Deciphering Nano-Resolution Petrological Characteristics of the Siliceous Shale at the Bottom of the Longmaxi Formation in the Zigong Area, Sichuan Basin, China: Deep-Water Microbialites
Abstract
:1. Introduction
2. Geologic Background
3. Research Methods
4. Results
4.1. Nano-Resolution Petrological Characteristics of Microtexture I
4.2. Nano-Resolution Petrological Characteristics of Microtexture II
4.3. Nano-Resolution Petrological Characteristics of Microtexture III
5. Discussion
5.1. Origin of the Types of Organic Matter
5.2. Origin of Carbonate Minerals
5.3. Origin of Quartz
5.4. Formation Process of Siliceous Shale
6. Overview
7. Conclusions
- (1)
- The quartz content is as high as 75%, the organic matter content is greater than 15%, and the total content of the carbonate minerals, clay minerals, feldspar, and pyrite is less than 10%. The quartz mainly exists in the form of micro-quartz and nano-quartz aggregates. The organic matter can be divided into porous amorphous organic matter, porous organic matter among non-porous spherical and rod-like organic matter aggregates, and non-porous dendritic organic matter.
- (2)
- The transformation of clay-rich sediments by a deep-water traction current provided the basis for the formation of the siliceous shale. The traction current agitated and transported the clays, forming fluid transport channels. The oxygen and nutrients supplied provided the materials for microbes to flourish. Gradually, the clay-rich sediments were transformed into microbial mats.
- (3)
- The microbialites consist of three microtextures. Microtexture II and Microtexture III are sporadically encased in Microtexture I. The main body of Microtexture I is transformed by microbes. Microtexture II is composed of residual clay-rich sediments. Microtexture III is composed of the pyrobitumen derived from the oil in hydrocarbon-generating pressurized dendritic fractures.
- (4)
- During the transformation of the microbial mats into microbialites, the biogenic silica was transformed into porous micro-quartz and nano-quartz, and the sedimentary organic matter was transformed into porous amorphous pyrobitumen and non-porous dendritic pyrobitumen, but the spherical and rod-like organic matter retained their biological morphologies.
- (5)
- The results of this study improve our understanding of the environment and processes that produced the siliceous shale at the bottom of the Longmaxi Formation and can be extended to other areas, such as other underwater highlands in the Sichuan Basin and similar reservoirs worldwide.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nie, H.K.; Jin, Z.J.; Ma, X.; Liu, Z.H.; Lin, T.; Yang, Z.H. Dispositional characteristics of Ordovician Wufeng Formation and Silurian Longmaxi Formation in Sichuan Basin and its adjacent areas. Pet. Res. 2017, 2, 233–246. [Google Scholar] [CrossRef]
- Nie, H.K.; He, Z.L.; Liu, G.X.; Du, W.; Wang, R.Y.; Zhang, G.R. Genetic mechanism of high–quality shale gas reservoirs in the Wufeng–Longmaxi Fms in the Sichuan Basin. Nat. Gas Ind. 2020, 40, 31–41. [Google Scholar] [CrossRef]
- Shen, C.; Zhao, J.Z.; Xie, J.; Fan, Y.; Song, Y. Target window spatial distribution prediction based on network fracability: A case study of shale gas reservoirs in the Changning Block, southern Sichuan Basin. J. Geomech. 2020, 26, 881–891. [Google Scholar] [CrossRef]
- Wu, H.Z.; Xiong, L.; Ge, Z.W.; Shi, H.L.; Wang, T.; Fan, L. Fine characterization and target window optimization of high-quality shale gas reservoirs in the Weiyuan area, Sichuan Basin. Nat. Gas Ind. 2019, 39, 11–20. [Google Scholar] [CrossRef]
- Zhang, C.L.; Yang, X.F.; Zhao, S.X.; Zhang, J.; Deng, F.Y.; He, Y.H.; Zhang, D.L.; Wang, G.X.; Zhong, G.H. Target position optimization for shale reservoirs in Zigong Block of southern Sichuan Basin. Pet. Reserv. Eval. Dev. 2022, 12, 496–505. [Google Scholar] [CrossRef]
- Zou, C.N.; Zhao, Q.; Cong, L.Z.; Wang, H.Y.; Shi, Z.S.; Wu, J.; Pan, S.Q. Development progress, potential and prospect of shale gas in China. Nat. Gas Ind. 2021, 41, 1–14. [Google Scholar]
- Zou, C.; Zhao, Q.; Wang, H.Y.; Xiong, W.; Dong, D.Z.; Yu, Z.R. The main characteristics of marine shale gas and the theory & technology of exploration and development in China. Nat. Gas Ind. 2022, 42, 1–13. [Google Scholar]
- Guo, W.; Li, X.Z.; Zhang, X.W.; Lan, C.L.; Liang, P.P.; Shen, W.J.; Zheng, M.J. Sedimentary microfacies and microrelief of organic–rich shale in deep–water shelf and their control on reservoirs:a case study of shale from Wufeng–Longmaxi formations in southern Sichuan Basin. Acta Pet. Sin. 2022, 43, 1089–1106. [Google Scholar] [CrossRef]
