Passive Damping of Longitudinal Vibrations of a Beam in the Vicinity of Natural Frequencies Using the Piezoelectric Effect
Abstract
:1. Introduction
2. Passive Vibration Damping of a Beam with Piezoelectric Layers with Transverse Polarization
2.1. Piezoelectric Layers with Continuous Electrodes
- -
- the electrodes are short-circuited. On short-circuited electrodes, the electric potential is zero
- -
- the electrodes are disconnected. On disconnected electrodes, the electric potential is not zero. It is equal to
2.2. Piezoelectric Layers with Split Electrodes
2.3. Numerical Example
3. Passive Vibration Damping of a Beam with Piezoelectric Layers with Longitudinal Pre-Polarization
3.1. Construction of the Theory of Structurally Anisotropic Beams
3.2. Numerical Example
4. Discussion
5. Conclusions
- (1)
- the direction of polarization is orthogonal to the direction of longitudinal vibrations, and the main role in damping vibrations is played by that part of the electroelastic state, which is a consequence of the Poisson effect and operates in the longitudinal direction;
- (2)
- the use of continuous electrodes makes it possible to dampen vibrations only at the first resonant frequency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Preumont, A.; Seto, K. Vibration Control of Active Structures; John Wiley & Sons: Hoboken, NJ, USA, 2008; 295p. [Google Scholar]
- Salu, R.; Gokul, P.V.; James, S.C. Active Vibration Control of Laminated Composite Thin Plates Using a Smart Material. Int. J. Eng. Res. Technol. (IJERT) 2023, 11, 2278–0181. [Google Scholar]
- Inmah, D.J. Vibration with Control; Wiley Online Books; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 9781119375081. [Google Scholar]
- Kwak, M.K. Dynamic Modeling and Active Vibration Control of Structures; Springer: Dordrecht, The Netherlands, 2021; 371p. [Google Scholar]
- He, W.; Liu, J. Active Vibration Control and Stability Analysis of Flexible Beam Systems; Springer: Berlin/Heidelberg, Germany, 2019; 212p. [Google Scholar]
- Majeed, W.I.; Al-Samarraie, S.A.; Al-Saior, M.M. Vibration Control Analysis of a Smart Flexible Cantilever Beam Using Smart Material. J. Eng. 2023, 19, 82–95. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, L.; Sun, L.; Zhao, L.; Cui, W.; Guan, H. Multimode damping optimization of a long-span suspension bridge with damped outriggers for suppressing vortex-induced vibrations. Eng. Struct. 2023, 286, 115959. [Google Scholar] [CrossRef]
- Isić, S.; Mehremić, S.; Karabegović, I.; Husak, E. Systems for Passive and Active Vibration Damping. In New Technologies, Development and Application II. NT 2019; Karabegović, I., Ed.; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2020; Volume 76. [Google Scholar] [CrossRef]
- Xiong, F.; Li, Y.; Wang, C. Experiment and analysis of active vibration isolation system based on rigid pedestal using SDOF actuator. J. Vibroeng. 2022, 24, 1072–1081. [Google Scholar] [CrossRef]
- Fujino, Y.; Siringoringo, D.M.; Ikeda, Y.; Nagayama, T.; Mizutani, T. Research and Implementations of Structural Monitoring for Bridges and Buildings in Japan. Engineering 2019, 5, 1093–1119. [Google Scholar] [CrossRef]
- Sidorov, V.N.; Badina, E.S. Finite-element modeling of vibrations of composite beams taking into account the damping of the non-local in time. Mech. Compos. Mater. Struct. 2021, 27, 65–72. [Google Scholar]
- Enríquez-Zárate, J.; Abundis-Fong, H.F.; Velázquez, R.; Gutiérrez, S. Passive vibration control in a civil structure: Experimental results. Meas. Control 2019, 52, 938–946. [Google Scholar] [CrossRef]
- Shen, R.; Qian, X.; Zhou, J.; Lee, C.L. Characteristics of passive vibration control for exponential non-viscous damping system: Vibration isolator and absorber. J. Vib. Control. 2022, 1, 10775463221130925. [Google Scholar] [CrossRef]
- Rogacheva, N.N. Passive Vibration Suppression of Structures in the Vicinity of Natural Frequencies Using Piezoeffect. Int. J. Comput. Civ. Struct. Eng. 2019, 15, 125–134. [Google Scholar] [CrossRef]
- Rogacheva, N.N. The dynamic behaviour of piezoelectric laminated bars. J. Appl. Math. Mech. 2007, 71, 494–510. [Google Scholar] [CrossRef]
- Berlincourt, D.A.; Curran, D.R.; Jaffe, H. Piezoelectric and Piezomagnetic Materials and Their Function in Transducers; Mason, W.P., Ed.; Physical Acoustics; Academic Press: New York, NY, USA, 1964; Volume 1A, pp. 169–270. [Google Scholar]
- CTS Product Catalogue. Available online: https://www.ferropermpiezoceramics.com/ (accessed on 25 June 2023).
