Barotropic-Baroclinic Coherent-Structure Rossby Waves in Two-Layer Cylindrical Fluids
Abstract
:1. Introduction
2. Establishment of the Coherent Structure Model and the Fifth-Order Coupled KdV-mKdV Equations in Polar Co-Ordinates
2.1. The Coherent Structure Model
2.2. Derivation of the Third-Order Coupled KdV Equations
2.3. Derivation of the Fifth-Order Coupled KdV-mKdV Equations
3. Conservation Laws of the Fifth-Order Coupled KdV-mKdV Equations in Polar Co-Ordinates
3.1. Lie Symmetry Analysis
3.2. Conservation Laws
4. The Solutions of the Fifth-Order Coupled KdV-mKdV Equations
5. Evolution of Rossby Waves in Barotropic-Baroclinic Coherent Structures
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Rossby, C.G. Relation between Variations in the Intensity of the Zonal Circulation of the Atmosphere and the Displacements of the Semi-permanent Centers of Action. J. Mar. Res. 1939, 2, 38–55. [Google Scholar] [CrossRef]
- Yang, H.W.; Chen, X.; Guo, M.; Deng, Y. A new ZK-BO equation for three-dimensional algebraic Rossby solitary waves and its solution as well as fission property. Nonlinear Dyn. 2018, 91, 2019–2032. [Google Scholar] [CrossRef]
- Zhang, Q.; Yin, X. Dynamics of nonlinear Rossby waves in zonally varying flow with spatial-temporal varying topography. Appl. Math. Comput. 2019, 346, 666–679. [Google Scholar] [CrossRef]
- Seadawy, A.R. Three-Dimensional Weakly Nonlinear Shallow Water Waves Regime and its Traveling Wave Solutions. Int. J. Comput. Methods 2018, 15, 1850017. [Google Scholar] [CrossRef]
- Fletcher, W.J.; Sanchez Goñi, M.F.; Peyron, O.; Dormoy, I. Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record. Clim. Past 2010, 6, 245–264. [Google Scholar] [CrossRef]
- Maxworthy, T.; Redekopp, L.G. New theory of the Great Red Spot from solitary waves in the Jovian atmosphere. Nature 1976, 260, 509–511. [Google Scholar] [CrossRef]
- Mcintosh, S.W.; Cramer, W.J.; Pichardo Marcano, M.; Leamon, R.J. The detection of Rossby-like waves on the Sun. Nat. Astron. 2017, 1, 0086. [Google Scholar] [CrossRef]
- Rottman, J.W.; Einaudi, F. Solitary Waves in the Atmosphere. J. Atmos. Sci. 1993, 50, 2116. [Google Scholar] [CrossRef]
- Colony, R.; Thorndike, A.S. The Horizontal Coherency of the Motion of Summer Arctic Sea Ice. J. Phys. Oceanogr. 1980, 10, 1281–1289. [Google Scholar] [CrossRef]
- Tian, B.; Gao, Y.T. Truncated Painlev expansion and a wide-ranging type of generalized variable-coefficient Kadomtsev-Petviashvili equations. Phys. Lett. A 1995, 209, 297–304. [Google Scholar] [CrossRef]
- Gottwald, G.A. The Zakharov-Kuznetsov Equation as a Two-Dimensional Model for Nonlinear Rossby Waves. arXiv 2003, arXiv:nlin/0312009. [Google Scholar]
- Luo, D. Nonlinear rossby waves in baroclinic atmosphere. J. Chengdu Univ. Inf. Technol. 1986, 2, 89–98. [Google Scholar]
- Yoshizaki, M. Stability of Finite-Amplitude Baroclinic Waves in a Two-Layer Channel Flow: Part II. Moderately Non-Linear Regime. J. Meteorol. Soc. Jpn. 2007, 60, 620–637. [Google Scholar] [CrossRef]
- Pedlosky, J. Geophysical Fluid Dynamics; Springer: New York, NY, USA, 1987. [Google Scholar]
- Steinsaltz, D. Instability of Baroclinic Waves with Bottom Slope. J. Phys. Oceanogr. 1987, 17, 2343–2350. [Google Scholar] [CrossRef]
- Wang, D.S. Integrability of the coupled KdV equations derived from two-layer fluids: Prolongation structures and Miura transformations. Nonlinear Anal. 2010, 73, 270–281. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Arshad, M.; Lu, D. The weakly nonlinear wave propagation of the generalized third-order nonlinear Schrdinger equation and its applications. Waves Random Complex Media 2022, 32, 819–831. [Google Scholar] [CrossRef]
- Tang, X.Y.; Liang, Z.F.; Hao, X.Z. Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 62–71. [Google Scholar] [CrossRef]