- Liu, J.; Yao, Y.B.; Elsworth, D.; Liu, D.M.; Cai, Y.D.; Dong, L. Vertical heterogeneity of the shale reservoir in the Lower Silurian Longmaxi Formation: Analogy between the Southeastern and Northeastern Sichuan Basin, SW China. Minerals 2017, 7, 151. [Google Scholar] [CrossRef]
- Shi, Z.S.; Zhao, S.X.; Zhou, T.Q.; Ding, L.H.; Sun, S.S.; Cheng, F. Mineralogy and Geochemistry of the Upper Ordovician and Lower Silurian Wufeng-Longmaxi Shale on the Yangtze Platform, South China: Implications for Provenance Analysis and Shale Gas Sweet-Spot Interval. Minerals 2022, 12, 1190. [Google Scholar] [CrossRef]
- Venieri, M.; Harazim, D.; Pedersen, P.K.; Eaton, D.W. Vertical and lateral facies variability in organic–rich mudstones at the reservoir scale: A case study from the Devonian Duvernay formation of Alberta, Canada. Mar. Pet. Geol. 2021, 132, 105232. [Google Scholar] [CrossRef]
- Wang, Y.M.; Li, X.J.; Dong, D.Z.; Zhang, C.C.; Wang, S.F. Main factors controlling the sedimentation of high–quality shale in the Wufeng–Longmaxi Fm, Upper Yangtze region. Nat. Gas Ind. 2017, 37, 9–20. [Google Scholar] [CrossRef]
- Qi, L.; Wang, H.Y.; Shi, Z.S.; Zhou, T.Q.; Li, G.Z.; Sun, S.S.; Cheng, F. Mineralogical and geochemical characteristics of the deeply buried Wufeng–Longmaxi shale in the Southern Sichuan Basin, China: Implications for provenance and tectonic setting. Minerals 2023, 13, 1502. [Google Scholar] [CrossRef]
- Xu, L.L.; Huang, S.P.; Sun, M.D.; Wen, Y.R.; Chen, W.; Zhang, Y.L.; Luo, F.; Zhang, H. Palaeoenvironmental evolution based on elemental geochemistry of the Wufeng-Longmaxi Shales in Western Hubei, Middle Yangtze, China. Minerals 2023, 13, 502. [Google Scholar] [CrossRef]
- Cheng, L.X.; Wang, Y.J.; Chen, H.D.; Wang, Y.; Zhong, Y.J. Sedimentary and burial environment of black shales of Sinian to Early Palaeozoic in Upper Yangtze region. Acta Petrol. Sin. 2013, 29, 2906–2912. [Google Scholar]
- Wang, P.X. Geological evolution of the ocean carbon cycle. Adv. Nat. Sci. 2006, 16, 1361–1370. [Google Scholar] [CrossRef]
- Guan, Q.Z.; Dong, D.Z.; Sun, S.S.; Zhang, S.R.; Lv, H. Development characteristics and geological significance of laminae in Wufeng–Longmaxi shales in Weiyuan area. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 3641–3651. [Google Scholar] [CrossRef]
- Kemp, A.E.S. Laminated sediments as palaeo–indicators. Geol. Soc. London Spec. Publ. 1996, 116, 7. [Google Scholar] [CrossRef]
- Li, Y.E.; Wei, X.J.; Fan, T.L. A review on sedimentary processes of marine mudstones and shales. Acta Sedimentol. Sin. 2021, 39, 73–87. [Google Scholar] [CrossRef]
- Milliken, K.L.; Hayman, N.W. Mudrock components and the genesis of bulk rock properties: Review of current advances and challenges. In Shale: Subsurface Science and Engineering, 1st ed.; Dewers, T., Heath, J., Sánchez, M., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 1–25. [Google Scholar] [CrossRef]
- O’Brien, N.R. Origin of lamination in Middle and Upper Devonian black shales, New York State. Northeast. Geology 1989, 11, 159–165. [Google Scholar]
- O’Brien, N.R. Significance of lamination in Toarcian (Lower Jurassic) shales from Yorkshire, Great Britain. Sediment. Geol. 1990, 67, 25–34. [Google Scholar] [CrossRef]
- Schieber, J.; Wilson, R.D. Burrows without a trace—How meioturbation affects rock fabrics and leaves a record of meiobenthos activity in shales and mudstones. Palaontol. Z 2021, 95, 767–791. [Google Scholar] [CrossRef]
- Schneider, E.D.; Fox, P.J.; Hollister, C.D.; Needham, H.D.; Heezen, B.C. Further evidence of contour currents in the Western North Atlantic. Earth Planet. Sci. Lett. 1967, 2, 351–359. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, B.Q.; Shu, Z.G.; Lu, Y.Q.; Bao, H.Y.; Yang, W.X.; Liu, C.; Li, K. Shale lamination and its influence on shale reservoir quality of Wufeng Formation–Longmaxi Formation in Jiaoshiba area. Earth Sci. 2019, 44, 972–982. [Google Scholar] [CrossRef]
- Xiong, M.; Chen, L.; Chen, X.; Ji, Y.B.; Wu, P.J.; Hu, Y.; Wang, G.X.; Peng, H. Characteristics, genetic mechanism of marine shale laminae and its significance of shale gas accumulation. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 3490–3508. [Google Scholar] [CrossRef]
- Yawar, Z.; Schieber, J. On the origin of silt laminae in laminated shales. Sediment. Geol. 2017, 360, 22–34. [Google Scholar] [CrossRef]
