New Type of Degenerate Changhee–Genocchi Polynomials
Abstract
:1. Introduction
2. New Type of Degenerate Changhee–Genocchi Polynomials
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlitz, L. Degenerate Stirling Bernoulli and Eulerian numbers. Util.Math. 1979, 15, 51–88. [Google Scholar]
- Carlitz, L. A degenerate Staud-Clausen theorem. Arch. Math. 1956, 7, 28–33. [Google Scholar] [CrossRef]
- Khan, W.A.; Muhiuddin, G.; Muhyi, A.; Al-Kadi, D. Analytical properties of type 2 degenerate poly-Bernoulli polynomials associated with their applications. Adv. Diff. Equ. 2021, 2021, 420. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. Higher-order Changhee numbers and polynomials. Adv. Studies Theor. Phys. 2014, 8, 365–373. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kim, H.-Y.; Kwon, J. Some results on degenerate Daehee and Bernoulli numbers and polynomials. Adv. Diff. Eq. 2020, 2020, 311. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A note on a new type of degenerate Bernoulli numbers. Russ. J. Math. Phys. 2020, 27, 227–235. [Google Scholar] [CrossRef]
- Sharma, S.K.; Khan, W.A.; Araci, S.; Ahmed, S.S. New type of degenerate Daehee polynomials of the second kind. Adv. Differ. Equ. 2020, 2020, 428. [Google Scholar] [CrossRef]
- Sharma, S.K.; Khan, W.A.; Araci, S.; Ahmed, S.S. New construction of type 2 of degenerate central Fubini polynomials with their certain properties. Adv. Differ. Equ. 2020, 2020, 587. [Google Scholar] [CrossRef]
- Muhiuddin, G.; Khan, W.A.; Muhyi, A.; Al-Kadi, D. Some results on type 2 degenerate poly-Fubini polynomials and numbers. Comput. Model. Eng. Sci. 2021, 29, 1051–1073. [Google Scholar] [CrossRef]
- Muhiuddin, G.; Khan, W.A.; Al-Kadi, D. Construction on the degenerate poly-Frobenius-Euler polynomials of complex variable. J. Function Spaces 2021, 2021, 3115424. [Google Scholar] [CrossRef]
- Khan, W.A.; Acikgoz, M.; Duran, U. Note on the type 2 degenerate multi-poly-Euler polynomials. Symmetry 2020, 12, 1691. [Google Scholar] [CrossRef]
- Khan, W.A.; Haroon, H. Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials. Springer Plus 2016, 5, 1920. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.A.; Nisar, K.S.; Duran, U.; Acikgoz, M.; Araci, S. Multifarious implicit summation formulae of Hermite-based poly-Daehee polynomials. Appl. Math. Inf. Sci. 2018, 12, 305–310. [Google Scholar] [CrossRef]
- Khan, W.A.; Muhyi, A.; Ali, R.; Alzobydi, K.A.H.; Singh, M.; Agarwal, P. A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Math. 2021, 6, 12680–12697. [Google Scholar] [CrossRef]
- Khan, W.A.; Ali, R.; Alzobydi, K.A.H.; Ahmed, N. A new family of degenerate poly-Genocchi polynomials with its certain properties. J. Funct. Spaces 2021, 2021, 6660517. [Google Scholar] [CrossRef]
- Lim, D. Some identities of degenerate Genocchi polynomials. Bull. Korean Math. Soc. 2016, 53, 569–579. [Google Scholar] [CrossRef]
- Sharma, S.K. A note on degenerate poly-Genocchi polynomials. Int. J. Adv. Appl. Sci. 2020, 7, 1–5. [Google Scholar] [CrossRef]
- Kwon, H.-I.; Kim, T.; Park, J.W. A note on degenerate Changhee-Genocchi polynomials and numbers. Glob. J. Pure Appl. Math. 2016, 12, 4057–4064. [Google Scholar]
- Kim, T. A note on degenerate Stirling numbers of the second kind. Proc. Jangjeon Math. Soc. 2018, 21, 589–598. [Google Scholar]
- Kim, B.M.; Jang, L.-C.; Kim, W.; Kwon, H.I. Degenerate Changhee-Genocchi numbers and polynomials. J. Ineq. Appl. 2017, 2017, 294. [Google Scholar] [CrossRef]
- Kim, B.M.; Jeong, J.; Rim, S.H. Some explicit identities on Changhee-Genocchi polynomials and numbers. Adv. Diff. Equ. 2016, 2016, 202. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alatawi, M.S.; Khan, W.A. New Type of Degenerate Changhee–Genocchi Polynomials. Axioms 2022, 11, 355. https://doi.org/10.3390/axioms11080355
Alatawi MS, Khan WA. New Type of Degenerate Changhee–Genocchi Polynomials. Axioms. 2022; 11(8):355. https://doi.org/10.3390/axioms11080355
Chicago/Turabian StyleAlatawi, Maryam Salem, and Waseem Ahmad Khan. 2022. "New Type of Degenerate Changhee–Genocchi Polynomials" Axioms 11, no. 8: 355. https://doi.org/10.3390/axioms11080355
APA StyleAlatawi, M. S., & Khan, W. A. (2022). New Type of Degenerate Changhee–Genocchi Polynomials. Axioms, 11(8), 355. https://doi.org/10.3390/axioms11080355