Modeling Socioeconomic Determinants of Building Fires through Backward Elimination by Robust Final Prediction Error Criterion
Abstract
:1. Introduction
2. Related Work
2.1. Limitation 1: Over-Reliance on Chance
2.2. Limitation 2: Overstated Significance
2.3. Limitation 3: Collinearity Causes Inconsistency
2.4. Limitation 4: No Guarantee of Global Optimization
2.5. Limitation 5: Caused by Outliers
3. Backward Elimination by Robust Final Predictor Error (RFPE) Criterion
Algorithm 1. Algorithm of robust backward elimination by RFPE |
|
4. Case Study: South East Queensland, Australia
4.1. Datasets
4.2. Parameters
4.3. Results
Algorithm 2. Algorithm of the five-fold cross-validation |
|
5. Comparative Study
5.1. Alternative Backward Elimination Criteria
5.1.1. Akaike Information Criterion (AIC)
5.1.2. Bayesian Information Criterion (BIC)
5.1.3. Predicted Residual Error Sum of Squares (PRESS)
5.2. Comparison of Robust Final Predictor Error (RFPE) Criterion to Akaike’s Information Criterion (AIC) Criterion
5.3. Comparison of Robust Final Predictor Error (RFPE) Criterion to Other Criteria
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
SA2 | 00 | 01 | … | 15 | && | @@ |
---|---|---|---|---|---|---|
Nil | $1–$49 | … | $3000+ | Not Stated | NA | |
Alexandra Hills | 80 | 84 | … | 52 | 181 | 588 |
⁝ | ⁝ | ⁝ | ⁝ | ⁝ | ⁝ | ⁝ |
Tiarna | 59 | 54 | … | 31 | 138 | 337 |
Variable (Proportion) | ABS Notation | Numerator | Denominator |
---|---|---|---|
People with stated annual household equivalized income between $1 and $25,999 | INC_LOW | HIED = 02–05 | HIED = 01–15 |
People with stated annual household equivalized income greater than or equal to $78,000 | INC_HIGH | HIED = 11–15 | HIED = 01–15 |
People aged 15 years and over attending a university or other tertiary institution | ATUNI | AGEP > 14 and TYPP = 50 | AGEP > 14 and TYPP ne &&, VV |
People aged 15 years and over whose highest level of educational attainment is a Certificate Level III or IV qualification | CERTIFICATE | HEAP = 51 | HEAP ne 001, @@@, VVV, &&& |
People aged 15 years and over whose highest level of educational attainment is an advanced diploma or diploma qualification | DIPLOMA | HEAP = 4 | HEAP ne 001, @@@, VVV, &&& |
People aged 15 years and over who have no educational attainment | NOEDU | HEAP = 998 | HEAP ne 001, @@@, VVV, &&& |
People aged 15 years and over whose highest level of educational attainment is Year 11 or lower (includes Certificate Levels I and II; excludes those still in secondary school) | NOYEAR12 | HEAP = 613, 621, 720, 721, 811, 812, 998, and TYPP NE 31, 32, 33 | HEAP ne 001, @@@, VVV, &&& |
People in the labor force who are unemployed | UNEMPLOYED | LFSP = 4–5 | LFSP = 1–5 |
Employed people classified as machinery operators and drivers | OCC_DRIVERS | OCCP = 7 | OCCP = 1–8 |
Employed people classified as laborers | OCC_LABOUR | OCCP = 8 | OCCP = 1–8 |
Employed people classified as managers | OCC_MANAGER | OCCP = 1 | OCCP = 1–8 |
Employed people classified as professionals | OCC_PROF | OCCP = 2 | OCCP = 1–8 |
Employed people classified as low-skill sales workers | OCC_SALES_L | OCCP = 6211, 6212, 6214, 6216, 6219, 6391, 6393, 6394, 6399 | OCCP = 1–8 |
Employed people classified as low-skill community and personal service workers | OCC_SERVICE_L | OCCP = 4211, 4211, 4231, 4232, 4233, 4234, 4311, 4312, 4313, 4314, 4315, 4319, 4421, 4422, 4511, 4514, 4515, 4516, 4517, 4518, 4521, 4522 | OCCP = 1–8 |
Occupied private dwellings with four or more bedrooms | HIGHBED | BEDD = 04–30 and HHCD = 11–32 | BEDD ne &&, @@, and HHCD = 11–32 |
Occupied private dwellings paying more than $2800 per month in mortgage repayments | HIGHMORTGAGE | MRERD = 16–19 | TEND ne &, @ and MRERD ne &&&& and RNTRD ne &&&& |
Occupied private dwellings paying less than $215 per week in rent (excluding $0 per week) | LOWRENT | RNTRD = 02–08 | TEND ne &, @, and MRERD ne &&&& and RNTRD ne &&&& |
Occupied private dwellings requiring one or more extra bedrooms (based on the Canadian National Occupancy Standard) | OVERCROWD | HOSD = 01–04 | HOSD ne 10, &&, @@, and HHCD = 11–32 |