- Longman, M.W.; Drake, W.R.; Milliken, K.L.; Olson, T.M. A comparison of silica diagenesis in the devonian woodford shale (central basin platform, west texas) and cretaceous mowry shale (powder river basin, Wyoming). In Memoir 120: Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks; Camp, W.K., Milliken, K.L., Taylor, K., Eds.; AAPG: Tulsa, OK, USA, 2019; pp. 49–67. [Google Scholar] [CrossRef]
- Milliken, K.L.; Ergene, S.M.; Ozkan, A. Quartz types, authigenic and detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA. Sediment. Geol. 2016, 339, 273–288. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis, and distribution of nanometer–scale pores in siliceous mudstones of the mississippian barnett shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix–related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M. Scanning–electron–microscope petrographic evidence for distinguishing organic–matter pores associated with depositional organic matter versus migrated organic matter in mudrock. Gulf Coast Assoc. Geol. Soc. J. 2014, 3, 51–60. [Google Scholar]
- Shi, Z.S.; Wu, J.; Dong, D.Z.; Sun, S.S.; Guo, C.M.; Li, G.Z. Pore types and pore size distribution of the typical Wufeng–Lungmachi shale wells in the Sichuan Basin, China. Earth Sci. Front. 2021, 28, 249–260. [Google Scholar] [CrossRef]
- Shi, X.W.; Wu, W.; Xu, L.; Yin, Y.Z.; Yang, Y.R.; Liu, J.; Yang, X.; Li, Y.Y.; Wu, Q.Z.; Zhong, K.S.; et al. Thermal maturity constraint effect and development model of shale pore structure: A case study of Longmaxi Formation Shale in Southern Sichuan Basin, China. Minerals 2024, 14, 163. [Google Scholar] [CrossRef]
- Wang, X.M.; Liu, L.F.; Wang, Y.; Sheng, Y.; Zheng, S.S.; Luo, Z.H. Control of lithofacies on pore space of shale from Longmaxi Formation, southern Sichuan Basin. Acta Pet. Sin. 2019, 40, 1192–1201. [Google Scholar] [CrossRef]
- Wang, P.W.; Nie, H.K.; Liu, Z.B.; Sun, C.X.; Cao, Z.; Wang, R.Y.; Li, P. Differences in pore type and pore structure between Silurian Longmaxi marine shale and Jurassic Dongyuemiao Lacustrine Shale and Their Influence on Shale-Gas Enrichment. Minerals 2023, 13, 190. [Google Scholar] [CrossRef]
- He, D.F.; Li, D.S.; Zhang, G.W.; Zhao, L.Z.; Fan, C.; Lu, R.Q.; Wen, Z. Formation and evolution of multi–cycle superposed Sichuan Basin, China. Chin. J. Geol. 2011, 46, 589–606. [Google Scholar] [CrossRef]
- Liu, S.G.; Li, Z.W.; Sun, W.; Deng, B.; Luo, Z.L.; Wang, G.Z.; Yong, Z.Q.; Huang, W.M. Basic geological features of superimposed basin and hydrocarbon accumulation in Sichuan Basin, China. Chin. J. Geol. 2011, 46, 233–257. [Google Scholar] [CrossRef]
- Liu, S.G.; Deng, B.; Zhong, Y.; Ran, B.; Yong, Z.Q.; Sun, W.; Yang, D.; Jiang, L.; Ye, Y.H. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery. Earth Sci. Front. 2016, 23, 11–28. [Google Scholar] [CrossRef]
- Liu, S.G.; Deng, B.; Sun, W.; Zhong, Y.; Li, Z.W.; Li, J.X.; Jiang, L. Sichuan Basin: A superimposed sedimentary basin mainly controlled by its peripheric tectonics. Chin. J. Geol. 2018, 53, 308–326. [Google Scholar] [CrossRef]
- Luo, Z.L.; Han, J.H.; Luo, C.; Luo, Q.H.; Han, K.Y. The discovery, characteristics and prospects of commercial oil and gas layers/reservoirs in Sichuan basin. Xinjiang Pet. Geol. 2013, 34, 504–514. [Google Scholar]
- Wang, H.Y.; Dong, D.Z.; Shi, Z.S.; Qiu, Z.; Lu, B.; Shao, N.; Sun, S.S.; Zhang, S.R. Lithfacies and “sweet spot” interval of marine shale in southern Sichuan: A case study of Shuanghe Outcrop in Wufeng–Longmaxi Formation, Changning. Reservoir Eval. Dev. 2022, 12, 68–81. [Google Scholar] [CrossRef]
- Liang, P.P.; Guo, W.; Wang, N.; Zhao, W.T.; Wang, H.Y.; Ma, X.; Li, Y. Lithofacies and sedimentary environments of the uppermost Ordovician Kuanyinchiao Formation from the wells in Weiyuan–Luzhou, southern Sichuan. China. J. Geol. 2022, 57, 115–126. [Google Scholar] [CrossRef]
- Wang, H.Y.; Guo, W.; Liang, F.; Zhao, Q. Biostratigraphy characteristics and scientific meaning of the Wufeng and Longmaxi Formation black shales at Well Wei 202 of the Weiyuan shale gas field, Sichuan basin. J. Stratigr. 2015, 39, 289–293. [Google Scholar] [CrossRef]
- Zhou, X.F.; Liang, P.P.; Li, X.Z.; Guo, W.; Zhang, X.W.; Yu, J.M. Filling characteristics of radiolarian siliceous shell cavities at Wufeng–Longmaxi Shale in Sichuan Basin, Southwest China. Minerals 2022, 12, 1545. [Google Scholar] [CrossRef]
- Wang, H.Y.; Guo, W.; Liang, F.; Zhao, Q. Biostratigraphy of Ordovician-Silurian black shale at Well Zi 201, South Sichuan. J. Stratigr. 2018, 42, 455–460. [Google Scholar]
- Chen, X.; Rong, J.Y.; Fan, J.X.; Zhan, R.B.; Zhang, Y.D.; Li, R.Y.; Wang, Y.; Mitchell, C.E.; Harper, D.A.T. A global correlation of biozones across the ordovician–silurian boundary. Acta Palaeontol. Sin. 2000, 39, 100–114. [Google Scholar] [CrossRef]
