.; Zhao, R.F. Geological characteristics and prospecting model of the Guomis-Gadaban metallogenic zone. Northwestern Geol. 2006, 39, 12–19. (In Chinese) [Google Scholar]
- Brown, P.E. FLINCOR: A microcomputer program for the reduction and investigation of fluid-inclusion data. Am. Mineral. 1989, 74, 1390–1393. [Google Scholar]
- Wang, S.; Li, B.; Zhang, X.K.; Wang, P.; Chao, W.W.; Ye, H.S.; Yang, Y.Q. Genesis of the Huoshenmiao Mo deposit in the Luanchuan ore district, China: Constraints from geochronology, fluid inclusion, and H–O–S isotopes. Geosci. Front. 2019, 10, 331–349. [Google Scholar] [CrossRef]
- Yu, J.; Li, N.; Shu, S.P.; Zhang, B.; Guo, J.P.; Chen, Y.J. Geology, fluid inclusion and H-O-S isotopes of the Kuruer Cu-Au deposit in Western Tianshan, Xinjiang, China. Ore Geol. Rev. 2018, 237–249. [Google Scholar] [CrossRef]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Friedman, I. Deuterium content of natural water and other substances. Geochim. Cosmochim. Acta 1953, 4, 89–103. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Shao, Y.J.; Li, D.F.; Luo, Z.Z. Processes and ore genesis at the Yaochong Mo deposit, Henan Province, China. Ore Geol. Rev. 2017, 86, 692–706. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.J.; Li, H.B.; Liu, Z.F. Genesis of the Xinqiao Cu-S-Fe-Au deposit in the Middle-Lower Yangtze River Valley metallogenic belt, Eastern China: Constraints from U-Pb-Hf, Rb-Sr, S, and Pb isotopes. Ore Geol. Rev. 2017, 86, 100–116. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusions. Rev. Mineral. 1984, 12, 644. [Google Scholar]
- Lu, H.Z.; Fan, H.R.; Ni, P.; Ou, G.X.; Shen, K.; Zhang, W.H. Fluid Inclusions; Science Press: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Clayton, R.N.; O’ Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Sheppard, S.M.F. Characterization and isotopic variations in natural waters. Rev. Mineral. 1986, 16, 165–183. [Google Scholar]
- Taylor, H.P. The application of oxyen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Zartman, R.E.; Doe, B.R. Plumbotectonics-the model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Huston, D.L. Stable isotopes and their significance for understanding the genesis of volcanic-hosted massive sulfide deposits: A review. Rev. Econ. Geol. 1999, 10, 151–180. [Google Scholar]
- Xia, L.Q.; Li, X.M.; Yu, J.Y.; Wang, G.Q. Mid-Late Neoproterozoic to early Paleozoic vclcanism and tectonic evolution of the Qilian mountain. Geol. China 2016, 43, 1087–1138. (In Chinese) [Google Scholar]
- Cong, Z.C. Study on Metallogenic Regularity of Copper Polymetallic Deposit in the North Qilian, Qinghai. Ph.D. Thesis, Jilin University, Jilin, China, 2017. (In Chinese). [Google Scholar]
- Kamprad, J. Zonation of alteration facies at Western Taarsis: Implications for the genesis of Cu-Au deposits, Mount Lyell field, western Tasmania. Econ. Geol. 2001, 96, 1123–1132. [Google Scholar]
- Huston, D.L.; Relvas, J.M.R.S.; Gemmell, J.B.; Drieberg, S. The role of granites in volcanic-hosted massive sulphide ore-forming systems: An assessment of magmatic-hydrothermal contributions. Miner. Depos. 2011, 46, 473–507. [Google Scholar] [CrossRef]
