Emeralds from the Most Important Occurrences: Chemical and Spectroscopic Data
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. LA–ICP-MS
3.2. UV-Vis-NIR Spectroscopy
3.3. FTIR Spectroscopy
3.4. Raman Spectroscopy
3.5. PL Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fritsch, E.; Rossman, G. An update on color in gems Part 3: Colors caused by band gaps and physical phenomena. Gems Gemol. 1988, 24, 81–103. [Google Scholar] [CrossRef]
- Johnson, M.L.; Elen, S.; Muhlmeister, S. On the identification of various emerald filling substances. Gems Gemol. 1999, 35, 82–107. [Google Scholar] [CrossRef]
- Kiefert, L.; Hänni, H.A.; Chalain, J.-P.; Weber, W. Identification of filler substances in emeralds by infrared and Raman spectroscopy. J. Gemmol. 1999, 26, 501–520. [Google Scholar] [CrossRef]
- McClure, S.F.; Moses, T.M.; Tannous, M.; Koivula, J. Classifying emerald clarity at the GIA gem trade laboratory. Gems Gemol. 1999, 35, 176–185. [Google Scholar] [CrossRef]
- Information Sheet #5 Standardised Gemmological Report Wording. Available online: http://www.lmhc-gemology.org/pdfs/IS5_20121209.pdf (accessed on 30 July 2019).
- Hänni, H.A. Origin determination for gemstones: Possibilities, restrictions and reliability. J. Gemmol. 1994, 24, 139–148. [Google Scholar] [CrossRef]
- Dereppe, J.M.; Moreaux, C.; Chauvaux, B.; Schwarz, D. Classification of emeralds by artificial neural networks. J. Gemmol. 2000, 27, 93–105. [Google Scholar] [CrossRef]
- Schwarz, D.; Giuliani, G.; Grundmann, G.; Glas, M. The origin of emerald—A controversial topic. Extralapis Engl. 2002, 2, 18–21. [Google Scholar]
- Gübelin Gem Lab. The roots of origin determination. Jewel. News Asia 2006, 263, 66–71. [Google Scholar]
- Gübelin Gem Lab. The limitation of origin determination. Jewel. News Asia 2006, 264, 56–62. [Google Scholar]
- Gübelin Gem Lab. A holistic method to determining gem origin. Jewel. News Asia 2006, 264, 118–126. [Google Scholar]
- Krzemnicki, M.S. Determining the origin of gemstones: Challenges and perspectives. InColor 2007, 4, 6–11. [Google Scholar]
- Groat, L.A.; Giuliani, G.; Marshall, D.D.; Turner, D. Emerald deposits and occurrences: A review. Ore Geol. Rev. 2008, 34, 87–112. [Google Scholar] [CrossRef]
- Rossman, G.R. The geochemistry of gems and its relevance to gemology: Different traces, different prices. Elements 2009, 5, 159–162. [Google Scholar] [CrossRef]
- Nguyen Bui, H.A.; Fritsch, E.; Rondeau, B. Geographical origin: Branding or Science? InColor 2012, 19, 30–39. [Google Scholar]
- Giuliani, G.; Groat, L.; Ohnenstetter, D.; Fallick, A.E.; Feneyrol, J. The geology of gems and their geographic origin. In Geology of Gem Deposits; Raeside, E.R., Ed.; Mineralogical Association of Canada: Tucson, AZ, USA, 2014; Volume 44, pp. 113–134. [Google Scholar]
- Groat, L.; Giuliani, G.; Marshall, D.; Turner, D. Emerald. In Geology of Gem Deposits; Raeside, E.R., Ed.; Mineralogical Association of Canada: Tucson, AZ, USA, 2014; Volume 44, pp. 135–174. [Google Scholar]
- Giuliani, G.; Branquet, Y.; Fallick, A.E.; Groat, L.; Marshall, D. Emerald deposits around the world, their similarities and differences. InColor 2015, 56–69. [Google Scholar]
- Schwarz, D. The geographic origin determination of emeralds. InColor 2015, 98–105. [Google Scholar]
- Hainschwang, T.; Notari, F. Standards and protocols for emerald analysis in gem testing laboratories. InColor 2015, 106–114. [Google Scholar]
- Giuliani, G.; Groat, L.A.; Marshall, D.; Fallick, A.E.; Branquet, Y. Emerald Deposits: A Review and Enhanced Classification. Minerals 2019, 9, 105. [Google Scholar] [CrossRef]