- Chen, X.; Rong, J.Y.; Fan, J.X.; Zhan, R.B.; Mitchell, C.E.; Harper, D.A.T.; Melchin, M.J.; Peng, P.A.; Finney, S.C.; Wang, X.F. A final report on the global stratotype section and point(gssp) for the hirnantian stage (upper ordovician). J. Stratigr. 2006, 30, 289–305. [Google Scholar] [CrossRef]
- Chen, X.; Fan, J.X.; Zhang, Y.D.; Wang, H.Y.; Chen, Q.; Wang, W.H.; Liang, F.; Guo, W.; Zhao, Q.; Nie, H.K.; et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze platform. J. Stratigr. 2015, 39, 351–358. [Google Scholar] [CrossRef]
- Chen, X.; Fan, J.X.; Wang, W.H.; Wang, H.Y.; Nie, H.K.; Shi, X.W.; Wen, Z.D.; Chen, D.Y.; Li, W.J. Stage–progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China. Sci. China Earth Sci. 2017, 60, 1133–1146. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Q.; Zhen, Y.Y.; Wang, H.Y.; Zhang, L.N.; Zhang, J.P.; Wang, W.H.; Xiao, Z.H. Circumjacent distribution pattern of the Lungmachian graptolitic black shale (early Silurian) on the Yichang Uplift and its peripheral region. Sci. China Earth Sci. 2018, 61, 1195–1203. [Google Scholar] [CrossRef]
- Rong, J.Y.; Chen, X.; Wang, Y.; Zhan, R.B.; Liu, J.B.; Huang, B.; Tang, P.; Wu, R.C.; Wang, G.X. Northward expansion of Central Guizhou Oldland through the Ordovician and Silurian transition: Evidence and implications. Sci. Sin. (Terr.) 2011, 41, 1407–1415. [Google Scholar] [CrossRef]
- Shi, Z.S.; Wang, H.Y.; Lin, C.M.; Sun, S.S.; Jin, H.; Hao, C.C.; Chen, S.; Zhang, R. Paleotopography of Weiyuan–Zigong area in Wufengian–Lungmachian stages (ordovician–silurian transition) and its effect on the quality of shale gas reservoir. J. Stratigr. 2020, 44, 163–173. [Google Scholar] [CrossRef]
- Liang, F.; Wang, H.Y.; Bai, W.H.; Guo, W.; Zhao, Q.; Sun, S.S.; Zhang, Q.; Wu, J.; Ma, C.; Lei, Z.A. Graptolite correlation and sedimentary characteristics of Wufeng–Longmaxi shale in southern Sichuan Basin. Nat. Gas Ind. 2017, 37, 20–26. [Google Scholar] [CrossRef]
- Liang, F.; Zhang, Q.; Xiong, X.H.; Cui, H.Y.; Liang, P.P.; Ma, C. Sedimentary evolution model of upper ordovician Wufeng–Lower Silurian Longmaxi organic–rich shale in the Sichuan Basin and its surrounding area. Acta Sedimentol. Sin. 2019, 37, 847–857. [Google Scholar] [CrossRef]
- Liang, F.; Zhang, Q.; Lu, B.; Jiang, W.; Xiong, X.L.; Chen, P.; Jiang, R.; Liang, P.P.; Ma, C. Lithofacies and distribution of Wufeng Formation—Longmaxi Formation organic–rich shale and its impact on shale gas production in Weiyuan shale gas play, Southern Sichuan Basin, China. Acta Sedimentol. Sin. 2022, 40, 1019–1029. [Google Scholar] [CrossRef]
- Lyu, P.X.; Meng, J.H.; Pan, R.F.; Yi, X.F.; Yue, T.; Zhang, N. Characteristics and Differences Analysis for Thermal Evolution of Wufeng–Longmaxi Shale, Southern Sichuan Basin, SW China. Minerals 2022, 12, 906. [Google Scholar] [CrossRef]
- Shi, Z.S.; Wang, H.Y.; Zhao, S.X.; Zhou, T.Q.; Zhao, Q.; Qi, L. Rapid transgressive shale characteristics and organic matter distribution of the Upper Ordovician–Lower Silurian Wufeng–Longmaxi Formations in southern Sichuan Basin, China. J. Palaeogeogr. (Chin. Ed.) 2023, 25, 788–805. [Google Scholar] [CrossRef]
- Wang, G.X.; Zhao, S.X.; Chen, L.; Zhang, J.; Zhang, C.L.; Yuan, S.S.; Feng, J.R.; Li, B.; Tan, X.C. Shale lithofacies heterogeneity and the different of reservoir quality within sequence stratigraphic framework:Case study of Wufeng Formation–lower Longmaxi Formation in Changning area, South Sichuan Basin. Nat. Gas Geosci. 2022, 33, 1675–1690. [Google Scholar] [CrossRef]
- Zhao, S.X.; Yang, Y.M.; Zhang, J.; Wang, L.S.; Wang, X.Z.; Luo, C.; Tian, C. Micro–layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China. Nat. Gas Geosci. 2016, 27, 470–487. [Google Scholar] [CrossRef]
- Wang, P.F.; Jiang, Z.X.; Lv, P.; Jin, C.; Li, X.; Huang, P. Organic matter pores and evolution characteristics of shales in the Lower Silurian Longmaxi Formation and the Lower Cambrian Niutitang Formation in periphery of Chongqing. Nat. Gas Geosci. 2018, 29, 997–1008. [Google Scholar] [CrossRef]
- Mou, C.L.; Wang, X.P.; Wang, Q.Y.; Zhou, K.K.; Liang, W.; Ge, X.Y.; Chen, X.W. Relationship between sedimentary facies and shale gas geological conditions of the Lower Silurian Longmaxi Formation in southern Sichuan Basin and its adjacent areas. J. Palaeogeogr. 2016, 18, 457–472. [Google Scholar] [CrossRef]
- Liu, B.; Schieber, J.; Mastalerz, M. Petrographic and micro-FTIR study of organic matter in the Upper Devonian New Albany Shale during thermal maturation: Implications for kerogen transformation. In Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks; AAPG Memoir 120; AAPG: Tulsa, OK, USA, 2019; pp. 165–188. [Google Scholar] [CrossRef]
