Generalized Summation Formulas for the Kampé de Fériet Function
Abstract
:1. Introduction and Preliminaries
2. Results Required
3. General Summation Formulas for the Kampé de Fériet Function
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
- Rainville, E.D. Special Functions; Chelsea Publishing Company: Bronx, NY, USA, 1971. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Milovanović, G.V.; Parmar, R.K.; Rathie, A.K. A study of generalized summation theorems for the series 2F1 with an applications to Laplace transforms of convolution type integrals involving Kummer’s functions 1F1. Appl. Anal. Discret. Math. 2018, 12, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Exton, H. Multiple Hypergeometric Functions; Halsted Press: New York, NY, USA, 1976. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood Series: Mathematics and Its Applications; Ellis Horwood Ltd.: Chichester, UK; Halsted Press [John Wiley & Sons, Inc.]: New York, NY, USA, 1985. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K. Generalizations of Watson’s theorem on the sum of a 3F2. Indian J. Math. 1992, 34, 23–32. [Google Scholar]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K.; Arora, K. Generalizations of Dixon’s theorem on the sum of a 3F2. Math. Comput. 1994, 62, 267–276. [Google Scholar] [CrossRef]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K. Generalizations of Whipple’s theorem on the sum of a 3F2. J. Comput. Appl. Math. 1996, 72, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Rakha, M.A.; Rathie, A.K. Generalizations of classical summation theorems for the series 2F1 and 3F2 with applications. Integral Transform. Spec. Funct. 2011, 22, 823–840. [Google Scholar] [CrossRef]
- Kim, Y.S.; Rakha, M.A.; Rathie, A.K. Extensions of certain classical summation theorems for the series 2F1, 3F2 and 4F3 with applications in Ramanujan’s summations. Int. J. Math. Math. Sci. 2010, 26, 309503. [Google Scholar] [CrossRef] [Green Version]
- Appell, P.; Kampé de Fériet, J. Fonctions Hypergéométriques et Hypersphérique Polynômes d’Hermité; Gauthiers Villars: Paris, France, 1926. [Google Scholar]
- Humbert, P. The confluent hypergeometric functions of two variables. Proc. Roy. Soc. Edinb. 1922, 41, 73–96. [Google Scholar] [CrossRef] [Green Version]
- Kampé de Fériet, J. Les fonctions hypergéometriques d’ordre supérieur à deux variables. C. R. Acad. Sci. Paris 1921, 173, 401–404. [Google Scholar]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions. Quart. J. Math. (Oxf. Ser.) 1940, 11, 249–270. [Google Scholar] [CrossRef]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions (II). Quart. J. Math. (Oxf. Ser.) 1941, 12, 112–128. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Panda, R. An integral representation for the product of two Jacobi polynomials. J. Lond. Math. Soc. 1976, 12, 419–425. [Google Scholar] [CrossRef]
- Buschman, R.G.; Srivastava, H.M. Series identities and reducibility of Kampé de Fériet functions. Math. Proc. Camb. Philos. Soc. 1982, 91, 435–440. [Google Scholar] [CrossRef]
- Carlitz, L. Summation of a double hypergeometric series. Mathematics (Catania) 1967, 22, 138–142. [Google Scholar]
- Chan, W.-C.; Chen, K.-Y.; Chyan, C.-J.; Srivastava, H.M. Some multiple hypergeometric transformations and associated reduction formulas. J. Math. Anal. Appl. 2004, 294, 418–437. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Srivastava, H.M. Series identities and associated families of generating functions. J. Math. Anal. Appl. 2005, 311, 582–599. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-C.; Srivastava, H.M. Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions. J. Comput. Appl. Math. 2003, 156, 355–370. [Google Scholar] [CrossRef]
- Cvijović, D.; Miller, R. A reduction formula for the Kampé de Fériet function. Appl. Math. Lett. 2010, 23, 769–771. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.N. Sum of a double hypergeometric series. Mathematics (Catania) 1966, 21, 300–301. [Google Scholar]