Occupied private dwellings with no cars | NOCAR | VEHD = 00 and HHCD = 11–32 | VEHD ne &&, @@, and HHCD = 11–32 |
Occupied private dwellings with no Internet connection | NONET | NEDD = 2 and HHCD = 11–32 | NEDD ne &, @, and HHCD = 11–32 |
Families with children under 15 years of age and jobless parents | CHILDJOBLESS | LFSF = 16, 17, 19, 25, 26 | LFSF ne 06, 11, 15, 18, 20, 21, 27, @@ |
People aged under 70 who need assistance with core activities due to a long-term health condition, disability, or old age | DISABILITYU70 | AGEP > 70 and ASSNP = 1 | AGEP < 70 and ASSNP = 1–2 |
Families that are one-parent families with dependent offspring only | ONEPARENT | FMCF = 3112, 3122, 3212 | FMCF ne @@@@ |
People aged 15 and over who are separated or divorced | SEPDIVORCED | MSTP = 3–4 | MSTP = 1–5 |
References
- Kelly, A. Fire Protection Services in Australia; IBISWorld: Manhattan, NY, USA, 2022. [Google Scholar]
- Australian Bureau of Statistics. Causes of Death, Australia. Available online: https://www.abs.gov.au/statistics/health/causes-death/causes-death-australia/2020 (accessed on 1 December 2022).
- Ashe, B.; McAneney, K.J.; Pitman, A.J. Total cost of fire in Australia. J. Risk Res. 2009, 12, 121–136. [Google Scholar] [CrossRef]
- Queensland Fire and Emergency Services. QFES Incident Data. 2020. Available online: https://www.data.qld.gov.au/dataset/qfes-incident-data (accessed on 1 September 2022).
- Lizhong, Y.; Heng, C.; Yong, Y.; Tingyong, F. The Effect of Socioeconomic Factors on Fire in China. J. Fire Sci. 2005, 23, 451–467. [Google Scholar] [CrossRef]
- Fahy, R.; Maheshwari, R. Poverty and the Risk of Fire; National Fire Protection Organisation: Quincy, MA, USA, 2021. [Google Scholar]
- Tannous, W.K.; Agho, K. Socio-demographic predictors of residential fire and unwillingness to call the fire service in New South Wales. Prev. Med. Rep. 2017, 7, 50–57. [Google Scholar] [CrossRef]
- Chhetri, P.; Corcoran, J.; Stimson, R.J.; Inbakaran, R. Modelling Potential Socio-economic Determinants of Building Fires in South East Queensland. Geogr. Res. 2010, 48, 75–85. [Google Scholar] [CrossRef]
- Efroymson, M.A. Multiple regression analysis. In Mathematical Methods for Digital Computers; John Wiley and Sons: Hoboken, NJ, USA, 1960; pp. 191–203. [Google Scholar]
- Harrell, F.E. Multivariable Modeling Strategies. In Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis; Harrell, J.F.E., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 63–102. [Google Scholar]
- Smith, G. Step away from stepwise. J. Big Data 2018, 5, 32. [Google Scholar] [CrossRef]
- Olusegun, A.M.; Dikko, H.G.; Gulumbe, S.U. Identifying the Limitation of Stepwise Selection for Variable Selection in Regression Analysis. Am. J. Theor. Appl. Stat. 2015, 4, 414–419. [Google Scholar] [CrossRef]
- McIntyre, S.H.; Montgomery, D.B.; Srinivasan, V.; Weitz, B.A. Evaluating the Statistical Significance of Models Developed by Stepwise Regression. J. Mark. Res. 1983, 20, 1–11. [Google Scholar] [CrossRef]
- Heinze, G.; Dunkler, D. Five myths about variable selection. Transpl. Int. 2017, 30, 6–10. [Google Scholar] [CrossRef]
- Ssegane, H.; Tollner, E.W.; Mohamoud, Y.M.; Rasmussen, T.C.; Dowd, J.F. Advances in variable selection methods I: Causal selection methods versus stepwise regression and principal component analysis on data of known and unknown functional relationships. J. Hydrol. 2012, 438–439, 16–25. [Google Scholar] [CrossRef]
- Hastie, C.; Searle, R. Socio-economic and demographic predictors of accidental dwelling fire rates. Fire Saf. J. 2016, 84, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Ratner, B. Variable selection methods in regression: Ignorable problem, outing notable solution. J. Target. Meas. Anal. Mark. 2010, 18, 65–75. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Eijkemans, M.J.C.; Habbema, J.D.F. Stepwise Selection in Small Data Sets: A Simulation Study of Bias in Logistic Regression Analysis. J. Clin. Epidemiol. 1999, 52, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Derksen, S.; Keselman, H.J. Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. Br. J. Math. Stat. Psychol. 1992, 45, 265–282. [Google Scholar] [CrossRef]