- Liu, B. Organic matter in shales: Types, thermal evolution, and organic pores. Earth Sci. 2023, 48, 4641–4657. [Google Scholar]
- Peters, K.E.; Cassa, M.R. Applied source rock geochemistry. In The Petroleum System: From Source to Trap; Leslie, B.M., Wallace, G.D., Eds.; AAPG Memoir 60; AAPG: Tulsa, OK, USA, 1994; pp. 93–120. [Google Scholar] [CrossRef]
- Borjigin, T.; Shen, B.; Yu, L.; Yang, Y.; Zhang, W.; Tao, C. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng–Longmaxi Formation, Sichuan Basin, SW China. Pet. Explor. Dev. 2017, 44, 69–78. [Google Scholar] [CrossRef]
- Borjigin, T.; Lu, L.; Yu, L.; Zhang, W.; Pan, A.; Shen, B. Formation, preservation and connectivity control of organic pores in shale. Pet. Explor. Dev. 2021, 48, 687–699. [Google Scholar] [CrossRef]
- Lewan, M.D. Hydrous pyrolysis. In Encyclopedia of Petroleum Geoscience; Sorkhabi, R., Ed.; Springer International Publishing: New York, NY, USA, 2017; pp. 1–7. [Google Scholar]
- Qin, J.Z.; Li, Z.M.; Liu, B.Q.; Zhang, Q. The potential of generating heavy oil and solid bitumen of excellent marine source rocks. Pet. Geol. Exp. 2007, 29, 280–285. [Google Scholar] [CrossRef]
- Qin, J.Z.; Tao, G.L.; Bian, L.Z.; Xie, X.M.; Fu, X.D. Hydrocarbon–forming organisms in excellent marine source rocks in South China. Pet. Geol. Exp. 2010, 32, 262–269. [Google Scholar] [CrossRef]
- Qin, J.Z.; Shen, B.J.; Tao, G.L.; Teng, B.; Yang, Y.F.; Zheng, L.J.; Fu, X.D. Hydrocarbon–forming organisms and dynamic evaluation of hydrocarbon generation capacity in excellent source rocks. Pet. Geol. Exp. 2014, 36, 465–472. [Google Scholar] [CrossRef]
- Zhou, X.F.; Guo, W.; Li, X.Z.; Zhang, X.W.; Liang, P.P.; Yu, J.M. Mutual relation between organic matter types and pores with petrological evidence of radiolarian siliceous shale in Wufeng–Longmaxi Formation, Sichuan Basin. J. China Univ. Pet. (Ed. Nat. Sci.) 2022, 46, 12–22. [Google Scholar] [CrossRef]
- Jia, Y.Q.; Liu, Z.P.; Ren, X.H.; Zhou, Y.B.; Zheng, A.L.; Zhang, J.; Han, D.L. Organic matter type differentiation process and main control mechanism: Case study of the Silurian Longmaxi Formation shale reservoir in Weiyuan area. Acta Sedimentol. Sin. 2021, 39, 341–352. [Google Scholar]
- Li, Z.; Zhao, S.X.; Feng, X.; Liu, Y.Y.; Li, B.; Xia, Z.Q.; Zhang, C.L.; Cao, L.Y. Application of large field splicing scanning electron microscopy on quantitatively evaluation of shale pore structure:A case study of Longmaxi Formation reservoir in deep western Chongqing Block to southern Sichuan. Reservoir Eval. Dev. 2021, 11, 569–576. [Google Scholar] [CrossRef]
- Luo, C.; Zhong, K.S.; Li, Y.; He, Y.F.; Li, Y.Y.; Xu, L. “High precision, multi–dimensional, cross–scale” shale digital core technology. Nat. Gas Ind. 2023, 43, 136. [Google Scholar]
- Saif, T.; Lin, Q.; Butcher, A.R.; Bijeljic, B.; Blunt, M.J. Multi–scale multi–dimensional microstructure imaging of oil shale pyrolysis using X–ray micro–tomography, automated ultra–high resolution SEM, MAPS Mineralogy and FIB–SEM. Appl. Energy 2017, 202, 628–647. [Google Scholar] [CrossRef]
- Zhou, X.F.; Guo, W.; Li, X.Z.; Zhang, X.W.; Liang, P.P.; Yu, J.M. Occurrence characteristics, genesis and petroleum geological significance of micro–nano silica–organic matter aggregate in radiolarian siliceous shell cavity: A case study of Wufeng–Longmaxi Formation in Sichuan Basin, SW China. J. Northeast Pet. Univ. 2021, 45, 68–79. [Google Scholar] [CrossRef]
- Wang, Y.M.; Li, X.J.; Chen, B.; Wu, W.; Dong, D.Z.; Zhang, J.; Han, J.; Ma, J.; Dai, B.; Wang, H.; et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk. Pet. Explor. Dev. 2018, 45, 385–395. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wei, G.Q.; Shen, J.J.; Qiu, Z.; Li, X.J.; Zhang, Q.; Zhang, L.F.; Wang, C.H.; Liu, W. Analysis on carbonization distribution and main controlling factors of organic matter in marine shale in Sichuan Basin and its periphery. Nat. Gas Geosci. 2022, 33, 843–859. [Google Scholar] [CrossRef]
- Xiao, X.M.; Wang, M.L.; Wei, Q.; Tian, H.; Pan, L.; Li, T.F. Evaluation of Lower Paleozoic shale with shale gas prospect in south China. Natl. Gas Geosci. 2015, 26, 1433–1445. [Google Scholar]
- Zhao, W.Z.; Li, J.Z.; Yang, T.; Wang, S.F.; Huang, J.L. Geological difference and its significance of marine shale gases in South China. Pet. Explor. Dev. 2016, 43, 499–510. [Google Scholar] [CrossRef]