- Van der Jeugt, J. Transformation formula for a double Clausenian hypergeometric series, its q-analogue and its invariance group. J. Comput. Appl. Math. 2002, 139, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Van der Jeugt, J.; Pitre, S.N.; Rao, K.S. Multiple hypergeometric functions and g-j coefficients. J. Phys. A Math. Gen. 1994, 27, 5251–5264. [Google Scholar] [CrossRef]
- Van der Jeugt, J.; Pitre, S.N.; Rao, K.S. Transformation and summation formulas for double hypergeometric series. J. Comput. Appl. Math. 1997, 83, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, P.W. Some reduction formulas for double series and Kampé de Fériet functions. Nederl. Akad. Wetensch. Indag Math. 1984, 87, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S. On certain reducibility of Kampé de Fériet function. Honam Math. J. 2009, 31, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Krupnikov, E.D. A Register of Computer Oriented Reduction of Identities for Kampé de Fériet Function; Draft Manuscript; Novosibirsk, Russia, 1996. [Google Scholar]
- Miller, A.R. On a Kummer-type transformation for the generalized hypergeometric function 2F2. J. Comput. Appl. Math. 2003, 157, 507–509. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.S.; Van der Jeugt, J. Stretched g-j coefficients and summation theorems. J. Phys. A Math. Gen. 1994, 27, 3083–3090. [Google Scholar] [CrossRef]
- Saran, S. Reducibility of generalized Kampé de Fériet function. Ganita 1980, 31, 89–98. [Google Scholar]
- Shankar, O.; Saran, S. Reducibility of Kampé de Fériet function. Ganita 1970, 21, 9–16. [Google Scholar]
- Sharma, B.L. Sum of a double series. Proc. Am. Math. Soc. 1975, 52, 136–138. [Google Scholar] [CrossRef]
- Sharma, B.L. A note on hypergeometric functions of two variables. Indag. Math. 1976, 79, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Singhal, R.P. Transformation formulas for the modified Kampé de Fériet function. Math. Stud. 1972, 39, 327–329. [Google Scholar]
- Srivastava, H.M. The sum of a multiple hypergeometric series. Indag Math. 1977, 80, 448–452. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kampé de Fériet’s double hypergeometric series. Math. Nachr. 1972, 53, 151–159. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W. Transformation and summation formulae for Kampé de Fériet series. J. Math. Anal. Appl. 2014, 409, 100–110. [Google Scholar] [CrossRef]
- Choi, J.; Rathie, A.K. General summation formulas for the Kampé de Fériet function. Montes Taures J. Pure Appl. Math. 2019, 1, 107–128. [Google Scholar]
- Choi, J.; Qureshi, M.I.; Bhat, A.H.; Majid, J. Reduction formulas for generalized hypergeometric series associated with new sequences and applications. Fractal Fract. 2021, 5, 150. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas; CRC Press, Taylor & Fancis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2008. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series, Vol. 3: More Special Functions; Overseas Publishers Association: Amsterdam, The Netherlands, 1986. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Milovanović, G.V.; Rathie, A.K. Generalized Summation Formulas for the Kampé de Fériet Function. Axioms 2021, 10, 318. https://doi.org/10.3390/axioms10040318
Choi J, Milovanović GV, Rathie AK. Generalized Summation Formulas for the Kampé de Fériet Function. Axioms. 2021; 10(4):318. https://doi.org/10.3390/axioms10040318
Chicago/Turabian StyleChoi, Junesang, Gradimir V. Milovanović, and Arjun K. Rathie. 2021. "Generalized Summation Formulas for the Kampé de Fériet Function" Axioms 10, no. 4: 318. https://doi.org/10.3390/axioms10040318
APA StyleChoi, J., Milovanović, G. V., & Rathie, A. K. (2021). Generalized Summation Formulas for the Kampé de Fériet Function. Axioms, 10(4), 318. https://doi.org/10.3390/axioms10040318