A Novel Approach in Solving Improper Integrals
Abstract
:1. Introduction
2. Preliminaries
2.1. Basic Definitions and Lemmas
2.2. Basic Formulas of Series and Improper Integrals
3. New Master Theorems
4. Applications and Examples
4.1. Some Remarks on the Theorems
4.2. Generating Improper Integrals
- 1.
- Setting :
- Using Theorem (1) and setting we have:
- Using Theorem (3), and setting we have:
- 2.
- Setting .
- Using Theorem (1), we have:
- Using Theorem (2), we have:
- 3.
- Setting .
- Using Theorem (1), we have:
- Using Theorem (3), we have:
- 4.
- Setting
- Using Theorem (1), we have:
- 5.
- Setting ,
- Using Theorem (1), we have:
- Setting , we have:
4.3. Solving Improper Integrals
5. Conclusions
- The proposed theorems are considered powerful techniques for generating improper integrals and testing the results when using other methods to solve similar examples.
- These theorems can be illustrated in tables of integrations, with different values of functions and generate more results.
- The obtained improper integrals cannot be solved manually (simply) or by computer software such as Mathematica and Maple.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists, 5th ed.; Academic Press: Boston, MA, USA, 2000. [Google Scholar]
- Nahin, P.J. Inside Interesting Integrals; Springer: New York, NY, USA, 2015. [Google Scholar]
- Roussos, I. Improper Riemann Integrals; CRC, Taylor & Francis Group: Boca Raton, FL, USA, 2013. [Google Scholar]
- Cauchy, A.L. Memoire sur les Integrales Definies, Prises Entre des Limites Imaginaires; Reprint of the 1825 Original; Oeuvres Completes d’Au914 Gustin Cauchy, Series II; Gauthier-Villars: Paris, France, 1974; Volume 15, pp. 41–89. [Google Scholar]
- Cauchy, A.L. Sur diverses relations qui existent entre les résidus des fonctions et les intégrales définies. Exerc. Mathématiques 1826, 1, 95–113. [Google Scholar]
- Harold, P.B. Cauchy’s Residue Sore Thumb. Am. Math. Mon. 2018, 125, 16–28. [Google Scholar]
- Stein, E.M.; Shakarchi, R. Complex Analysis; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Thomas, G.B.; Finney, R.L. Calculus and Analytic Geometry; Addison Wesley: Boston, MA, USA, 1996. [Google Scholar]
- Henrici, P. Applied and Computational Complex Analysis; John Wiley & Sons: New York, NY, USA, 1988; Volume 1. [Google Scholar]
- Zwillinger, D. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Zwillinger, D. CRC Standard Mathematical Tables and Formulas; Chapman and Hall/CRC: London, UK, 2018. [Google Scholar]
- Brown, J.W.; Churchill, R.V. Complex Variables and Applications; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Abu Ghuwaleh, M.; Saadeh, R.; Burqan, A. New Theorems in Solving Families of Improper Integrals. Axioms 2022, 11, 301. [Google Scholar] [CrossRef]
- Abu-Ghuwaleh, M.; Saadeh, R.; Qazza, A. General Master Theorems of Integrals with Applications. Mathematics 2022, 10, 3547. [Google Scholar] [CrossRef]
- Rasham, T.; Nazam, M.; Aydi, H.; Agarwal, R.P. Existence of Common Fixed Points of Generalized∆-Implicit Locally Contractive Mappings on Closed Ball in Multiplicative G-metric Spaces with Applications. Mathematics 2022, 10, 3369. [Google Scholar] [CrossRef]
- Rasham, T.; Nazam, M.; Aydi, H.; Shoaib, A.; Park, C.; Lee, J.R. Hybrid pair of multivalued mappings in modular-like metric spaces and applications. AIMS Math. 2022, 7, 10582–10595. [Google Scholar] [CrossRef]
- Abu-Gdairi, R.; Al-Smadi, M.H. An Efficient Computational Method for 4th-order Boundary Value Problems of Fredholm IDEs. Appl. Math. Sci. 2013, 7, 4761–4774. [Google Scholar] [CrossRef]
- Abu-Gdairi, R.; Al-Smadi, M.H.; Gumah, G. An Expansion Iterative Technique for Handling Fractional Differential Equations Using Fractional Power Series Scheme. J. Math. Stat. 2015, 11, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liu, J.G.; Wang, L. Cauchy problems for Keller–Segel type time–space fractional diffusion equation. J. Differ. Equ. 2018, 265, 1044–1096. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.P.; Liao, Y.-S. Direct Collocation with Reproducing Kernel Approximation for Two-Phase Coupling System in a Porous Enclosure. Mathematics 2021, 9, 897. [Google Scholar] [CrossRef]
- Li, Y.; Huang, M.; Li, B. Besicovitch Almost Periodic Solutions of Abstract Semi-Linear Differential Equations with Delay. Mathematics 2022, 10, 639. [Google Scholar] [CrossRef]
- Laib, H.; Boulmerka, A.; Bellour, A.; Birem, F. Numerical solution of two-dimensional linear and nonlinear Volterra integral equations using Taylor collocation method. J. Comput. Appl. Math. 2022, 417, 114537. [Google Scholar] [CrossRef]