- Guan, Q.Z.; Dong, D.Z.; Zhang, H.L.; Sun, S.S.; Zhang, S.R.; Guo, W. Types of biogenic quartz and its coupling storage mechanism in organic–rich shales: A case study of the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in the Sichuan Basin, SW China. Pet. Explor. Dev. 2021, 48, 700–709. [Google Scholar] [CrossRef]
- Qiu, Z.; Dong, D.Z.; Lu, B.; Zhou, J.; Shi, Z.S.; Wang, H.Y.; Lin, W.; Zhang, C.C.; Liu, D.X. Discussion on the relationship between graptolite abundance and organic enrichment in shales from the Wufeng and Longmaxi Formation, South China. Acta Sedimentol. Sin. 2016, 34, 1011–1020. [Google Scholar] [CrossRef]
- Qiu, Z.; Zou, C.N.; Li, X.Z.; Wang, H.Y.; Dong, D.Z.; Lu, B.; Zhou, S.W.; Shi, Z.S.; Feng, Z.Q.; Zhang, M.Q. Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale: A case study of the Wufeng-Longmaxi Formations in South China. Nat. Gas Geosci. 2018, 29, 606–615. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration; Springer Science & Business Media: Berlin, Germany, 1978. [Google Scholar]
- Cai, J.G.; Guo, Z.G.; Li, C.X.; Zhou, Z.L. Types of organic matter in water and organic sedimentary processes. J. Tongji Univ. (Nat. Sci.) 2005, 33, 1213–1218. [Google Scholar] [CrossRef]
- Cai, J.G.; Zeng, X.; Wei, H.L.; Song, M.S.; Wang, X.J.; Liu, Q. From water body to sediments: Exploring the depositional processes of organic matter and their implications. J. Palaeogeogr. 2019, 21, 49–66. [Google Scholar] [CrossRef]
- Duan, Y. Marine and Marsh Sedimentary Organic Geochemistry; China Science Publishing & Media: Beijing, China, 2008. [Google Scholar]
- Turner, J.T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 2015, 130, 205–248. [Google Scholar] [CrossRef]
- Wei, H.L.; Cai, J.G.; Wang, G.L.; Wang, X.J. The diversity of organic matter in marine sediments and the suspiciousness of source parameters: A review. Adv. Earth Sci. 2018, 33, 1024–1033. [Google Scholar] [CrossRef]
- Cai, J.G.; Bao, Y.J.; Yang, S.Y.; Wang, X.X.; Fan, D.D.; Xu, J.L.; Wang, A.P. Occurrence and enrichment mechanism of organic matter in an argillaceous sediment and mudstones. Sci. Sin. (Terr.) 2007, 37, 234–243. [Google Scholar] [CrossRef]
- Cai, J.G.; Lu, L.F.; Ding, F.; Fan, F. Significance of interaction between soluble organic matter and clay minerals in muddy source rocks. J. Tongji Univ. (Nat. Sci.) 2009, 37, 1679–1684. [Google Scholar] [CrossRef]
- Cai, J.G.; Lu, L.F.; Song, M.S.; Ding, F.; Bao, Y.J.; Fan, F. Characteristics of extraction of organo–clay complexes and their significance to petroleum geology. Oil Gas Geol. 2010, 31, 300–308. [Google Scholar]
- Cai, J.G.; Song, M.S.; Lu, L.F.; Bao, Y.J.; Ding, F.; Xu, J. Organo–clay complexes in source rocks—A natural material for hydrocarbon generation. Mar. Geol. Quat. Geol. 2013, 33, 123–131. [Google Scholar] [CrossRef]
- Macquaker, J.H.S.; Keller, M.A.; Davies, S.J. Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine–grained sediments. J. Sediment. Res. 2010, 80, 934–942. [Google Scholar] [CrossRef]
- Shen, B.; Yang, Y.; Teng, G.; Qin, J.; Pan, A. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure, Sichuan Basin: A case study of the Wufeng–Longmaxi formations in well Jiaoye1. Pet. Geol. Exp. 2016, 38, 480–488. [Google Scholar] [CrossRef]
- Amthor, J.E.; Nederlof, P.; Faulkner, T. A new play in an old rock–the early cambrian athel silicilyte source rock play of oman. CSPG–SEPM Jt. Conv. 1997, 23. [Google Scholar]
- Yan, J.X.; Meng, Q.; Wang, X.; Liu, Z.C.; Huang, H.; Chen, F.Y.; Guo, Q.D. Carbonate factory and carbonate platform: Progress and prospects. J. Palaeogeogr. 2019, 21, 232–253. [Google Scholar] [CrossRef]
- Zhou, X.F.; Li, X.Z.; Guo, W.; Zhang, X.W.; Liang, P.P.; Yu, J.M. Characteristics, formation mechanism and influence on physical properties of carbonate minerals in shale reservoir of Wufeng–Longmaxi formations, Sichuan Basin. J. Nat. Gas Geosci. 2022, 33, 775–788. [Google Scholar] [CrossRef]
- Curtis, C.D. Diagenetic alteration in black shales. J. Geol. Soc. 1980, 137, 189–194. [Google Scholar] [CrossRef]
- Guo, Q.H.; Jin, Z.K.; Geng, Y.K.; Zhao, J.H.; Chang, R.; Cui, X.M.; Wang, J.Y. The characteristics of carbonate minerals in the Longmaxi Formationgas shale and its impact on the reservoir performance in the Sichuan Basin. Nat. Gas Geosci. 2019, 30, 616–625. [Google Scholar] [CrossRef]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and Sandstone; Springer: Berlin, Germany, 1972. [Google Scholar]
- Robbins, L.L.; Tao, Y.; Evans, C.A. Temporal and spatial distribution of whitings on Great Bahama Bank and a new lime mud budget. Geology 1997, 25, 947–950. [Google Scholar] [CrossRef]