- Ogden, J.M. Rethinking laboratory reports for the geographical origin of gems. J. Gemmol. 2017, 35, 416–423. [Google Scholar] [CrossRef]
- Cartier, L.E.; Ali, S.H.; Krzemnicki, M.S. Blockchain, chain of custody and trace elements: An overview of tracking and traceability opportunities in the gem. J. Gemmol. 2018, 36, 212–227. [Google Scholar] [CrossRef]
- Archuleta, J.-L. The color of responsibility: Ethical issues and solutions in colored gemstones. Gems Gemol. 2016, 52, 144–160. [Google Scholar] [CrossRef]
- Ali, S.H.; Giurco, D.; Arndt, N.; Nickless, E.; Brown, G.; Demetriades, A.; Durrheim, R.; Enriquez, M.A.; Kinnaird, J.; Littleboy, A.; et al. Mineral supply for sustainable development requires resource governance. Nature 2017, 543, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Makki, M.; Ali, S.H. Gemstone supply chains and development in Pakistan: Analyzing the post-Taliban emerald economy in the Swat Valley. Geoforum 2019, 100, 166–175. [Google Scholar] [CrossRef]
- Gonthier, E. The symbolic representation of famous emeralds. In L’Émeraude; Giard, D., Giuliani, G., Cheilletz, A., Fritch, E., Gonthier, E., Eds.; AFG-CNRS-ORSTOM Edition: Paris, France, 1998; pp. 27–32. [Google Scholar]
- Giuliani, G.; Chaussidon, M.; Schubnel, H.J.; Piat, D.; Rollion-Bard, C.; France-Lanord, C.; Giard, D.; de Narvaez, D.; Rondeau, B. Oxygen isotopes and emerald trade routes since antiquity. Science 2000, 287, 631–633. [Google Scholar] [CrossRef]
- Calligaro, T.; Dran, J.-C.; Poirot, J.-P.; Querré, G.; Salomon, J.; Zwaan, J.C. PIXE/PIGE characterization of emeralds using an external micro-beam. Nucl. Instrum. Meth. 2000, 161–163, 769–774. [Google Scholar] [CrossRef]
- Giuliani, G.; Chaussidon, M.; France-Lanord, C.; Guerra, H.S.; Chiappero, P.J.; Schubnel, H.J.; Gavrilenko, E.; Schwarz, D. L’exploitation des mines d’émeraude d’Autriche et de la Haute Egypte à l’époque Gallo-Romaine: Mythe ou réalité? Rev. Gemmol 2001, 143, 20–24. (In French) [Google Scholar]
- Rondeau, B. Matériaux gemmes de référence du Museum National D’Histoire Naturelle: Exemples de valorisation scientifique d’une collection de minéralogie et gemmologie. Ph.D. Thesis, University of Nantes, Nantes, France, 2003. [Google Scholar]
- Harrell, J.A. Archaeological geology of the world’s first emerald mine. Geosci. Can. 2004, 31, 69–76. [Google Scholar]
- Aurisicchio, C.; Corami, A.; Ehrman, S.; Graziani, G.; Cezaro, S.N. The emerald and gold necklace from Oplontis, Vesuvian Area, Naples, Italy. J. Archaeol. Sci. 2006, 33, 725–734. [Google Scholar] [CrossRef]
- Schwarz, D.; Pardieu, V. Emeralds from the Silk Road countries. A comparison with emeralds from Colombia. InColor 2009, 12, 38–43. [Google Scholar]
- Strack, E.; Kostov, R.I. Emeralds, sapphires, pearls and other gemmological materials from the Preslav gold treasure (X century) in Bulgaria. Geochem. Mineral. Petrol. 2010, 48, 103–123. [Google Scholar]
- Karampelas, S.; Wörle, W.; Hunger, K.; Hanspeter, L.; Bersani, D.; Gübelin, S. Study of gems of a ciborium from Einsiedeln Abbey. Gems Gemol. 2010, 46, 291–295. [Google Scholar] [CrossRef]
- Karampelas, S.; Wörle, W.; Hunger, K.; Hanspeter, L. Micro-Raman spectroscopy on two chalices from the Benedictine Abbey of Einsiedeln: Identification of gemstones. J. Raman Spectrosc. 2012, 43, 1833–1838. [Google Scholar] [CrossRef]
- Farges, F.; Panczer, G.; Benbalagh, N.; Riondet, G. The Grand Sapphire of Louis XIV and The Ruspoli Sapphire. Gems Gemol. 2015, 51, 392–409. [Google Scholar]
