Simulation of an Elastic Rod Whirling Instabilities by Using the Lattice Boltzmann Method Combined with an Immersed Boundary Method
Abstract
:1. Introduction
2. Simulation Methodology
2.1. Simulation Setup
2.2. Immersed Boundary Method (IBM)
2.3. Lattice Boltzmann Equation (LBE)
3. Simulation Results
3.1. Twirling Motion
3.2. Whirling Motion
3.3. Over-Whirling Motion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ginger, M.L.; Portman, N.; McKean, P.G. Swimming with protists: Perception, motility and flagellum assembly. Nat. Rev. Microbiol. 2008, 6, 838–850. [Google Scholar] [CrossRef]
- Camalet, S.; Jülicher, F.; Prost, J. Self-organized beating and swimming of internally driven filaments. Phys. Rev. Lett. 1999, 82, 1590. [Google Scholar] [CrossRef]
- Wolgemuth, C.W.; Powers, T.R.; Goldstein, R.E. Twirling and whirling: Viscous dynamics of rotating elastic filaments. Phys. Rev. Lett. 2000, 84, 1623–1626. [Google Scholar] [CrossRef]
- Lim, S.; Peskin, C.S. Simulations of the whirling instability by the immersed boundary method. SIAM J. Sci. Comput. 2004, 25, 2066–2083. [Google Scholar] [CrossRef]
- Wada, H.; Netz, H. Non-equilibrium hydrodynamics of a rotating filament. Europhys. Lett. 2006, 75, 645–651. [Google Scholar] [CrossRef]
- Manghi, M.; Schlagberger, X.; Netz, R.R. Propulsion with a rotating elastic nanorod. Phys. Rev. Lett. 2006, 96, 068101. [Google Scholar] [CrossRef] [PubMed]
- Powers, T.R. Dynamics of filaments and membranes in a viscous fluid. Rev. Mod. Phys. 2010, 82, 1607–1631. [Google Scholar] [CrossRef]
- Anderson, R.W.; Elliott, N.S.; Pember, R.B. An arbitrary Lagrangian–Eulerian method with adaptive mesh refinement for the solution of the Euler equations. J. Comput. Phys. 2004, 199, 598–617. [Google Scholar] [CrossRef]
- Longatte, E.; Bendjeddou, Z.; Souli, M. Application of arbitrary Lagrange Euler formations to flow-induced vibration problems. J. Press. Vessel Technol. 2003, 125, 411–417. [Google Scholar] [CrossRef]
- Popovtsev, V.V.; Khalyasmaa, A.I.; Patrakov, Y.V. Fluid dynamics calculation in SF6 circuit breaker during breaking as a prerequisite for the digital twin creation. Axioms 2023, 12, 623. [Google Scholar] [CrossRef]
- Peskin, C.S. Flow patterns around heart valves: A numerical method. J. Comp. Phys. 1972, 10, 252–271. [Google Scholar] [CrossRef]
- Peskin, C.S. The immersed boundary method. Acta Numer. 2002, 11, 479–517. [Google Scholar] [CrossRef]
- Maniyeri, R. and Kang. S. Numerical study on the rotation of an elastic rod in a viscous fluid using an immersed boundary method. J. Mech. Sci. Technol. 2012, 26, 1515–1522. [Google Scholar] [CrossRef]
- Goldstein, R.E.; Powers, T.R.; Wiggins, C.H. Viscous nonlinear dynamics of twist and writhe. Phys. Rev. Lett. 1998, 80, 232–5237. [Google Scholar] [CrossRef]
- Coq, N.; du Roure, O.; Marthelot, J.; Bartolo, D.; Fermigier, M. Rotational dynamics of a soft filament: Wrapping transition and propulsive forces. Phys. Fluids 2008, 20, 051703. [Google Scholar] [CrossRef]
- Qian, B.; Powers, T.R.; Breuer, K.S. Shape transition and propulsive force of an elastic rod rotating in a viscous fluid. Phys. Rev. Lett. 2008, 100, 078101. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Luo, L.S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 1997, 56, 6811. [Google Scholar] [CrossRef]
- Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Alapati, S.; Kang, S.M.; Suh, Y.K. Parallel computation of two-phase flow in a microchannel using the lattice Boltzmann method. J. Mech. Sci. Technol. 2009, 23, 2492–2501. [Google Scholar] [CrossRef]
- Hu, Y.; Niu, X.-D.; Shu, S.; Yuan, H.; Li, M. Natural convection in a concentric annulus: A lattice Boltzmann method study with boundary condition-enforced immersed boundary method. Adv. Appl. Math. Mech. 2013, 5, 321–336. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Bandpy, M.G.; Ganji, D.D. Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technol. 2014, 254, 82–93. [Google Scholar] [CrossRef]