- Finerman, A. (Ed.) University Education in Computing Science: Proceedings of a Conference on Graduate Academic and Related Research Programs in Computing Science, Held at the State University of New York at Stony Brook, June 1967; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Freihat, A.; Abu-Gdairi, R.; Khalil, H.; Abuteen, E.; Al-Smadi, M.; Khan, R.A. Fitted Reproducing Kernel Method for Solving a Class of third-Order Periodic Boundary Value Problems. Am. J. Appl. Sci. 2016, 13, 501–510. [Google Scholar] [CrossRef]
- Saadeh, R.; Ghazal, B. A New Approach on Transforms: Formable Integral Transform and Its Applications. Axioms 2021, 10, 332. [Google Scholar] [CrossRef]
- Saadeh, R.; Qazza, A.; Burqan, A. A New Integral Transform: ARA Transform and Its Properties and Applications. Symmetry 2020, 12, 925. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Qazza, A.; Saadeh, R. Exact Solutions of Nonlinear Partial Differential Equations via the New Double Integral Transform Combined with Iterative Method. Axioms 2022, 11, 247. [Google Scholar] [CrossRef]
- Burqan, A.; Saadeh, R.; Qazza, A. A Novel Numerical Approach in Solving Fractional Neutral Pantograph Equations via the ARA Integral Transform. Symmetry 2022, 14, 50. [Google Scholar] [CrossRef]
- Qazza, A.; Burqan, A.; Saadeh, R. A New Attractive Method in Solving Families of Fractional Differential Equations by a New Transform. Mathematics 2021, 9, 3039. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Liu, Z.; Li, J. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Fract. Calc. Appl. Anal. 2018, 21, 1439–1470. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Wen, C.-F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discrete Contin. Dyn. Syst.-B 2019, 24, 1297. [Google Scholar] [CrossRef] [Green Version]
- Glaisher, J.W.L. A new formula in definite integrals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1874, 48, 53–55. [Google Scholar] [CrossRef]
- Berndt, B. Ramanujan’s Notebooks, Part I; Springer: New York, NY, USA, 1985. [Google Scholar]
- Amdeberhan, T.; Espinosa, O.; Gonzalez, I.; Harrison, M.; Moll, V.H.; Straub, A. Ramanujan’s Master Theorem. Ramanujan J. 2012, 29, 103–120. [Google Scholar] [CrossRef]
- Glasser, M.L.; Milgram, M. Master theorems for a family of integrals. Integral Transforms Spec. Funct. 2014, 25, 805. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.; Stauffer, A. Derivation of Logarithmic and Logarithmic Hyperbolic Tangent Integrals Expressed in Terms of Special Functions. Mathematics 2020, 8, 687. [Google Scholar] [CrossRef]
- Luchko, Y. General Fractional Integrals and Derivatives of Arbitrary Order. Symmetry 2021, 13, 755. [Google Scholar] [CrossRef]
- Reynolds, R.; Stauffer, A. Table in Gradshteyn and Ryzhik: Derivation of Definite Integrals of a Hyperbolic Function. Science 2021, 3, 37. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: Direct Laplace Transforms; Routledge: London, UK, 2018. [Google Scholar]
- Boas, M.L. Mathematical Methods in the Physical Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Bracewell, R.N. The Fourier Transform and Its Applications; McGraw-Hill: New York, NY, USA, 1986. [Google Scholar]
- Duffy, D.G. Green’s Functions with Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Graff, K.F. Wave Motion in Elastic Solids; Courier Corporation: Chelmsford, MA, USA, 2012. [Google Scholar]
Conditions | No. of Theorem | |||
---|---|---|---|---|
1. | , | Theorem 1 | ||
2. | , | Theorem 2 | ||
3. | , | Theorem 4 | ||
4. | where and | , | Theorem 6 |
Conditions | Theorem | Remarks | |||
---|---|---|---|---|---|
1 | and | 1 | Cauchy’s theorem [4] (p. 62 Formula (8)) and in [10] (3.037 Theorem 1) is identical. | ||
2 | and | 2 | Cauchy made a mistake in this result see [4] (p. 62 Formula (8)). He corrected his result in his next memoir see [5,6]. | ||
3 | 1 | This result does not appear in [4,5,10]. | |||
4 | 1 | This result does not appear in [4,5,10]. | |||
5 | 3 | This result does not appear in [4,5,10]. | |||
6 | 4 | This result does not appear in [4,5,10]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Ghuwaleh, M.; Saadeh, R.; Qazza, A. A Novel Approach in Solving Improper Integrals. Axioms 2022, 11, 572. https://doi.org/10.3390/axioms11100572
Abu-Ghuwaleh M, Saadeh R, Qazza A. A Novel Approach in Solving Improper Integrals. Axioms. 2022; 11(10):572. https://doi.org/10.3390/axioms11100572
Chicago/Turabian StyleAbu-Ghuwaleh, Mohammad, Rania Saadeh, and Ahmad Qazza. 2022. "A Novel Approach in Solving Improper Integrals" Axioms 11, no. 10: 572. https://doi.org/10.3390/axioms11100572
APA StyleAbu-Ghuwaleh, M., Saadeh, R., & Qazza, A. (2022). A Novel Approach in Solving Improper Integrals. Axioms, 11(10), 572. https://doi.org/10.3390/axioms11100572