- Dehaideptofcim, L. Three-wave resonant interaction between barotropic waveand baroclinic waves in thetwo laylr flow model and low freouency oscillation. J. Chengdu Inst. Moteorlogy 1994, 2, 15–23. [Google Scholar]
- Wang, J.; Zhang, R.; Yang, L. Solitary waves of nonlinear arotropic–baroclinic coherent structures. Phys. Fluids 2020, 32, 096604. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, R.; Yang, L.; Liu, Q.; Chen, L. Coherent structures of nonlinear barotropic-baroclinic interaction in unequal depth two-layer model. Appl. Math. Comput. 2021, 408, 126347. [Google Scholar] [CrossRef]
- Ichikawa, Y.H.; Mitsuhashi, T.; Konno, K. Contribution of higher order terms in the reductive perturbation theory. I. A case of weakly dispersive wave. J. Phys. Soc. Jpn. 2007, 41, 1382–1386. [Google Scholar] [CrossRef]
- Ichikawa, Y.H.; Mitsuhashi, T.; Konno, K. Contribution of Higher Order Terms in the Reductive Perturbation Theory, II. A Case of Strongly Dispersive Wave. Tokyo Sugaku Kaisya Zasshi 1977, 43, 675–683. [Google Scholar]
- Ito, M. An Extension of Nonlinear Evolution Equations of the K-dV (mK-dV) Type to Higher Orders. J. Phys. Soc. Jpn. 1980, 49, 771–778. [Google Scholar] [CrossRef]
- Grimshaw, R.; Pelinovsky, E.; Poloukhina, O. Higher-order Korteweg-de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Process. Geophys. 2002, 9, 221–235. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Lu, D.; Yue, C. Travelling wave solutions of the generalized nonlinear fifth-order KdV water wave equations and its stability. J. Taibah Univ. Sci. 2016, 11, 623–633. [Google Scholar] [CrossRef]
- Biswas, A.; Triki, H. Soliton solutions for a generalized fifth-order KdV equation with t-dependent coefficients. Waves Random Complex Media 2011, 21, 151–160. [Google Scholar]
- Salas, A.H. Exact solutions for the general fifth KdV equation by the exp function method. Appl. Math. Comput. 2008, 205, 291–297. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, F.; Wang, Y.; Yang, L.; Zhang, F.; Wang, Y. The homogeneous balance method, Lax pair, Hirota transformation and a general fifth-order KdV equation. Chaos Solitons Fractals 2002, 13, 337–340. [Google Scholar]
- Kumar, V.S.; Rezazadeh, H.; Eslami, M.; Izadi, F.; Osman, M.S. Jacobi Elliptic Function Expansion Method for Solving KdV Equation with Conformable Derivative and Dual-Power Law Nonlinearity. Int. J. Appl. Comput. Math. 2019, 5, 127. [Google Scholar] [CrossRef]
- Feng, B.F.; Ling, L. Darboux transformation and solitonic solution to the coupled complex short pulse equation. arXiv 2021, arXiv:2111.00284. [Google Scholar] [CrossRef]
- Selvaraj, R.; Swaminathan, V.; Devi, A.D.; Krishnakumar, K. Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers-Fisher Equation. arXiv 2020, arXiv:2003.05294. [Google Scholar]
- Ghanbari, B.; Kumar, S.; Niwas, M.; Baleanu, D. The Lie symmetry analysis and exact Jacobi elliptic solutions for the Kawahara-KdV type equations. Results Phys. 2021, 23, 104006. [Google Scholar] [CrossRef]
- Wang, G.W.; Liu, X.Q.; Zhang, Y.Y. Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2321–2326. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Fang, Y.; Geng, J.; Dong, H. Barotropic-Baroclinic Coherent-Structure Rossby Waves in Two-Layer Cylindrical Fluids. Axioms 2023, 12, 856. https://doi.org/10.3390/axioms12090856
Xu J, Fang Y, Geng J, Dong H. Barotropic-Baroclinic Coherent-Structure Rossby Waves in Two-Layer Cylindrical Fluids. Axioms. 2023; 12(9):856. https://doi.org/10.3390/axioms12090856
Chicago/Turabian StyleXu, Jing, Yong Fang, Jingxuan Geng, and Huanhe Dong. 2023. "Barotropic-Baroclinic Coherent-Structure Rossby Waves in Two-Layer Cylindrical Fluids" Axioms 12, no. 9: 856. https://doi.org/10.3390/axioms12090856
APA StyleXu, J., Fang, Y., Geng, J., & Dong, H. (2023). Barotropic-Baroclinic Coherent-Structure Rossby Waves in Two-Layer Cylindrical Fluids. Axioms, 12(9), 856. https://doi.org/10.3390/axioms12090856