- Cammarota, C.; Pinto, A. Variable selection and importance in presence of high collinearity: An application to the prediction of lean body mass from multi-frequency bioelectrical impedance. J. Appl. Stat. 2021, 48, 1644–1658. [Google Scholar] [CrossRef] [PubMed]
- Freckleton, R.P. Dealing with collinearity in behavioural and ecological data: Model averaging and the problems of measurement error. Behav. Ecol. Sociobiol. 2011, 65, 91–101. [Google Scholar] [CrossRef]
- Wang, K.; Chen, Z. Stepwise Regression and All Possible Subsets Regression in Education. Electron. Int. J. Educ. Arts Sci. 2016, 2, 60–81. [Google Scholar]
- Goodenough, A.E.; Hart, A.G.; Stafford, R. Regression with empirical variable selection: Description of a new method and application to ecological datasets. PLoS ONE 2012, 7, e34338. [Google Scholar] [CrossRef] [Green Version]
- Siegel, A.F. Multiple Regression: Predicting One Variable From Several Others. In Practical Business Statistics, 7th ed.; Siegel, A.F., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 355–418. [Google Scholar]
- Seber, G.A.F.; Wild, C.J. Least Squares. In Methods in Experimental Physics; Stanford, J.L., Vardeman, S.B., Eds.; Academic Press: Cambridge, MA, USA, 1994; Volume 28, pp. 245–281. [Google Scholar]
- Wilson, J.H. Multiple Linear Regression. In Regression Analysis: Understanding and Building Business and Economic Models Using Excel; Business Expert Press: New York, NY, USA, 2012. [Google Scholar]
- Thompson, B. Stepwise Regression and Stepwise Discriminant Analysis Need Not Apply here: A Guidelines Editorial. Educ. Psychol. Meas. 1995, 55, 525–534. [Google Scholar] [CrossRef]
- Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2006, 68, 49–67. [Google Scholar] [CrossRef]
- Kwak, S.K.; Kim, J.H. Statistical data preparation: Management of missing values and outliers. Korean J. Anesth. 2017, 70, 407–411. [Google Scholar] [CrossRef]
- Osborne, J.W.; Overbay, A. The power of outliers (and why researchers should ALWAYS check for them). Pract. Assess. Res. Eval. 2004, 9, 6. [Google Scholar] [CrossRef]
- Maronna, R.A.; Martin, R.D.; Yohai, V.J.; Salibin-Barrera, M. Robust inference and variable selection for M-estimators. In Robust Statistics; Wiley Series in Probability and Statistics; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2019; pp. 133–138. [Google Scholar]
- Wada, K. Outliers in official statistics. Jpn. J. Stat. Data Sci. 2020, 3, 669–691. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, D.; Zhang, S. A new hybrid ensemble model with voting-based outlier detection and balanced sampling for credit scoring. Expert Syst. Appl. 2021, 174, 114744. [Google Scholar] [CrossRef]
- Akaike, H. Statistical predictor identification. Ann. Inst. Stat. Math. 1970, 22, 203–217. [Google Scholar] [CrossRef]
- Untadi, A.; Li, L.D.; Dodd, R.; Li, M. A Novel Framework Incorporating Socioeconomic Variables into the Optimisation of South East Queensland Fire Stations Coverages. In Proceedings of the Conference on Innovative Technologies in Intelligent Systems & Industrial Applications, Online, 16–18 November 2022. [Google Scholar]
- Yohai, V.J. High Breakdown-Point and High Efficiency Robust Estimates for Regression. Ann. Stat. 1987, 15, 642–656. [Google Scholar] [CrossRef]
- Pena, D.; Yohai, V. A Fast Procedure for Outlier Diagnostics in Large Regression Problems. J. Am. Stat. Assoc. 1999, 94, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Maronna, R.A.; Martin, R.D.; Yohai, V.J.; Salibin-Barrera, M. M-estimators with smooth ψ-function. In Robust Statistics; Wiley Series in Probability and Statistics; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2019; p. 104. [Google Scholar]
- Queensland Government. South East Queensland Economic Foundations Paper; Queensland Government: Brisbane, Australia, 2018.