- Panczer, G.; Riondet, G.; Forest, L.; Krzemnicki, M.S.; Carole, D.; Faure, F. The Talisman of Charlemagne: New Historical and Gemological Discoveries. Gems Gemol. 2019, 55, 40–46. [Google Scholar] [CrossRef]
- Aurisicchio, C.; Conte, A.M.; Medeghini, L.; Ottolini, L.; De Vito, C. Major and trace element geochemistry of emerald from several deposits: Implications for genetic models and classification schemes. Ore Geol. Rev. 2018, 94, 351–366. [Google Scholar] [CrossRef]
- Zwaan, J.C.; Seifert, A.V.; Vrána, S.; Laurs, B.M.; Anckar, B.; Simons, W.B.S.; Falster, A.U.; Lustenhouwer, W.J.; Muhlmeister, S.; Koivula, J.K.; et al. Emeralds from the Kafubu area, Zambia. Gems Gemol. 2005, 41, 116–148. [Google Scholar] [CrossRef]
- Saeseasaw, S.; Pardieu, V.; Sangsawong, S. Three-phase inclusions in emerald and their impact on origin determination. Gems Gemol. 2014, 50, 114–132. [Google Scholar]
- Groat, L.A.; Laurs, B.M. Gem formation, production, and exploration: Why gem deposits are rare and what is being done to find them. Elements 2009, 5, 153–158. [Google Scholar] [CrossRef]
- Fritsch, E.; Rondeau, B.; Devouard, B.; Pinsault, L.; Latouche, C. Why are some crystals gem quality? Crystal growth consideration on the “gem factor”. Can. Mineral. 2017, 55, 521–533. [Google Scholar] [CrossRef]
- Gramaccioli, C. Application of mineralogical techniques to gemmology. Eur J Miner. 1991, 3, 703–706. [Google Scholar] [CrossRef]
- Fritsch, E.; Rondeau, B. Gemology: The developing science of gems. Elements 2009, 5, 147–152. [Google Scholar] [CrossRef]
- Devouard, B.; Notari, F. Gemstones: From the naked eye to laboratory techniques. Elements 2009, 5, 163–168. [Google Scholar] [CrossRef]
- Karampelas, S.; Kiefert, L. Gemstones and minerals. In Analytical Archaeometry: Selected Topics, 1st ed.; Edwards, H.G.M., Vandenabeele, P., Eds.; Royal Society of Chemistry: London, UK, 2012; pp. 291–317. [Google Scholar]
- Gübelin, E.J.; Koivula, J.I. Photoatlas of Inclusions in Gemstones, 5th ed.; Opinio: Basel, Switzerland, 2004; Volume 1, p. 532. [Google Scholar]
- Gübelin, E.J.; Koivula, J.I. Photoatlas of Inclusions in Gemstones; Opinio: Basel, Switzerland, 2005; Volume 2, p. 829. [Google Scholar]
- Gübelin, E.J.; Koivula, J.I. Photoatlas of Inclusions in Gemstones; Opinio: Basel, Switzerland, 2008; Volume 3, p. 672. [Google Scholar]
- Hänni, H.A.; Schwarz, D.; Fischer, M. The emeralds of the Belmont mine, Minas Gerais, Brazil. J. Gemmol. 1987, 53, 446–456. [Google Scholar] [CrossRef]
- Bosshart, G. Emeralds from Colombia (Part 2). J. Gemmol. 1991, 22, 409–425. [Google Scholar] [CrossRef]
- Bowersox, G.; Snee, L.W.; Foord, E.E.; Seal II, R.R. Emeralds of the Panjshir Valley, Afghanistan. Gems Gemol. 1991, 27, 26–39. [Google Scholar] [CrossRef]
- Schmetzer, K.; Bernhardt, H.; Biehler, R. Emeralds from the Ural Mountains, USSR. Gems Gemol. 1991, 27, 86–99. [Google Scholar] [CrossRef]
- Schwarz, D. Emeralds from the Mananjary region, Madagascar: Internal features. Gems Gemol. 1994, 30, 88–101. [Google Scholar] [CrossRef]
- Zwaan, J.C.; Kanis, J.; Petsch, J. Update on emeralds from the Sandawana mines, Zimbabwe. Gems Gemol. 1997, 33, 80–101. [Google Scholar] [CrossRef]
- Moroz, I.; Panczer, G.; Roth, M. Laser-induced luminescence of emeralds from different sources. J. Gemmol. 1998, 26, 316–320. [Google Scholar] [CrossRef]
- Moroz, I.; Eliezri, I.Z. Mineral inclusions in emeralds from different sources. J. Gemmol. 1999, 26, 357–363. [Google Scholar] [CrossRef]
- Moroz, I.; Roth, M.L.; Deich, V.B. The visible absorption spectroscopy of emeralds from different deposits. Aust. Gemmol. 1999, 20, 315–320. [Google Scholar]