- Chou, C.C.; Rogacheva, N.N.; Chang, S.H. Analysis of methods for determining electromechanical coupling-coefficients of piezoelectric elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1995, 42, 630–640. [Google Scholar]
- Werner, J.M.; Engelmann, M.; Schmidt, M.; Titsch, C.; Dix, M.; Drossel, W.G. Comparison of Structural Integrated Piezoceramics, Piezoelectric Patches and Strain Gauges for Condition Monitoring. Sensors 2022, 22, 8847. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, J.; Jiang, X.; Kim, T. Static Force Measurement Using Piezoelectric Sensors. J. Sens. 2021, 2021, 6664200. [Google Scholar] [CrossRef]
n | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1.5708 | 4.7124 | 7.8540 | 10.9956 | 14.1372 | |
1.6648 | 4.7454 | 7.8738 | 11.0098 | 14.1482 | |
f | 0.0598 | 0.0070 | 0.0025 | 0.0013 | 0.0008 |
n | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1.5708 | 4.7124 | 7.8540 | 10.9956 | 14.1372 | |
1.6281 | 4.8205 | 7.9229 | 11.0039 | 14.1437 | |
f | 0.0365 | 0.0229 | 0.0088 | 0.0008 | 0.0005 |
n | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1.5708 | 4.7124 | 7.8540 | 10.9956 | 14.1372 | |
1.6897 | 5.0691 | 8.4485 | 11.8280 | 15.2074 | |
f | 0.0704 | 0.0757 | 0.0757 | 0.0757 | 0.0757 |
n | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1.5708 | 4.7124 | 7.8540 | 10.9956 | 14.1372 | |
2.3669 | 7.1006 | 11.8344 | 16.5682 | 21.3019 | |
f | 0.5068 | 0.5068 | 0.5068 | 0.5068 | 0.5068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogacheva, N.; Sidorov, V.; Zheglova, Y. Passive Damping of Longitudinal Vibrations of a Beam in the Vicinity of Natural Frequencies Using the Piezoelectric Effect. Axioms 2023, 12, 981. https://doi.org/10.3390/axioms12100981
Rogacheva N, Sidorov V, Zheglova Y. Passive Damping of Longitudinal Vibrations of a Beam in the Vicinity of Natural Frequencies Using the Piezoelectric Effect. Axioms. 2023; 12(10):981. https://doi.org/10.3390/axioms12100981
Chicago/Turabian StyleRogacheva, Nelly, Vladimir Sidorov, and Yulia Zheglova. 2023. "Passive Damping of Longitudinal Vibrations of a Beam in the Vicinity of Natural Frequencies Using the Piezoelectric Effect" Axioms 12, no. 10: 981. https://doi.org/10.3390/axioms12100981
APA StyleRogacheva, N., Sidorov, V., & Zheglova, Y. (2023). Passive Damping of Longitudinal Vibrations of a Beam in the Vicinity of Natural Frequencies Using the Piezoelectric Effect. Axioms, 12(10), 981. https://doi.org/10.3390/axioms12100981