- Yuan, H.Z.; Niu, X.D.; Shu, S.; Li, M.J.; Yamaguchi, H. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow. Comput. Math. Appl. 2014, 67, 1039–1056. [Google Scholar] [CrossRef]
- Di Palma, P.R.; Huber, C.; Viotti, P. A new lattice Boltzmann model for interface reactions between immiscible fluids. Adv. Water Resour. 2015, 82, 139–149. [Google Scholar] [CrossRef]
- Hu, Y.; Li, D.C.; Shu, S.; Niu, X.D. Modified momentum exchange method for fluid-particle interactions in the lattice Boltzmann method. Phys. Rev. E 2015, 91, 033301. [Google Scholar] [CrossRef] [PubMed]
- Himika, T.A.; Hasan, M.F.; Molla, M.M.; Khan, M.A.I. LBM-MHD Data-Driven Approach to Predict Rayleigh–Bénard Convective Heat Transfer by Levenberg–Marquardt Algorithm. Axioms 2023, 12, 199. [Google Scholar] [CrossRef]
- Sui, Y.; Chew, Y.; Roy, P.; Low, H. Inertia effect on the transient deformation of elastic capsules in simple shear flow. Comput. Fluids 2009, 38, 49–59. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Tian, F.B.; Deng, Y.L. An efficient red blood cell model in the frame of IB–LBM and its application. Int. J. Biomath. 2013, 6, 1250061. [Google Scholar] [CrossRef]
- Xu, D.-C.; Luo, Y.-X.; Xu, Y.-Q. Study on deposition characteristics of microparticles in terminal pulmonary acini by IB–LBM. Micromachines 2021, 12, 957. [Google Scholar] [CrossRef]
- Takeishi, N.; Ito, H.; Kaneko, M.; Wada, S. Deformation of a red blood cell in a narrow rectangular microchannel. Micromachines 2019, 10, 199. [Google Scholar] [CrossRef]
- De Haan, M.; Zavodszky, G.; Azizi, V.; Hoekstra, A.G. Numerical investigation of the effects of red blood cell cytoplasmic viscosity contrasts on single cell and bulk transport behaviour. Appl. Sci. 2018, 8, 1616. [Google Scholar] [CrossRef]
- Tan, J.; Keller, W.; Sohrabi, S.; Yang, J.; Liu, Y. Characterization of nanoparticle dispersion in red blood cell suspension by the lattice Boltzmann-immersed boundary method. Nanomaterials 2016, 6, 30. [Google Scholar] [CrossRef]
- Saurabh, K.; Solovchuk, M.; Sheu, T.W.H. Investigating ion transport inside the pentameric ion channel encoded in COVID-19 E protein. Phys. Rev. E 2020, 102, 052408. [Google Scholar] [CrossRef] [PubMed]
- Alapati, S.; Che, W.S.; Ahn, J.-W. Lattice Boltzmann method combined with the smoothed profile method for the simulation of particulate flows with heat transfer. Heat Transf. Eng. 2019, 40, 166–183. [Google Scholar] [CrossRef]
- Alapati, S. Simulation of natural convection in a concentric hexagonal annulus using the lattice Boltzmann method combined with the smoothed profile method. Mathematics 2020, 8, 1043. [Google Scholar] [CrossRef]
- Alapati, S.; Che, W.S.; Mannoor, M.; Suh, Y.K. Simulation by using the lattice Boltzmann method of microscopic particle motion induced by artificial cilia. J. Korean Phys. Soc. 2017, 68, 1307–1316. [Google Scholar] [CrossRef]
Parameter | Present Work | Lim and Peskin [4] |
---|---|---|
Flagellum Length, L | ||
Reynolds Number, Re | ||
Sperm Number, Sp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alapati, S.; Che, W.; Rao, S.S.; Phan, G.T.T. Simulation of an Elastic Rod Whirling Instabilities by Using the Lattice Boltzmann Method Combined with an Immersed Boundary Method. Axioms 2023, 12, 1011. https://doi.org/10.3390/axioms12111011
Alapati S, Che W, Rao SS, Phan GTT. Simulation of an Elastic Rod Whirling Instabilities by Using the Lattice Boltzmann Method Combined with an Immersed Boundary Method. Axioms. 2023; 12(11):1011. https://doi.org/10.3390/axioms12111011
Chicago/Turabian StyleAlapati, Suresh, Wooseong Che, Sunkara Srinivasa Rao, and Giang T. T. Phan. 2023. "Simulation of an Elastic Rod Whirling Instabilities by Using the Lattice Boltzmann Method Combined with an Immersed Boundary Method" Axioms 12, no. 11: 1011. https://doi.org/10.3390/axioms12111011
APA StyleAlapati, S., Che, W., Rao, S. S., & Phan, G. T. T. (2023). Simulation of an Elastic Rod Whirling Instabilities by Using the Lattice Boltzmann Method Combined with an Immersed Boundary Method. Axioms, 12(11), 1011. https://doi.org/10.3390/axioms12111011