- Moroz, I.; Roth, M.; Boudeulle, M.; Panczer, G. Raman microspectroscopy and fluorescence of emeralds from various deposits. J. Raman Spectrosc. 2000, 31, 485–490. [Google Scholar] [CrossRef]
- Fritsch, E.; Rondeau, B.; Notari, F.; Michelou, J.C.; Devouard, B.; Peucat, J.J.; Chalain, J.P.; Lulzac, Y.; de Narvaez, D.; Arboleda, C. Les nouvelles mines d’émeraude de La Pita (Colombie) 2ème partie. Rev. De Gemmol. 2002, 144, 13–21. (In French) [Google Scholar]
- Zwaan, J.C. Gemmology, geology and origin of the Sandawana emerald deposits, Zimbabwe. Scr. Geol. 2006, 131, 211. [Google Scholar]
- Abduriyim, A.; Kitawaki, H. Applications of laser ablation–inductively coupled plasma-mass spectrometry (LA-ICP-MS) to gemology. Gems Gemol. 2006, 42, 98–118. [Google Scholar] [CrossRef]
- Ochoa, C.J.C.; Daza, M.J.H.; Fortaleche, D.; Jiménez, J.F. Progress on the study of parameters related to the origin of Colombian emeralds. InColor 2015, 88–97. [Google Scholar]
- Rondeau, B.; Fritsch, E.; Peucat, J.J.; Nordru, F.S.; Groat, L.A. Characterization of emeralds from a historical deposit: Byrud (Eidsvoll), Norway. Gems Gemol. 2008, 44, 108–122. [Google Scholar] [CrossRef]
- Huong, L.T.T. Microscopic, Chemical and Spectroscopic Investigations on Emeralds of Various Origins. Ph.D. Thesis, University of Mainz, Mainz, Germany, 2008. [Google Scholar]
- Smith, C.P.; Quinn, D.E. Inside emeralds. Rapaport Diam. Rep. 2009, 32, 139–148. [Google Scholar]
- Huong, L.T.T.; Hager, T.; Hofmeister, W. Confocal micro-Raman spectroscopy: A powerful tool to identify natural and synthetic emeralds. Gems Gemol. 2010, 46, 139–148. [Google Scholar] [CrossRef]
- Zwaan, J.C.; Jacob, D.E.; Häger, T.; Calvacanti Neto, M.T.O.; Kanis, J. Emeralds from the Fazenda Bonfim region, Rio Grande do Norte, Brazil. Gems Gemol. 2012, 48, 2–17. [Google Scholar] [CrossRef]
- Cronin, D.P.; Rendle, A.M. Determining the geographical origins of natural emeralds through nondestructive chemical fingerprinting. J. Gemmol 2012, 33, 1–13. [Google Scholar] [CrossRef]
- Bersani, D.; Azzi, G.; Lambruschi, E.; Barone, G.; Mazzoleni, P.; Raneri, S.; Longobardo, U.; Lottici, P.P. Characterization of emeralds by micro-Raman spectroscopy. J. Raman Spectrosc. 2014, 45, 1293–1300. [Google Scholar] [CrossRef]
- Huong, L.T.T.; Hofmeister, W.; Hager, T.; Karampelas, S.; Kien, N.D.T. Identifying natural and synthetic emeralds by vibrational spectroscopy. Gems Gemol. 2014, 50, 287–292. [Google Scholar]
- Thomson, D.B.; Kidd, J.D.; Astrom, M.; Scarani, A.; Smith, C.P. A comparison of R-line photoluminescence of emeralds from different origins. J. Gemmol. 2014, 34, 334–343. [Google Scholar] [CrossRef]
- Renfro, N.D.; Koivula, J.I.; Muyal, J.; McClure, S.F.; Schumacher, K.; Shigley, J.E. Chart: Inclusions in Natural, Synthetic, and Treated Emerald. Available online: https://www.gia.edu/gems-gemology/winter-2016-inclusions-natural-synthetic-treated-emerald (accessed on 30 July 2019).
- Kievlenko, E.Y. Beryl. In Geology of Gems, 1st ed.; Soregaroli, A., Ed.; Ocean Pictures Ltd.: Littleton, CO, USA, 2013; pp. 73–119. [Google Scholar]
- Schwarz, D.; Henn, U. Emeralds from Madagascar. J. Gemmol. 1992, 23, 140–149. [Google Scholar] [CrossRef]
- McManus, C.E.; Dowe, J.; McMillan, N.J. Quantagenetics® analysis of laser-induced breakdown spectroscopic data: Rapid and accurate authentication of materials. Spectrochim. Acta B 2018, 145, 79–85. [Google Scholar] [CrossRef]