- De Ronde, C.E.J. Fluid chemistry and isotope characteristics of seafloor hydrothermal systems and associated VMS deposits: Potential for magmatic contributions. Magmas Fluids Ore Depos. 1995, 23, 479–509. [Google Scholar]
- Bodnar, R.J.; Lecumberri-Sanchez, P.; Moncada, D.; Steele-MacInnis, M. Fluid inclusions in hydrothermal ore deposits. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 119–143. [Google Scholar]
- Zhou, T.F.; Qiu, S.C.; Liu, Y.; Xu, X.C.; Xiong, C.L. Preliminary studies on ore-forming process of the palaeozoic copper deposits in southern zoulang mountains, Gansu. Geol. Anhui 1998, 2, 21–24. (In Chinese) [Google Scholar]
- Du, Z.Z. Research on Mineralization of the BaiYinchang Copper Multimetal Field, GanSu Province, China. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2014. (In Chinese). [Google Scholar]
- Liang, W.J.; Yan, G.S.; Li, J.C.; Zuo, C.Q.; Du, Z.Z.; Zhen, S.J.; Zhang, Z.H.; Li, Y.S. Characteristics of fluid inclusions of the Xiaotieshan lead Zinc polymetallic deposit in Gansu province. Bull. Mineral. Petrol. Geochem. 2016, 35, 317–327. (In Chinese) [Google Scholar]
- Ohmoto, H. Formation of volcanogenic massive sulfide deposits: The Kuroko perspective. Ore Geol. Rev. 1996, 10, 135–177. [Google Scholar] [CrossRef]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Wu, J.R. Analysis of Geologic Characteristics and Ore-Forming Conditions of Pyritic-Copper-Polymetallic Deposits in Baiyinchang Orefield, Gansu. Northwest Geosci. 1992, 2, 83–96. (In Chinese) [Google Scholar]
- Cheng, X.H.; Xu, J.H.; Wang, J.X.; Chu, H.X.; Xiao, X.; Zhang, H. Sulfur and lead isotope constrains on source of ore-forming materials in Asmara VMS-type deposits, Eritrea. Chin. J. Nonferrous Met. 2017, 27, 795–810. (In Chinese) [Google Scholar]
- Zeng, Z.G.; Jiang, Q.F.; Zhai, S.K.; Qin, Y.S. Lead isotopic compositions of massive sulfides from the Jade hydrothermal field in the Okinawa Trough and its geological implications. Geochimica 2000, 29, 239–245. (In Chinese) [Google Scholar]
- Dai, B.Z.; Zhao, K.D.; Jiang, S.Y. Modern Sea-floor Hydrothermal Activity and Genesis of Massive Sulfide Deposits: An Overview. Bull. Mineral. Petrol. Geochem. 2004, 23, 246–253. (In Chinese) [Google Scholar]
- Jiang, S.Y.; Yang, T.; Li, L.; Zhao, K.D.; Ling, H.F. Lead and sulfur isotopic compositions of sulfides from the TAG hydrothermal field, Mid-Atlantic Ridge. Acta Petrol. Sin. 2006, 22, 2597–2602. (In Chinese) [Google Scholar]
- Petersen, S.; Herzig, P.M.; Hannington, M.D. Third dimension of a presently forming VMS deposit: TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. Miner. Deposita 2000, 35, 233–259. [Google Scholar] [CrossRef]
- Lode, S.; Piercey, S.J.; Layne, G.D.; Piercey, G.; Cloutier, J. Multiple sulphur and lead sources recorded in hydrothermal exhalites associated with the Lemarchant volcanogenic massive sulphide deposit, central Newfoundland, Canada. Miner. Deposita 2016, 52, 1–24. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, Q.; Liu, L.; Zhang, Q. Major geochemical characteristics of bimodel volcanic rocks in different geochemical environments. Acta Petrol. Sin. 2000, 16, 169–173. (In Chinese) [Google Scholar]
