The Influence of White Noise and the Beta Derivative on the Solutions of the BBM Equation
Abstract
:1. Introduction
- (1)
- ,
- (2)
- ,
- (3)
- ,
- (4)
- .
2. Traveling Wave Equation for SBBME-BD
3. Exact Solutions of SBBME-BD
3.1. -EM with Riccati Equation
3.2. -EM with Elliptic Equation
Case | P | K | R | |
1 | 1 | |||
2 | 1 | |||
3 | 1 | |||
4 | ||||
5 | ||||
6 | or | |||
7 | ||||
8 | ||||
9 |
4. Impacts of the Beta Derivative and Noise on SBBME-BD Solutions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Q.; Ekici, M.; Sonmezoglu, A.; Manafian, J.; Khaleghizadeh, S.; Mirzazadeh, M. Exact solitary wave solutions to the generalized Fisher equation. Optik 2016, 127, 12085–12092. [Google Scholar] [CrossRef]
- Alshammari, M.; Iqbal, N.; Mohammed, W.W.; Botmart, T. The solution of fractional-order system of KdV equations with exponential-decay kernel. Results Phys. 2022, 38, 105615. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, Q. Optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Waves Random Complex Media 2015, 25, 52–59. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Bulut, H. New wave behaviors of the system of equations for the ion sound and Langmuir. Waves Waves Random Complex Media 2016, 26, 613–625. [Google Scholar] [CrossRef]
- Al-Askar, F.M.; Mohammed, W.W.; Albalahi, A.M.; El-Morshedy, M. The influence of noise on the solutions of fractional stochastic bogoyavlenskii equation. Fractal Fract. 2022, 6, 156. [Google Scholar] [CrossRef]
- Manafian, J.; Lakestani, M. Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 2015, 130, 61. [Google Scholar] [CrossRef]
- Manafian, J. Optical soliton solutions for Schrodinger type nonlinear evolution equations by the tan(φ/2)-expansion method. Optik 2016, 127, 4222–4245. [Google Scholar] [CrossRef]
- Tchier, F.; Yusuf, A.; Aliyu, A.I.; Inc, M. Soliton solutions and conservation laws for lossy nonlinear transmission line equation. Superlattices Microstruct. 2017, 107, 320–336. [Google Scholar] [CrossRef]
- Yan, Z.L. Abunbant families of Jacobi elliptic function solutions of the dimensional integrable Davey-Stewartson-type equation via a new method. Chaos Solitons Fractals 2003, 18, 299–309. [Google Scholar] [CrossRef]
- Malfliet, W.; Hereman, W. The tanh method. I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 1996, 54, 563–568. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Atangana, A.; Baleanu, D.; Alsaedi, A. Analysis of time-fractional Hunter-Saxton equation: A model of neumatic liquid crystal. Open Phys. 2016, 14, 145–149. [Google Scholar] [CrossRef]
- Mohammed, W.W. Stochastic amplitude equation for the stochastic generalized Swift–Hohenberg equation. J. Egypt. Math. Soc. 2015, 23, 482–489. [Google Scholar] [CrossRef]
- Imkeller, P.; Monahan, A.H. Conceptual stochastic climate models. Stoch. Dynam. 2002, 2, 311–326. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Blömker, D. Fast-diffusion limit for reaction-diffusion equations with multiplicative noise. Stoch. Anal. Appl. 2016, 34, 961–978. [Google Scholar] [CrossRef]
- Al-Askar, F.M.; Cesarano, C.; Mohammed, W.W. The analytical solutions of stochastic-fractional Drinfel’d-Sokolov-Wilson equations via (G’/G)-expansion method. Symmetry 2022, 14, 2105. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Al-Askar, F.M.; Cesarano, C. The analytical solutions of the stochastic mKdV equation via the mapping method. Mathematics 2022, 10, 4212. [Google Scholar] [CrossRef]
- Al-Askar, F.M.; Mohammed, W.W. The Analytical Solutions of the Stochastic Fractional RKL Equation via Jacobi Elliptic Function Method. Adv. Math. Phys. 2022, 2022, 1534067. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Cesarano, C. The soliton solutions for the (4+1)-dimensional stochastic Fokas equation. Math. Methods Appl. Sci. 2023, 46, 7589–7597. [Google Scholar] [CrossRef]
- Alhamud, M.; M Elbrolosy, M.; Elmandouh, A. New Analytical Solutions for Time-Fractional Stochastic (3+ 1)-Dimensional Equations for Fluids with Gas Bubbles and Hydrodynamics. Fractal Fract. 2023, 7, 16. [Google Scholar] [CrossRef]
- Elmandouh, A.; Fadhal, E. Bifurcation of Exact Solutions for the Space-Fractional Stochastic Modified Benjamin–Bona–Mahony Equation. Fractal Fract. 2022, 6, 718. [Google Scholar] [CrossRef]
- Benjamin, T.B.; Bona, J.L.; Mahony, J.J. Model Equations for Long Waves in Nonlinear Dispersive Systems. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. 1972, 272, 47–78. [Google Scholar]
- Manafianheris, J. Exact solutions of the BBM and MBBM equations by the generalized (G′/G)-expansion method equations. Int. J. Genet. Eng. 2012, 2, 28–32. [Google Scholar] [CrossRef]
- Das, A.; Ganguly, A. A variation of (G′/G)-expansion method: Travelling wave solutions to nonlinear equations. Int. J. Nonlinear Sci. 2014, 17, 268–280. [Google Scholar]
- Alsayyed, O.; Jaradat, H.M.; Jaradatd, M.M.; Mustafad, Z.; Shatate, F. Multi-soliton solutions of the BBM equation arisen in shallow water. J. Nonlinear Sci. Appl. 2016, 9, 1807–1814. [Google Scholar] [CrossRef]
- Singh, K.; Gupta, R.K.; Kumar, S. Benjamin–Bona–Mahony (BBM) equation with variable coefficients: Similarity reductions and Painlevé analysis. Appl. Math. Comput. 2011, 217, 7021–7027. [Google Scholar] [CrossRef]
- Jahania, M.; Manafian, J. Improvement of the exp-function method for solving the BBM equation with time-dependent coefficients. Eur. Phys. J. Plus 2016, 131, 54. [Google Scholar] [CrossRef]
- Gündogdu, H.; Gözükizil, O.F. Solving Benjamin-Bona-Mahony equation by using the sn–ns method and the tanh-coth method. Math. Moravica 2017, 21, 95–103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Askar, F.M.; Cesarano, C.; Mohammed, W.W. The Influence of White Noise and the Beta Derivative on the Solutions of the BBM Equation. Axioms 2023, 12, 447. https://doi.org/10.3390/axioms12050447
Al-Askar FM, Cesarano C, Mohammed WW. The Influence of White Noise and the Beta Derivative on the Solutions of the BBM Equation. Axioms. 2023; 12(5):447. https://doi.org/10.3390/axioms12050447
Chicago/Turabian StyleAl-Askar, Farah M., Clemente Cesarano, and Wael W. Mohammed. 2023. "The Influence of White Noise and the Beta Derivative on the Solutions of the BBM Equation" Axioms 12, no. 5: 447. https://doi.org/10.3390/axioms12050447
APA StyleAl-Askar, F. M., Cesarano, C., & Mohammed, W. W. (2023). The Influence of White Noise and the Beta Derivative on the Solutions of the BBM Equation. Axioms, 12(5), 447. https://doi.org/10.3390/axioms12050447