- Giuliani, G.; France-Lanord, C.; Zimmermann, J.-L.; Cheilletz, A.; Arboleda, C.; Charoy, B.; Coget, P.; Fontan, F.; Giard, D. Composition of fluids, δD of channel H2O and δ18O of lattice oxygen in beryls: Genetic implications for Brazilian, Colombian and Afghanistani emerald deposits. Int. Geol. Rev. 1997, 39, 400–424. [Google Scholar] [CrossRef]
- Marshall, D.; Downes, P.J.; Ellis, S.; Greene, R.; Loughrey, L.; Jones, P. Pressure–temperature-fluid constraints for the Poona emerald deposits, Western Australia: Fluid inclusion and stable isotope studies. Minerals 2016, 6, 130. [Google Scholar] [CrossRef]
- Schollenbruch, K.; Link, K.; Sintayehu, T. Gem quality emeralds from Southern Ethiopia. InColor 2017, 35, 48–54. [Google Scholar]
- Vertiriest, W.; Wongrawang, P.A. gemological description of Ethiopian emeralds. InColor 2018, 40, 73–75. [Google Scholar]
- Cerny, P.; Meintzer, R.E.; Anderson, A.J. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. Can. Mineral. 1985, 23, 381–421. [Google Scholar]
- London, D.; Morgan VI, G.P. The pegmatite puzzle. Elements 2012, 8, 263–268. [Google Scholar] [CrossRef]
- Linnen, R.L.; van Lichterverlde, M.; Cerny, P.H. Granitic pegmatites as sources of strategic metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- Simmons, W.B.; Pezzotta, F.; Shigley, J.E.; Beurlen, H. Granitic pegmatites as reflections of their sources. Elements 2012, 8, 281–287. [Google Scholar] [CrossRef]
- Cerny, P.; London, D.; Novak, M. Granitic pegmatites as reflections of their sources. Elements 2012, 8, 289–294. [Google Scholar] [CrossRef]
- Wood, D.L.; Nassau, K. Characterization of beryl and emerald by visible and infrared absorption spectroscopy. Am. Mineral. 1968, 53, 777–800. [Google Scholar]
- Platonov, A.N.; Taran, M.N.; Minko, O.E.; Polshyn, E.V. Optical absorption spectra and nature of color of iron-containing beryls. Phys. Chem. Miner. 1978, 3, 87–88. [Google Scholar]
- Taran, M.N.T.; Rossman, G.R.R. Optical spectroscopic study and a re-examination of the beryl, cordierite, and osumilite spectra. Am. Mineral. 2001, 86, 973–980. [Google Scholar] [CrossRef]
- Schmetzer, L. Letter: Comment on analysis of three-phase inclusions in emerald. Gems Gemol. 2014, 50, 316–319. [Google Scholar]
- Spinolo, G.; Fontana, I.; Galli, A. Optical absorption spectra of Fe2+ and Fe3+ in beryl crystals Optical absorption spectra of Fe2+ and Fe3+ in beryl crystals. Phys. Stat. Sol. (b) 2007, 244, 4660–4668. [Google Scholar] [CrossRef]
- Wood, D.L.; Nassau, K. Infrared spectra of foreign molecules in beryl. J. Chem Phys. 1967, 47, 2220–2228. [Google Scholar] [CrossRef]
- Aurisicchio, C.; Grubessi, O.; Zecchini, P. Infrared spectroscopy and crystal chemistry of the beryl group. Can. Mineral. 1994, 32, 55–68. [Google Scholar]
- Charoy, B.; Donato, D.P.; Barres, O.; Pinto-Coelho, C. Channel occupancy in an alkali-poor beryl from Serra Branca (Goias, Brazil): Spectroscopic characterization. Am. Mineral. 1996, 81, 395–403. [Google Scholar] [CrossRef]
- Donato, D.P.; Cheilletz, A.; Barres, O.; Yvon, J. Infrared spectroscopy of OD vibrators in minerals at natural dilution: Hydroxyl groups in talc and kaolinite, and structural water in beryl and emerald. Appl. Spectrosc. 2004, 58, 521–527. [Google Scholar] [CrossRef]
- Adams, D.M.; Gardner, I.R. Single-crystal vibrational spectra of beryl and dioptase. J. Chem. Soc. 1974, 14, 1502–1505. [Google Scholar] [CrossRef]
- Duroc-Danner, J.M. The identification value of the 2293 cm−1 infrared absorption band in natural and hydrothermal synthetic emeralds. J. Gemmol. 2006, 30, 75–82. [Google Scholar] [CrossRef]
