On a Non-Newtonian Calculus of Variations
Abstract
:1. Introduction
2. Materials and Methods
- (i)
- (commutativity);
- (ii)
- (associativity);
- (iii)
- (Euler’s/Napier’s transcendent number e is the neutral element for ⊙);
- (iv)
- if and we define , then (inverse element).
- (v)
- ;
- (vi)
- ;
- (vii)
- ;
- (viii)
- .
- ;
- if, and only if, ;
- ;
- .
2.1. Derivatives
- If , then .
- If , then ;
- If , then ;
- If and , then
- (a)
- If , and c is a positive constant, then (derivative of a constant);
- (b)
- (derivative of a sum);
- (c)
- (derivative of a difference);
- (d)
- (derivative of a product);
- (e)
- (chain rule).
2.2. Integrals
- If k is a positive constant, then —in particular, if , then ;
- ;
- ;
- ;
- ;
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
- (v)
- If for all , then ;
- (vi)
- If for all , then .
3. Results
3.1. Static Optimization
3.2. Dynamic Optimization
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grossman, M.; Katz, R. Non-Newtonian Calculus; Lee Press: Pigeon Cove, MA, USA, 1972. [Google Scholar]
- Boruah, K.; Hazarika, B.; Bashirov, A.E. Solvability of bigeometric differential equations by numerical methods. Bol. Soc. Parana. Mat. 2021, 39, 203–222. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Mı sırlı, E.; Tandoğdu, Y.; Özyapıcı, A. On modeling with multiplicative differential equations. Appl. Math. J. Chin. Univ. Ser. B 2011, 26, 425–438. [Google Scholar] [CrossRef]
- Mora, M.; Córdova-Lepe, F.; Del-Valle, R. A non-Newtonian gradient for contour detection in images with multiplicative noise. Pattern Recognit. Lett. 2012, 33, 1245–1256. [Google Scholar] [CrossRef]
- Ozyapici, A.; Bilgehan, B. Finite product representation via multiplicative calculus and its applications to exponential signal processing. Numer. Algorithms 2016, 71, 475–489. [Google Scholar] [CrossRef]
- Czachor, M. Unifying Aspects of Generalized Calculus. Entropy 2020, 22, 1180. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.; Torres, R.; Campillay-Llanos, W.; Guevara-Morales, F. Applications of proportional calculus and a non-Newtonian logistic growth model. Proyecciones 2020, 39, 1471–1513. [Google Scholar] [CrossRef]
- Özyapıcı, A.; Riza, M.; Bilgehan, B.; Bashirov, A.E. On multiplicative and Volterra minimization methods. Numer. Algorithms 2014, 67, 623–636. [Google Scholar] [CrossRef]
- Jaëck, F. Calcul différentiel et intégral adapté aux substitutions par Volterra. Hist. Math. 2019, 48, 29–68. [Google Scholar] [CrossRef]
- Slavík, A. Product Integration, Its History and Applications; Matfyzpress: Prague, Czech Republic, 2007; p. iv+147. [Google Scholar]
- Córdova-Lepe, F. The multiplicative derivative as a measure of elasticity in economics. TMAT Rev. Latinoam. Cienc. E Ing. 2006, 2, 1–8. [Google Scholar]
- Bashirov, A.E.; Kurpı nar, E.M.; Özyapıcı, A. Multiplicative calculus and its applications. J. Math. Anal. Appl. 2008, 337, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Boruah, K.; Hazarika, B. On some generalized geometric difference sequence spaces. Proyecciones 2017, 36, 373–395. [Google Scholar] [CrossRef] [Green Version]
- Campillay-Llanos, W.; Guevara, F.; Pinto, M.; Torres, R. Differential and integral proportional calculus: How to find a primitive for f(x)=1/sqrt2πe-(1/2)x2. Int. J. Math. Ed. Sci. Technol. 2021, 52, 463–476. [Google Scholar] [CrossRef]
- Gurefe, Y.; Kadak, U.; Misirli, E.; Kurdi, A. A new look at the classical sequence spaces by using multiplicative calculus. Politehn. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2016, 78, 9–20. [Google Scholar]
- Leitmann, G. The Calculus of Variations and Optimal Control; Mathematical Concepts and Methods in Science and Engineering; Plenum Press: New York, NY, USA; London, UK, 1981; p. xvi+311. [Google Scholar]
- van Brunt, B. The Calculus of Variations; Universitext, Springer: New York, NY, USA, 2004; p. xiv+290. [Google Scholar] [CrossRef]