- Han, W.Y.; Ma, K.M. Carbonate compensation depth, saturation horizon and lysocline in the northeast region of South China Sea. J. Trop. Oceanogr. 1988, 7, 84–89. [Google Scholar]
- Mao, S.Z. Ocean drilling program and the development of paleoceanography. Geol. Sci. Technol. Inf. 1994, 13, 45–52. [Google Scholar]
- Wang, Y.J. Deep–sea carbonate compensation depth and lysocline. Mar. Geol. Quat. Geol. 1987, 7, 113–120. [Google Scholar] [CrossRef]
- Zheng, L.F.; Chen, R.H. Planktonic foraminifera and deep–sea carbonate dissolution. Offshore Oil 1982, 1, 41–49. [Google Scholar]
- Wu, H.N.; Chang, C.F.; Liu, C.; Zhong, D.L. Evolution of the qinling fold belt and the movement of the north and south China blocks: The evidence of geology and paleomagnetism. Sci. Geol. Sin. 1990, 25, 201–214. [Google Scholar]
- Bontognali, T.R.R.; McKenzie, J.A.; Warthmann, R.J.; Vasconcelos, C. Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria. Terra Nova 2014, 26, 72–77. [Google Scholar] [CrossRef]
- Emmings, J.F.; Dowey, P.J.; Taylor, K.G.; Davies, S.J.; Vane, C.H.; Moss-Hayes, V.; Rushton, J.C. Origin and implications of early diagenetic quartz in the Mississippian Bowland Shale Formation, Craven Basin, UK. Mar. Pet. Geol. 2020, 120, 104567. [Google Scholar] [CrossRef]
- Wang, B.X.; Zhang, P.H.; Liang, J.; Chen, J.W.; Meng, X.H.; Fu, Y.L.; Bao, Y.J. Biogenic microcrystalline quartz and its influence on pore development in marine shale reservoirs. Acta Sedimentol. 2023, in press. [Google Scholar] [CrossRef]
- Wang, S.F.; Zou, C.N.; Dong, D.Z.; Wang, Y.M.; Huang, J.L.; Guo, Z.J. Biogenic silica of organic–rich shale in Sichuan basin and its significance for shale gas. Acta Sci. Nat. Univ. Pekin. 2014, 50, 476–486. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lu, L.F.; Liu, W.X.; Shen, B.J.; Yu, L.J.; Yang, Y.F. Pore network changes in opaline siliceous shale during diagenesis. Pet. Geol. Exp. 2017, 39, 341–347. [Google Scholar]
- Jones, B.; Renaut, R.W. Microstructural changes accompanying the opal-A to opal-CT transition: New evidence from the siliceous sinters of Geysir, Haukadalur, Iceland. Sedimentology 2007, 54, 921–948. [Google Scholar] [CrossRef]
- Lu, L.F.; Liu, W.X.; Yu, L.J.; Zhang, W.T.; Shen, B.J.; Tenger, B. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale. Pet. Geol. Exp. 2020, 42, 363–370. [Google Scholar] [CrossRef]
- Yang, D.F.; Wei, C.D.; Ning, W.K.; Xu, S.N.; Jiang, Y.S. Structure and adsorption properties of Nenjiang opal shale. J. Jilin Univ. (Earth Sci. Ed.) 2010, 40, 1061–1065. [Google Scholar] [CrossRef]
- Bohrmann, G.; Abelmann, A.; Gersonde, R.; Hubberten, H.; Kuhn, G. Pure siliceous ooze, a diagenetic environment for early chert formation. Geology 1994, 22, 207–210. [Google Scholar] [CrossRef]
- Botz, R.; Bohrmann, G. Low–temperature opal–CT precipitation in Antarctic deep–sea sediments: Evidence from oxygen isotopes. Earth Planet. Sci. Lett. 1991, 107, 612–617. [Google Scholar] [CrossRef]
- Kastner, M.; Keene, J.B.; Gieskes, J.M. Diagenesis of siliceous oozes—I. Chemical controls on the rate of opal–A to opal–CT transformation—An experimental study. Geochim. Cosmochim. Acta 1977, 41, 1041–1059. [Google Scholar] [CrossRef]
- Gao, Z.Z. Deep–Water Tractive Current Deposits—The Study of Internal–Tide, Internal Wave and Contour Current Deposits; China Science Publishing & Media: Beijing, Germany, 1996. [Google Scholar]
- Heezen, B.C.; Hollister, C. Deep–sea current evidence from abyssal sediments. Mar. Geol. 1964, 1, 141–174. [Google Scholar] [CrossRef]
- Hollister, C.D. The concept of deep–sea contourites. Sediment. Geol. 1993, 82, 5–11. [Google Scholar] [CrossRef]
- Li, X.D. Current situation of combined–flow deposition for sedimentary characteristic series and its theory frame work. Adv. Earth Sci. 2021, 36, 375–389. [Google Scholar] [CrossRef]
- Schmidt, V.; Macdonald, D. Secondary reservoirs porosity in the course of sandstone diagenesis. AAPG Contin. Course Note Ser. 1982, 12, 4–39. [Google Scholar]
- Surdam, R.C.; Boese, S.W.; Crossey, L.J. The chemistry of secondary porosity: Part 2. Aspects of porosity modification, Clastic Diagenesis. AAPG 1984, 37, 127–149. [Google Scholar] [CrossRef]
- Madigan, M.T.; Martinko, J.M.; Parker, J.; Dunlap, P.V.; Clark, D.P. Brock’s Biology of Microorganisms, 11th ed.; Pearson E ducation, Inc.: London, UK, 2006. [Google Scholar]
- Altermann, W. The evolution of life and its impact on sedimentation. In Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems; Altermann, W., Corcoran, P.L., Eds.; Blackwell Science IAS Special Publication: Oxford, UK, 2002; pp. 15–32. [Google Scholar] [CrossRef]