- Hagemann, H.; Lucken, A.; Bill, H.; Gysler-Sanz, J.; Stalder, H.A. Polarized Raman spectra of beryl and bazzite. Phys. Chem. Miner. 1990, 17, 395–400. [Google Scholar] [CrossRef]
- Kim, C.C.; Bell, M.I.; McKeown, D.A. Vibrational analysis of beryl (Be3Al2Si6O18) and its constituent ring (Si6O18). Phys. B. Condens. Matter 1995, 205, 193–208. [Google Scholar] [CrossRef]
- Wood, D.L. Absorption, fluorescence, and Zeeman effect in emerald. J. Chem. Phys. 1965, 42, 3404–3410. [Google Scholar] [CrossRef]
Locality | No. of Samples | Weight Range (ct) | Colour Range |
---|---|---|---|
Afghanistan (Panjsher Valley from Kherskanda) | 9 | 0.27–0.68 | Green |
Brazil (Itabira) | 18 | 0.17–1.88 | Light green to green |
Colombia (Coscuez) | 8 | 0.11–2.42 | Light green to green |
Ethiopia (Shakisso) | 4 | 0.43–1.69 | Green |
Madagascar (Mananjary from Irondro, Ambodivandrika and Morarano) | 9 | 0.17–2.18 | Green to dark green |
Russia (Malyshevsk, Ural mountains) | 5 | 0.33–0.80 | Light green |
Zambia (Kafubu) | 6 | 0.47–2.50 | Green |
Zimbabwe (Sandawana) | 3 | 0.24–0.56 | Green |
Limits | 7Li | 23Na | 24Mg | 39K | 45Sc |
LOD | 0.29–0.87 | 7.00–49.13 | 0.28–1.24 | 6.82–17.72 | 0.44–1.07 |
LOQ | 0.87–2.42 | 21.00–147.38 | 0.83–3.73 | 20.45–53.16 | 1.32–3.20 |
Limits | 51V | 52Cr | 55Mn | 56Fe | 59Co |
LOD | 0.29–0.85 | 1.36–1.99 | 0.23–0.67 | 4.37–6.51 | 0.09–0.42 |
LOQ | 0.86–2.54 | 4.07–5.96 | 0.70–2.01 | 13.12–19.52 | 0.28–1.25 |
Limits | 60Ni | 66Zn | 69Ga | 85Rb | 133Cs |
LOD | 2.71–6.11 | 0.65–2.28 | 0.13–0.45 | 0.15–0.28 | 0.02–0.07 |
LOQ | 8.12–18.33 | 1.94–6.85 | 0.39–1.36 | 0.44–0.83 | 0.06–0.21 |
Samples | Element | Min–Max | Average (SD) | Median |
---|---|---|---|---|
Afghanistan (Panjsher) 9 samples, 27 analysis | 7Li | 84.9–162 | 115.81 (25.86) | 108 |
Na2O (%) | 0.63–1.91 | 1.27 (0.46) | 1.44 | |
MgO (%) | 0.71–2.45 | 1.51 (0.60) | 1.69 | |
39K | 107–1540 | 713.63 (497.38) | 710 | |
45Sc | 148–2390 | 669.07 (782.41) | 256 | |
51V | 557–3130 | 1312.48 (766.18) | 1100 | |
52Cr | 500–3840 | 1994.26 (1257.28) | 2160 | |
55Mn | BQL–3.09 | 0.78 (1.02) | BQL | |
56Fe | 781–2530 | 1394.70 (550.92) | 1270 | |
59Co | BQL** | BQL | BQL | |
60Ni | BQL | BQL | BQL | |
66Zn | BQL | BQL | BQL | |
69Ga | 10.1–28.7 | 17.17 (6.04) | 14.8 | |
85Rb | 11–97.50 | 48.90 (30.84) | 46.40 | |
133Cs | 22.1–75.9 | 40.11 (14.98) | 41.6 | |
52Cr/51V | 0.83–2.64 | 1.47 (0.59) | 1.20 | |
Na2O/MgO (%) | 0.77–0.92 | 0.85 (0.04) | 0.85 | |
Alkalis* (%) | 0.49–1.61 | 1.03 (0.40) | 1.16 | |
H2O (%) | 1.93–2.54 | 2.28 (0.22) | 2.38 | |
Brazil (Itabira) 18 samples, 54 analysis | 7Li | 45.90–97.30 | 64.11 (14.60) | 59.90 |
Na2O (%) | 0.97–1.70 | 1.32 (0.17) | 1.34 | |
MgO (%) | 1.13–2.06 | 1.53 (0.21) | 1.53 | |
39K | 152–385 | 246.83 (65.60) | 239.50 | |
45Sc | 17.5–153 | 60.3 (31.47) | 51.15 | |
51V | 52.50–177 | 116.52 (32.72) | 117.50 | |
52Cr | 997–5700 | 2508.46 (1051.82) | 2360 | |
55Mn | 4.49–24.10 | 14.10 (5.67) | 13.40 | |
56Fe | 4540–8760 | 6407.59 (1122.38) | 6220 | |
59Co | 1.94–2.96 | 2.47 (0.30) | 2.47 | |
60Ni | BQL | BQL | BQL | |
66Zn | 28.40–87.40 | 55.31 (12.31) | 57.20 | |
69Ga | 6.68–13.80 | 11.42 (1.73) | 11.90 | |
85Rb | 19.10–52.60 | 32.73 (8.16) | 31.25 | |
133Cs | 35.50–128 | 75.52 (23.10) | 76.85 | |
52Cr/51V | 8.30–39.45 | 21.93 (7.03) | 21.05 | |
Na2O/MgO (%) | 0.81–0.94 | 0.87 (0.03) | 0.87 | |
Alkalis* (%) | 0.75–1.30 | 1.02 (0.13) | 1.05 | |
H2O (%) | 2.17–2.47 | 2.33 (0.07) | 2.35 | |
Colombia (Coscuez) 8 samples, 24 analysis | 7Li | 62–163 | 87.20 (35.04) | 69.10 |
Na2O (%) | 0.40–0.97 | 0.60 (0.16) | 0.56 | |