- Sidi Ammi, M.R.; Torres, D.F.M. Regularity of solutions to higher-order integrals of the calculus of variations. Int. J. Syst. Sci. 2008, 39, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations; Springer: Cham, Switzerland, 2019; p. xiv+124. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Martins, N. Fractional variational principle of Herglotz for a new class of problems with dependence on the boundaries and a real parameter. J. Math. Phys. 2020, 61, 102701. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M. Quantum Variational Calculus; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Brito da Cruz, A.M.C.; Martins, N. General quantum variational calculus. Stat. Optim. Inf. Comput. 2018, 6, 22–41. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.; Torres, D.F.M. Calculus of variations on time scales with nabla derivatives. Nonlinear Anal. 2009, 71, e763–e773. [Google Scholar] [CrossRef] [Green Version]
- Dryl, M.; Torres, D.F.M. Direct and inverse variational problems on time scales: A survey. In Modeling, Dynamics, Optimization and Bioeconomics, II, Proceedings of the International Conference on Dynamics, Games and Science, Porto, Portugal, 17–21 February 2014; Springer Proceedings in Mathematics & Statistics; Springer: Cham, Switzerland, 2017; Volume 195, pp. 223–265. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.J.; Torres, D.F.M. Two-dimensional Newton’s problem of minimal resistance. Control Cybernet. 2006, 35, 965–975. [Google Scholar]
- Frederico, G.S.F.; Odzijewicz, T.; Torres, D.F.M. Noether’s theorem for non-smooth extremals of variational problems with time delay. Appl. Anal. 2014, 93, 153–170. [Google Scholar] [CrossRef]
- Ferreira, R.A.C.; Torres, D.F.M. Remarks on the calculus of variations on time scales. Int. J. Ecol. Econ. Stat. 2007, 9, 65–73. [Google Scholar]
- Dryl, M.; Torres, D.F.M. A general delta-nabla calculus of variations on time scales with application to economics. Int. J. Dyn. Syst. Differ. Equ. 2014, 5, 42–71. [Google Scholar] [CrossRef]
- Jost, J. Mathematical Methods in Biology and Neurobiology; Universitext, Springer: London, UK, 2014; p. x+226. [Google Scholar] [CrossRef]
- Lemos-Paião, A.P.; Silva, C.J.; Torres, D.F.M.; Venturino, E. Optimal control of aquatic diseases: A case study of Yemen’s cholera outbreak. J. Optim. Theory Appl. 2020, 185, 1008–1030. [Google Scholar] [CrossRef]
- Grbić, T.; Medić, S.; Perović, A.; Mihailović, B.; Novković, N.; Duraković, N. A premium principle based on the g-integral. Stoch. Anal. Appl. 2017, 35, 465–477. [Google Scholar] [CrossRef]
- Ünlüyol, E.; Salaş, S.; İşcan, I. A new view of some operators and their properties in terms of the non-Newtonian calculus. Topol. Algebra Appl. 2017, 5, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Tekin, S.; Başar, F. Certain sequence spaces over the non-Newtonian complex field. Abstr. Appl. Anal. 2013, 2013, 739319. [Google Scholar] [CrossRef]
- Grossman, M. The First Nonlinear System of Differential and Integral Calculus; MATHCO: Rockport, MA, USA, 1979; p. xi+85. [Google Scholar]
- Grossman, M. Bigeometric Calculus; Archimedes Foundation: Rockport, MA, USA, 1983; p. vii+100. [Google Scholar]
- Riza, M.; Aktöre, H. The Runge-Kutta method in geometric multiplicative calculus. LMS J. Comput. Math. 2015, 18, 539–554. [Google Scholar] [CrossRef] [Green Version]
- Boruah, K.; Hazarika, B. Some basic properties of bigeometric calculus and its applications in numerical analysis. Afr. Mat. 2021, 32, 211–227. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Norozpour, S. On complex multiplicative integration. TWMS J. Appl. Eng. Math. 2017, 7, 82–93. [Google Scholar]
- Waseem, M.; Aslam Noor, M.; Ahmed Shah, F.; Inayat Noor, K. An efficient technique to solve nonlinear equations using multiplicative calculus. Turk. J. Math. 2018, 42, 679–691. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, M.; Zafar, A.A. On some Hermite-Hadamard integral inequalities in multiplicative calculus. J. Inequal. Spec. Funct. 2019, 10, 111–122. [Google Scholar]