- Tice, M.M.; Lowe, D.R. The origin of carbonaceous matter in pre–3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert. Earth–Sci. Rev. 2006, 76, 259–300. [Google Scholar] [CrossRef]
- Hofmann, H.J.; Grey, K.; Hickman, A.H.; Thorpe, R.I. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull. 1999, 111, 1256–1262. [Google Scholar] [CrossRef]
- Schopf, J.W. Fossil evidence of Archaean life. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 869–885. [Google Scholar] [CrossRef]
- Krumbein, W.E. The year of the slime. Biostab. Sediments 1994, 101, 1–7. [Google Scholar]
- Gong, Y.; Ni, S.; Jiang, H.; Zhang, R.; Cui, M. Sedimentary characteristics of Miaolingian leiolites dominated by filamentous cyanobacteria: A case study of Jinzhouwan section, North China Platform. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Mei, M.X. Genetic types and their classification for the microbial induced sedimentary structure within terrigenous clastic rocks. Geol. Rev. 2011, 57, 419–436. [Google Scholar] [CrossRef]
- Mei, M.X.; Meng, Q.F. Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites. J. Palaeogeogr. 2016, 18, 127–146. [Google Scholar] [CrossRef]
- Petrash, D.A.; Bialik, O.M.; Bontognali, T.R.R.; Vasconcelos, C.; Roberts, J.A.; McKenzie, J.A. Microbially catalyzed dolomite formation: From near-surface to burial. Earth-Sci. Rev. 2017, 171, 558–582. [Google Scholar] [CrossRef]
- Zheng, X.J.; Kuang, H.W. Nature’s magic–Yadan, Danxia and karst. Bull. Mineral. Petrol. Geochem. 2021, 40, 992–997. [Google Scholar] [CrossRef]
- Fang, J.R.; Huang, W.Z. Recent progress in research on deep-sea microorganisms. Mar. Sci. Bull. 1995, 14, 65–69. [Google Scholar]
- Zhang, C.Y.; Xu, K.D.; Jiao, Y.Y.; Zhang, J.L.; Feng, Z.G.; Chen, C. Analysis of international trends and hotspots in research on deep-sea biodiversity in the South China Sea. Mar. Sci. 2023, 47, 128–136. [Google Scholar] [CrossRef]
- Zhao, C.H.; Ye, D.Z.; Wei, W.L. Research on deep-sea microbiology. Microbiol. China 2006, 33, 142–146. [Google Scholar] [CrossRef]
- Bartow, J.A. The Cenozoic evolution of the Sun Joaquin Valley; U. S. Geologic Survey Professional: Menlo Park, CA, USA, 1991; p. 1501. [Google Scholar]
- Blakey, R. Paleogeography and tectonic evolution of late Paleozoic sedimentary basins, southwestern North American. GSA Abstr. Programs 2005, 37, 442. [Google Scholar]
- Gambacorta, G.; Caronni, V.; Antonielli, E.; Previde, E.; Massara, R.A.; Scotti, P.; Trincianti, E.; Erba, E. Hot shale in an ice world: Paleoceanographic evolution of the northern Gondwana margin during the early Paleozoic (Tanezzuft Formation, Tunisia). Mar. Pet. Geol. 2016, 72, 393–411. [Google Scholar] [CrossRef]
- Lüning, S.; Craig, J.; Loydell, D.K.; Štorch, P.; Fitches, B. Lower Silurian ‘hot shales’ in North Africa and Arabia: Regional distribution and depositional model. Earth Sci. Rev. 2000, 49, 121–200. [Google Scholar] [CrossRef]
- Nie, H.K.; Li, P.; Chen, Q.; Jin, Z.J.; Liu, Q.Y.; Dang, W.; Chen, Q.; Ding, J.H.; Zhai, C.B. A world-class source rock in southern China formed during the periods from Katian to Rhuddanian: Biostratigraphic distribution, depositional model and shale gas potential. Gondwana Res. 2024, 126, 267–288. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Guo, W.; Li, X.; Liang, P.; Yu, J.; Zhang, C. Deciphering Nano-Resolution Petrological Characteristics of the Siliceous Shale at the Bottom of the Longmaxi Formation in the Zigong Area, Sichuan Basin, China: Deep-Water Microbialites. Minerals 2024, 14, 1020. https://doi.org/10.3390/min14101020
Zhou X, Guo W, Li X, Liang P, Yu J, Zhang C. Deciphering Nano-Resolution Petrological Characteristics of the Siliceous Shale at the Bottom of the Longmaxi Formation in the Zigong Area, Sichuan Basin, China: Deep-Water Microbialites. Minerals. 2024; 14(10):1020. https://doi.org/10.3390/min14101020
Chicago/Turabian StyleZhou, Xiaofeng, Wei Guo, Xizhe Li, Pingping Liang, Junmin Yu, and Chenglin Zhang. 2024. "Deciphering Nano-Resolution Petrological Characteristics of the Siliceous Shale at the Bottom of the Longmaxi Formation in the Zigong Area, Sichuan Basin, China: Deep-Water Microbialites" Minerals 14, no. 10: 1020. https://doi.org/10.3390/min14101020
APA StyleZhou, X., Guo, W., Li, X., Liang, P., Yu, J., & Zhang, C. (2024). Deciphering Nano-Resolution Petrological Characteristics of the Siliceous Shale at the Bottom of the Longmaxi Formation in the Zigong Area, Sichuan Basin, China: Deep-Water Microbialites. Minerals, 14(10), 1020. https://doi.org/10.3390/min14101020