MgO (%) | 0.46–1.04 | 0.67 (0.16) | 0.62 | |
39K | BQL | BQL | BQL | |
45Sc | 9.17–441 | 120.14 (135.30) | 56.90 | |
51V | 879–6340 | 2530.92 (1724.94) | 2175 | |
52Cr | 240–2820 | 800.71 (788.24) | 432 | |
55Mn | BQL | BQL | BQL | |
56Fe | 507–1860 | 902.71 (493.08) | 683 | |
59Co | BQL | BQL | BQL | |
60Ni | BQL | BQL | BQL | |
66Zn | BQL | BQL | BQL | |
69Ga | 25.7–58.5 | 39.30 (11.82) | 33.95 | |
85Rb | 0.79–2.52 | 1.31 (0.48) | 1.12 | |
133Cs | 4.83–12.1 | 8.54 (2.47) | 8.31 | |
52Cr/51V | 0.12–0.45 | 0.31 (0.09) | 0.31 | |
Na2O/MgO (%) | 0.81–0.95 | 0.89 (0.04) | 0.89 | |
Alkalis* (%) | 0.30–0.73 | 0.46 (0.12) | 0.43 | |
H2O (%) | 1.69–2.17 | 1.90 (0.13) | 1.87 | |
Ethiopia (Shakisso) 4 samples, 20 analysis | 7Li | 271–427 | 345.65 (51.78) | 334.50 |
Na2O (%) | 1.71–2.16 | 1.96 (0.14) | 1.97 | |
MgO (%) | 2.02–2.55 | 2.34 (0.15) | 2.37 | |
39K | 290–444 | 374.45 (52.77) | 371.50 | |
45Sc | 57–150 | 114.30 (34.50) | 125.50 | |
51V | 96.30–123 | 112.70 (8.10) | 114.50 | |
52Cr | 2000–5010 | 3655 (1060) | 3795 | |
55Mn | 9–21.1 | 16.51 (4.22) | 18.30 | |
56Fe | 3980–5390 | 4867 (507.64) | 5050 | |
59Co | 1.27–2.20 | 1.65 (0.19) | 1.65 | |
60Ni | BQL–14.4 | 3.32 (5.91) | BQL | |
66Zn | 32.20–44.80 | 37.10 (3.27) | 36.40 | |
69Ga | 16.40–20.50 | 18.77 (1.18) | 19.15 | |
85Rb | 50.60–64.70 | 57.47 (4.58) | 57.95 | |
133Cs | 270–427 | 347.50 (58.82) | 341.50 | |
52Cr/51V | 19.80–43.66 | 32.08 (8.26) | 32.95 | |
Na2O/MgO (%) | 0.78–0.92 | 0.84 (0.04) | 0.83 | |
Alkalis* (%) | 1.38–1.71 | 1.57 (0.10) | 1.59 | |
H2O (%) | 2.48–2.60 | 2.55 (0.04) | 2.55 | |
Madagascar (Mananjary) 9 samples, 27 analysis | 7Li | 57.50–128 | 98.45 (19.47) | 104 |
Na2O (%) | 1.82–2.41 | 2.05 (0.16) | 2.01 | |
MgO (%) | 2.07–3.02 | 2.58 (0.30) | 2.59 | |
39K | 314–3150 | 1388.74 (808.89) | 1090 | |
45Sc | 21–309 | 75.59 (86.47) | 34.50 | |
51V | 102–386 | 224.85 (96.63) | 229 | |
52Cr | 1490–3770 | 2380.37 (737.41) | 2410 | |
55Mn | 8.65–28.50 | 15.22 (5.56) | 15.30 | |
56Fe | 7310–11200 | 9824.81 (1131.24) | 10,100 | |
59Co | 1.69–4.50 | 3.17 (0.70) | 3 | |
60Ni | 18.10–38.60 | 28.94 (6.30) | 30.60 | |
66Zn | 9.06–32 | 16.59 (6.65) | 15.10 | |
69Ga | 6.13–13.10 | 8.15 (1.98) | 7.72 | |
85Rb | 42.70–407 | 167.10 (106.29) | 175 | |
133Cs | 105–1050 | 430 (297.51) | 324 | |
52Cr/51V | 4.49–22.54 | 12.45 (5.90) | 10 | |
Na2O/MgO (%) | 0.71–0.97 | 0.80 (0.08) | 0.80 | |
Alkalis* (%) | 1.46–1.92 | 1.73 (0.13) | 1.77 | |
H2O (%) | 2.51–2.66 | 2.57 (0.04) | 2.56 | |
Russia (Ural) 5 samples, 15 analysis | 7Li | 736–911 | 826.93 (60.19) | 831 |
Na2O (%) | 0.70–1.23 | 0.91 (0.18) | 0.85 | |
MgO (%) | 0.47–1.04 | 0.70 (0.20) | 0.64 | |
39K | BQL–103 | 40.87 (41.97) | 52 | |
45Sc | 19.50–72.90 | 43.52 (21.93) | 44.20 | |
51V | 29.80–128 | 80.64 (37.30) | 90.90 | |
52Cr | 318–1700 | 905.27 (446.14) | 841 | |
55Mn | 13.50–22.60 | 19.16 (3.24) | 20.60 | |
56Fe | 1210–1900 | 1600.67 (235.75) | 1640 | |
59Co | BQL–2.09 | 1.08 (0.73) | 1.19 | |
60Ni | BQL–23.20 | 12.90 (8.35) | 16 | |
66Zn | 38.10–62.60 | 48.62 (7.97) | 45.40 | |
69Ga | 6.28–19.50 | 13.69 (4.40) | 13.70 | |
85Rb | 7.88–27.20 | 17.46 (7.61) | 16.30 | |
133Cs | 252–568 | 350.53 (112.54) | 308 | |
52Cr/51V | 6.57–16.13 | 11.79 (3.27) | 11.86 | |
Na2O/MgO (%) | 1.15–1.58 | 1.33 (0.13) | 1.34 | |
Alkalis* (%) | 0.65–1.04 | 0.80 (0.13) | 0.75 | |
H2O (%) | 1.99–2.30 | 2.13 (0.10) | 2.10 | |
Zambia (Kafubu) 6 samples, 18 analysis | 7Li | 492–741 | 639.17 (76.19) | 661 |
Na2O (%) | 1.95–2.32 | 2.12 (0.11) | 2.14 | |
MgO (%) | 2.02–2.62 | 2.32 (0.21) | 2.35 | |
39K | 376–716 | 508.50 (121.79) | 451 | |