Sample | Stage | Nub | Size (μm) | Vapor–Liquid Ratio (%) | Tmice (°C) | Thtotal (°C) | Salinity (wt % NaCleqv) | Density (g/cm3) |
---|---|---|---|---|---|---|---|---|
XLG5-5 | I | 15 | 5.0–13.0 | 18–50 | −2.1 to −0.1 | 262–350 | 0.17–3.44 | 0.569–0.793 |
XLG11-2 | 15 | 4.3–12.0 | 17–35 | −1.8 to −0.1 | 223–311 | 0.17–3.05 | 0.670–0.848 | |
XLG3-5 | II | 20 | 4.7–14.5 | 5–30 | −3.3 to −0.6 | 191–334 | 0.18–5.40 | 0.689–0.892 |
XLG8-10 | 15 | 5.7–12.1 | 8–50 | −4.3 to −1.9 | 210–294 | 3.21–6.87 | 0.780–0.893 | |
XLG4-1 | III | 15 | 4.1–9.4 | 13–45 | −1.6 to −0.1 | 169–241 | 0.18–2.72 | 0.832–0.921 |
XLG8-7 | 14 | 4.5–9.7 | 16–38 | −6.0 to −0.2 | 157–182 | 0.33–5.47 | 0.900–0.973 |
Sample No. | Mineral | δDV-SMOW(‰) | δ18OV-SMOW(‰) | δ18OH2O(‰) | T (°C) | Stage |
---|---|---|---|---|---|---|
XLG5-3 | Quartz | −51.6 | 15.0 | 8.64 | 315 | I |
XLG3-5 | Quartz | −40.5 | 14.1 | 4.78 | 242 | II |
XLG8-11 | Quartz | −45.0 | 13.5 | 0.68 | 183 | III |
XLG8-2 | Quartz | −51.9 | 13.7 | −0.40 | 166 | III |
Sample No. | Mineral | δ34SV-CDT(‰) | Stage |
---|---|---|---|
XLG4-3 | Pyrite | −1.60 | I |
XLG6-1 | Pyrite | −1.20 | II |
XLG7-1 | Pyrite | 0.10 | II |
XLG8-7 | Pyrite | −0.20 | III |
XLG9-3 | Pyrite | −3.70 | III |
Sample No. | Mineral | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | μ | ω | k | Stage |
---|---|---|---|---|---|---|---|---|
XLG4-3 | Pyrite | 18.345 | 15.653 | 38.168 | 9.58 | 36.25 | 3.66 | I |
XLG6-1 | Pyrite | 18.381 | 15.642 | 38.143 | 9.55 | 35.85 | 3.63 | II |
XLG7-1 | Pyrite | 18.357 | 15.615 | 38.056 | 9.50 | 35.38 | 3.60 | II |
XLG8-7 | Pyrite | 18.422 | 15.687 | 38.248 | 9.63 | 36.48 | 3.67 | III |
XLG9-3 | Pyrite | 18.398 | 15.661 | 38.163 | 9.59 | 36.01 | 3.63 | III |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Tan, H.; Peng, G.; Zhang, J.; Chen, J.; Chen, Q.; Zhang, Y. Geology, Fluid Inclusions and Stable Isotopes of the Xialiugou Polymetallic Deposit in North Qilian, Northwest China: Constraints on its Metallogenesis. Minerals 2019, 9, 478. https://doi.org/10.3390/min9080478
Shao Y, Tan H, Peng G, Zhang J, Chen J, Chen Q, Zhang Y. Geology, Fluid Inclusions and Stable Isotopes of the Xialiugou Polymetallic Deposit in North Qilian, Northwest China: Constraints on its Metallogenesis. Minerals. 2019; 9(8):478. https://doi.org/10.3390/min9080478
Chicago/Turabian StyleShao, Yongjun, Huajie Tan, Guangxiong Peng, Jiandong Zhang, Jianzhou Chen, Qiaomei Chen, and Yu Zhang. 2019. "Geology, Fluid Inclusions and Stable Isotopes of the Xialiugou Polymetallic Deposit in North Qilian, Northwest China: Constraints on its Metallogenesis" Minerals 9, no. 8: 478. https://doi.org/10.3390/min9080478
APA StyleShao, Y., Tan, H., Peng, G., Zhang, J., Chen, J., Chen, Q., & Zhang, Y. (2019). Geology, Fluid Inclusions and Stable Isotopes of the Xialiugou Polymetallic Deposit in North Qilian, Northwest China: Constraints on its Metallogenesis. Minerals, 9(8), 478. https://doi.org/10.3390/min9080478