- Córdova-Lepe, F. From quotient operation toward a proportional calculus. Int. J. Math. Game Theory Algebra 2009, 18, 527–536. [Google Scholar]
- Yazıcı, M.; Selvitopi, H. Numerical methods for the multiplicative partial differential equations. Open Math. 2017, 15, 1344–1350. [Google Scholar] [CrossRef] [Green Version]
- Boruah, K.; Hazarika, B. G-calculus. TWMS J. Appl. Eng. Math. 2018, 8, 94–105. [Google Scholar]
- Pap, E. Generalized real analysis and its applications. Int. J. Approx. Reason. 2008, 47, 368–386. [Google Scholar] [CrossRef] [Green Version]
- Duyar, C.; SağIr, B.; Oğur, O. Some basic topological properties on Non-Newtonian real line. Br. J. Math. Comput. Sci. 2015, 9, 300–307. [Google Scholar] [CrossRef]
- Binbaşıoǧlu, D.; Demiriz, S.; Türkoǧlu, D. Fixed points of non-Newtonian contraction mappings on non-Newtonian metric spaces. J. Fixed Point Theory Appl. 2016, 18, 213–224. [Google Scholar] [CrossRef]
- Güngör, N. Some geometric properties of the non-Newtonian sequence spaces lp(N). Math. Slovaca 2020, 70, 689–696. [Google Scholar] [CrossRef]
- Sağır, B.; Erdoğan, F. On non-Newtonian power series and its applications. Konuralp J. Math. 2020, 8, 294–303. [Google Scholar]
- Burgin, M.; Czachor, M. Non-Diophantine Arithmetics in Mathematics, Physics and Psychology; World Scientific: Singapore, 2021. [Google Scholar]
- Plakhov, A.Y.; Torres, D.F.M. Newton’s aerodynamic problem in media of chaotically moving particles. Mat. Sb. 2005, 196, 111–160. [Google Scholar] [CrossRef]
- Torres, D.F.M.; Plakhov, A.Y. Optimal control of Newton-type problems of minimal resistance. Rend. Semin. Mat. Univ. Politec. Torino 2006, 64, 79–95. [Google Scholar]
- Castillo, E.; Luceño, A.; Pedregal, P. Composition functionals in calculus of variations. Application to products and quotients. Math. Model. Methods Appl. Sci. 2008, 18, 47–75. [Google Scholar] [CrossRef]
- Riza, M.; Özyapici, A.; Misirli, E. Multiplicative finite difference methods. Quart. Appl. Math. 2009, 67, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Yener, G.; Emiroglu, I. A q-analogue of the multiplicative calculus: q-multiplicative calculus. Discret. Contin. Dyn. Syst. Ser. S 2015, 8, 1435–1450. [Google Scholar] [CrossRef] [Green Version]
- Stanley, D. A multiplicative calculus. Primus 1999, 9, 310–326. [Google Scholar] [CrossRef]
- Filip, D.A.; Piatecki, C. A non-newtonian examination of the theory of exogenous economic growth. Math. Aeterna 2014, 4, 101–117. [Google Scholar]
- Uzer, A. Multiplicative type complex calculus as an alternative to the classical calculus. Comput. Math. Appl. 2010, 60, 2725–2737. [Google Scholar] [CrossRef] [Green Version]
- Çakmak, A.F.; Başar, F. Certain spaces of functions over the field of non-Newtonian complex numbers. Abstr. Appl. Anal. 2014, 2014, 236124. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Norozpour, S. On an alternative view to complex calculus. Math. Methods Appl. Sci. 2018, 41, 7313–7324. [Google Scholar] [CrossRef]
- Çakmak, A.F.; Başar, F. Some new results on sequence spaces with respect to non-Newtonian calculus. J. Inequal. Appl. 2012, 2012, 228. [Google Scholar] [CrossRef] [Green Version]
- Florack, L.; van Assen, H. Multiplicative calculus in biomedical image analysis. J. Math. Imaging Vis. 2012, 42, 64–75. [Google Scholar] [CrossRef] [Green Version]
Short Biography of Author
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, D.F.M. On a Non-Newtonian Calculus of Variations. Axioms 2021, 10, 171. https://doi.org/10.3390/axioms10030171
Torres DFM. On a Non-Newtonian Calculus of Variations. Axioms. 2021; 10(3):171. https://doi.org/10.3390/axioms10030171
Chicago/Turabian StyleTorres, Delfim F. M. 2021. "On a Non-Newtonian Calculus of Variations" Axioms 10, no. 3: 171. https://doi.org/10.3390/axioms10030171
APA StyleTorres, D. F. M. (2021). On a Non-Newtonian Calculus of Variations. Axioms, 10(3), 171. https://doi.org/10.3390/axioms10030171