45Sc | 19.80–63.40 | 41.63 (13.94) | 44.25 | |
51V | 79.30–147 | 112.82 (24.87) | 113.15 | |
52Cr | 349–2360 | 1430.94 (760.72) | 1680 | |
55Mn | 11–32.30 | 22.52 (7.95) | 24.70 | |
56Fe | 6320–9590 | 8239.44 (932.06) | 8440 | |
59Co | 2.23–3.26 | 2.81 (0.31) | 2.82 | |
60Ni | BQL–28.40 | 20.02 (6.30) | 19.95 | |
66Zn | 17.20–46.60 | 31.75 (10.54) | 35.40 | |
69Ga | 11.90–17.10 | 14.84 (1.56) | 14.90 | |
85Rb | 41.40–87.30 | 62.99 (16.16) | 63.90 | |
133Cs | 941–1410 | 1201.72 (148.15) | 1215 | |
52Cr/51V | 3.82–25.38 | 13.20 (7.75) | 13.92 | |
Na2O/MgO (%) | 0.82–1.00 | 0.92 (0.05) | 0.92 | |
Alkalis* (%) | 1.67–1.94 | 1.81 (0.08) | 1.83 | |
H2O (%) | 2.55–2.64 | 2.59 (0.03) | 2.60 | |
Zimbabwe (Sandawana) 3 samples, 15 analysis | 7Li | 512–1050 | 818.20 (214.17) | 930 |
Na2O (%) | 2.10–2.75 | 2.48 (0.24) | 2.62 | |
MgO (%) | 2.17–2.80 | 2.58 (0.23) | 2.69 | |
39K | 230–434 | 354.73 (86.32) | 407 | |
45Sc | 16.90–26.80 | 20.85 (3.92) | 18.80 | |
51V | 185–280 | 219.27 (38.75) | 198 | |
52Cr | 1430–2070 | 1790 (237.25) | 1770 | |
55Mn | 47–93 | 62.85 (17.52) | 53.40 | |
56Fe | 4320–7050 | 6062.67 (1170.14) | 6810 | |
59Co | 1.98–2.55 | 2.26 (0.17) | 2.25 | |
60Ni | BQL–19.70 | 14.67 (5.36) | 16.60 | |
66Zn | 72.90–84.70 | 79.49 (3.49) | 79.30 | |
69Ga | 24.80–33.70 | 28.37 (3.28) | 27 | |
85Rb | 217–299 | 263.47 (32.29) | 279 | |
133Cs | 274–756 | 589.07 (224.06) | 739 | |
52Cr/51V | 7.32–10.05 | 8.25 (0.85) | 8.14 | |
Na2O/MgO (%) | 0.93–1.00 | 0.96 (0.02) | 0.96 | |
Alkalis* (%) | 1.68–2.29 | 2.04 (0.23) | 2.18 | |
H2O (%) | 2.59–2.73 | 2.67 (0.05) | 2.71 |
Locality | Cr3+ | V3+ | Fe3+ | Fe2+ |
---|---|---|---|---|
Afghanistan | ✓ | ✓ | (✓) | (✓) |
Brazil | ✓ | ✓ | ✓ | |
Colombia | ✓ | ✓ | (✓) | |
Ethiopia | ✓ | ✓ | ✓ | |
Madagascar | ✓ | ✓ | ✓ | |
Russia | ✓ | ✓ | ✓ | |
Zambia | ✓ | ✓ | ✓ | |
Zimbabwe | ✓ | ✓ | ✓ |
Locality | Position & FWHM | I3608 & I3598 Intensities | R1 Position (PL) |
---|---|---|---|
Afghanistan | 1068.16–1069.92 FWHM = 19.8–24.8 | I3608 = I3598 or I3608 > I3598 | 683.7–684.2 |
Brazil | 1068.38–1069.87 FWHM = 22.6–23.5 | I3608 = I3598 or I3608 > I3598 | 683.9–684 |
Colombia | 1069.01–1069.09 FWHM = 19.6–20.7 | I3608 > I3598 | 683.6–683.8 |
Ethiopia | 1069.24–1070.15 FWHM = 23.6 | I3608 < I3598 or I3608 = I3598 | 684–684.2 |
Madagascar | 1069.44–1069.89 FWHM = 23.3 | I3608 < I3598 | 684.2–684.4 |
Russia | 1068.81–1069.97 FWHM = 19.8 | I3608 = I3598 or I3608 > I3598 | 683.7–683.8 |
Zambia | 1069.11–1069.58 FWHM = 23.9 | I3608 < I3598 | 684.3‒684.4 |
Zimbabwe | 1069.91–1071.81 FWHM = 24.6–27.4 | I3608 < I3598 | 684.3–684.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karampelas, S.; Al-Shaybani, B.; Mohamed, F.; Sangsawong, S.; Al-Alawi, A. Emeralds from the Most Important Occurrences: Chemical and Spectroscopic Data. Minerals 2019, 9, 561. https://doi.org/10.3390/min9090561
Karampelas S, Al-Shaybani B, Mohamed F, Sangsawong S, Al-Alawi A. Emeralds from the Most Important Occurrences: Chemical and Spectroscopic Data. Minerals. 2019; 9(9):561. https://doi.org/10.3390/min9090561
Chicago/Turabian StyleKarampelas, Stefanos, Bader Al-Shaybani, Fatima Mohamed, Supharart Sangsawong, and Abeer Al-Alawi. 2019. "Emeralds from the Most Important Occurrences: Chemical and Spectroscopic Data" Minerals 9, no. 9: 561. https://doi.org/10.3390/min9090561
APA StyleKarampelas, S., Al-Shaybani, B., Mohamed, F., Sangsawong, S., & Al-Alawi, A. (2019). Emeralds from the Most Important Occurrences: Chemical and Spectroscopic Data. Minerals, 9(9), 561. https://doi.org/10.3390/min9090561