Series with Commuting Terms in Topologized Semigroups
Abstract
:1. Introduction
2. Algebraic Part
3. Series
4. Additional Comments
4.1. On Theorem 2
4.2. On Sum Ranges
- A subset of a finite-dimensional real Banach space is a sum range if and only if it is affine (Steinitz’s theorem, see [6]);
- A subset of a real nuclear Frechet space is a sum range if and only if it is closed and affine [13];
- Every closed affine subset of a separable real Frechet space can be a sum range (cf. [19], where the following question is left open: is every separable infinite-dimensional complete metrizable real topological vector space a sum range?);
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galanor, S. Riemann’s rearrangement Theorem. Math. Teach. 1987, 80, 675–681. [Google Scholar] [CrossRef]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 4th ed.; Cambridge University Press: Cambridge, UK, 1927; [Russian translation by F. V. Shirokov, Moscow, 1962]. [Google Scholar]
- Castejón, A.; Corbacho, E.; Tarieladze, V. Metric Monoids and Integration; Manuscript; Vigo, Spain, 1995; 268p. [Google Scholar]
- McArthur, C.W. Series with Sums Invariant Under Rearrangement. Am. Math. Mon. 1968, 75, 729–731. [Google Scholar] [CrossRef]
- Bourbaki, N. Algebra 1, Chapters 1–3; Hermann: Paris, France, 1974. [Google Scholar]
- Kadets, M.; Kadets, V. Series in Banach Spaces: Conditional and Unconditional Convergence; Birkhauser: Basel, Switzerland, 1997; Volume 94. [Google Scholar]
- Bourbaki, N. General Topology, Part 1, Chapters I–IV; Hermann: Paris, France, 1966. [Google Scholar]
- Orlicz, W. Beitrage zur Theorie derOrthogonalentwicklungen II. Studia Math. 1929, 1, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, T.H. On Unconditional Convergence in Normed Vector Spaces. Bull. Am. Math. Soc. 1940, 46, 959–962. [Google Scholar] [CrossRef] [Green Version]
- Hadwiger, H. Uber das Umordnungsproblem im Hilbertschen Raum. Math. Z. 1941, 47, 325–329. [Google Scholar] [CrossRef]
- McArthur, C.W. On relationships amongs certain spaces of sequences in an arbitrary Banach space. Can. J. Math. 1956, 8, 192–197. [Google Scholar] [CrossRef]
- Chasco, M.J.; Chobanyan, S. Rearrangements of series in locally convex spaces. Mich. Math. J. 1997, 44, 607–617. [Google Scholar] [CrossRef]
- Banaszczyk, W. The Steinitz theorem on rearrangement of series for nuclear spaces. J. Reine Angew. Math. 1990, 403, 187–200. [Google Scholar]
- Banaszczyk, W. Additive Subgroups of Topological Vector Spaces; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1991; Volume 1466. [Google Scholar]
- Bonet, J.; Defant, A. The Levy-Steinitz rearrangement theorem for duals of metrizable spaces. Isr. J. Math. 2000, 117, 131–156. [Google Scholar] [CrossRef] [Green Version]
- Bonet, J. Reordenacion de series. El teorema de Levy-Steinitz. Gac. RSME 2013, 16, 449–464. [Google Scholar]
- Giorgobiani, G. Rearrangements of series. J. Math. Sci. 2019, 239, 437–548. [Google Scholar] [CrossRef]
- Sofi, M.A. Levy-Steinitz theorem in infinite dimension. N. Z. J. Math. 2008, 38, 63–73. [Google Scholar]
- Giorgobiani, G.; Tarieladze, V. Special universal series. In Several Problems of Applied Mathematics and Mechanics, Chapter 12; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 125–130. [Google Scholar]
- Wojtaszczyk, J.O. A series whose sum range is an arbitrary finite set. Stud. Math. 2005, 171, 261–281. [Google Scholar] [CrossRef]
- Tarieladze, V. On the sum range problem. In Book of Abstracts, Proceedings of the Caucasian Mathematics Conference CMC II, Van, Turkey, 22–24 August 2017; Turkish Mathematical Society: Istanbul, Turkey, 2017; pp. 126–127. [Google Scholar]
- Ostrovskii, M.I. Domains of sums of conditionally convergent series in Banach spaces. Teor. Funkts. Funkts. Anal. Prilozh. 1986, 46, 77–85. (In Russian). [English translation: Ostrovskii, M.I. Set of sums of conditionally convergent series in Banach spaces. J. Math. Sci. 1990, 48, 559–566]. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castejón, A.; Corbacho, E.; Tarieladze, V. Series with Commuting Terms in Topologized Semigroups. Axioms 2021, 10, 237. https://doi.org/10.3390/axioms10040237
Castejón A, Corbacho E, Tarieladze V. Series with Commuting Terms in Topologized Semigroups. Axioms. 2021; 10(4):237. https://doi.org/10.3390/axioms10040237
Chicago/Turabian StyleCastejón, Alberto, Eusebio Corbacho, and Vaja Tarieladze. 2021. "Series with Commuting Terms in Topologized Semigroups" Axioms 10, no. 4: 237. https://doi.org/10.3390/axioms10040237
APA StyleCastejón, A., Corbacho, E., & Tarieladze, V. (2021). Series with Commuting Terms in Topologized Semigroups. Axioms, 10(4), 237. https://doi.org/10.3390/axioms10040237