- Queensland Health. Our People: A Diverse Population; Queensland Health: Cairns, Australia, 2020.
- Australian Bureau of Statistics. Population Movement in Australia. Available online: https://www.abs.gov.au/articles/population-movement-australia (accessed on 9 March 2023).
- Jivraj, S. The Effect of Internal Migration on the Socioeconomic Composition of Neighbourhoods in England. Ph.D. Thesis, University of Manchester, Manchester, UK, 2011. [Google Scholar]
- Australian Bureau of Statistics. Technical Paper: Socio-Economic Indexes for Areas (SEIFA); Australian Bureau of Statistics: Canberra, Australia, 2016.
- Poole, M.A.; O'Farrell, P.N. The Assumptions of the Linear Regression model. Trans. Inst. Br. Geogr. 1971, 52, 145–158. [Google Scholar] [CrossRef] [Green Version]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. (Eds.) Linear Regression. In An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013; pp. 59–126. [Google Scholar]
- Australasian Fire and Emergency Service Authorities Council. Australian Incident Reporting System Reference Manual; Australasian Fire and Emergency Service Authorities Council: East Melbourne, Australia, 2013. [Google Scholar]
- Salibian-Barrera, M.; Yohai, V.; Maronna, R.; Martin, D.; Brownso, G.; Konis, K.; Croux, C.; Haesbroeck, G.; Maechler, M.; Koller, M.; et al. Package ‘RobStatTM’. Available online: https://cran.r-project.org/web/packages/RobStatTM/RobStatTM.pdf (accessed on 5 December 2022).
- Falk, R.; Miller, N. A Primer for Soft Modeling; The University of Akron Press: Akron, OH, USA, 1992. [Google Scholar]
- Pek, J.; Wong, O.; Wong, A.C.M. How to Address Non-normality: A Taxonomy of Approaches, Reviewed, and Illustrated. Front. Psychol. 2018, 9, 2104. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.F.; Finan, C. Linear regression and the normality assumption. J. Clin. Epidemiol. 2018, 98, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Howell, D.C. Statistical Methods for Psychology; Cengage Learning: Boston, MA, USA, 2012. [Google Scholar]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer: New York, NY, USA, 1998; pp. 199–213. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Information and Likelihood Theory: A Basis for Model Selection and Inference. In Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002; pp. 49–97. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Linear Statistical Models. In Modern Applied Statistics with S; Springer: New York, NY, USA, 2002; pp. 139–181. [Google Scholar]
- Zhang, T.; Zhang, J.; Liu, Y.; Pan, S.; Sun, D.; Zhao, C. Design of Linear Regression Scheme in Real-Time Market Load Prediction for Power Market Participants. In Proceedings of the 2021 11th International Conference on Power and Energy Systems (ICPES), Shanghai, China, 18–20 December 2021; pp. 547–551. [Google Scholar]
- Luu, M.N.; Alhady, S.T.M.; Nguyen Tran, M.D.; Truong, L.V.; Qarawi, A.; Venkatesh, U.; Tiwari, R.; Rocha, I.C.N.; Minh, L.H.N.; Ravikulan, R.; et al. Evaluation of risk factors associated with SARS-CoV-2 transmission. Curr. Med. Res. Opin. 2022, 38, 2021–2028. [Google Scholar] [CrossRef]
- Hevesi, M.; Dandu, N.; Darwish, R.; Zavras, A.; Cole, B.; Yanke, A. Poster 212: The Cartilage Early Return for Transplant (CERT) Score: Predicting Early Patient Election to Proceed with Cartilage Transplant Following Chondroplasty of the Knee. Orthop. J. Sport. Med. 2022, 10, 2325967121S2325900773. [Google Scholar] [CrossRef]
- Johnson, J.B.; Omland, K.S. Model selection in ecology and evolution. Trends Ecol. Evol. 2004, 19, 101–108. [Google Scholar] [CrossRef]
- Sullivan, J.; Joyce, P. Model Selection in Phylogenetics. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 445–466. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Vrieze, S.I. Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol. Methods 2012, 17, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.M. The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction. Technometrics 1974, 16, 125–127. [Google Scholar] [CrossRef]
- Tarpey, T. A Note on the Prediction Sum of Squares Statistic for Restricted Least Squares. Am. Stat. 2000, 54, 116–118. [Google Scholar] [CrossRef]
- Qian, J.; Li, S. Model Adequacy Checking for Applying Harmonic Regression to Assessment Quality Control. ETS Res. Rep. Ser. 2021, 2021, 1–26. [Google Scholar] [CrossRef]
- Quan, N.T. The Prediction Sum of Squares as a General Measure for Regression Diagnostics. J. Bus. Econ. Stat. 1988, 6, 501–504. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 2nd ed.; John Wiley: New York, NY, USA, 1981. [Google Scholar]
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Haem, E.; Harling, K.; Ayatollahi, S.M.T.; Zare, N.; Karlsson, M.O. Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models. J. Pharmacokinet. Pharmacodyn. 2017, 44, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R. Model Building with Forest Fire Data: Data Mining, Exploratory Analysis and Subset Selection. 2009. Available online: http://fisher.stats.uwo.ca/faculty/aim/2018/4850G/projects/FIREProjectFinalReport.pdfB (accessed on 15 November 2022).
Variables | Coefficient Est. | Std. Error | VIF | t Value | F Value | (Pr > t) |
---|---|---|---|---|---|---|
(INTERCEPT) | −0.0559 | 0.1474 | - | −0.3790 | - | 0.7048 |
CERTIFICATE | 1.9462 | 0.5853 | 2.8851 | 3.3250 | 11.0567 | 0.0010 |
CHILDJOBLESS | −1.3046 | 0.4744 | 3.1884 | −2.7500 | 7.5627 | 0.0063 |
DISABILITYU70 | 11.9985 | 3.1034 | 4.5289 | 3.8660 | 14.9483 | 0.0001 |
HIGHBED | −0.7390 | 0.1674 | 2.2814 | −4.4150 | 19.4888 | 1.38 × 10−5 |
NOCAR | 5.0159 | 0.7877 | 2.3775 | 6.3670 | 40.5440 | 6.65 × 10−10 |
NOEDU | 13.3645 | 5.0603 | 2.1978 | 2.6410 | 6.9751 | 0.0087 |
OCC_DRIVERS | 1.0718 | 0.5444 | 1.7903 | 1.9690 | 3.8757 | 0.0498 |
OCC_LABOUR | 3.4219 | 1.0807 | 4.8463 | 3.1660 | 10.0263 | 0.0017 |
OCC_MANAGERS | 4.7262 | 0.7581 | 1.7200 | 6.2340 | 38.8648 | 1.43 × 10−9 |
OCC_SERVICE_L | −5.9257 | 1.7513 | 2.6066 | −3.3840 | 11.4481 | 0.0008 |
Variables | Coefficient Est. | Std. Error | VIF | t Value | F Value | (Pr > t) |
---|---|---|---|---|---|---|
(INTERCEPT) | −0.0961 | 0.2168 | - | −0.4430 | - | 0.6579 |
CERTIFICATE | 2.5459 | 0.7902 | 3.0107 | 3.2220 | 10.3807 | 0.0014 |
CHILDJOBLESS | −1.4660 | 0.6779 | 3.8942 | −2.1630 | 4.6764 | 0.0313 |
DISABILITYU70 | 9.8059 | 4.4173 | 5.6321 | 2.2200 | 4.9278 | 0.0271 |
HIGHBED | −0.8372 | 0.2756 | 3.6520 | −3.0380 | 9.2287 | 0.0026 |
LOWRENT | 1.2476 | 1.4035 | 3.8618 | 0.8890 | 0.7902 | 0.3747 |
NOCAR | 5.2416 | 1.1348 | 2.9453 | 4.6190 | 21.3329 | 5.61 × 10−6 |
NOEDU | 15.0715 | 6.385 | 2.1487 | 2.3600 | 5.5716 | 0.0189 |
NONET | 0.4373 | 1.9582 | 7.5825 | 0.2230 | 0.0499 | 0.8234 |
OCC_DRIVERS | 1.1416 | 0.7837 | 2.1446 | 1.4570 | 2.1219 | 0.1462 |
OCC_MANAGERS | 2.8106 | 1.1612 | 2.3701 | 2.4200 | 5.8581 | 0.0161 |
OCC_PROF | −1.1233 | 0.5293 | 3.4929 | −2.1220 | 4.5043 | 0.0346 |
OCC_SERVICE_L | −11.2379 | 2.3258 | 2.8882 | −4.8320 | 23.3456 | 2.11 × 10−6 |
ONEPARENT | 1.6318 | 1.3821 | 4.3781 | 1.1810 | 1.3940 | 0.2386 |
Testing Dataset | Training Dataset | Measurements | |||||
---|---|---|---|---|---|---|---|
RMSE | MAE | ||||||
Train. | Test. | Diff. | Train. | Test. | Diff. | ||
1 | 2, 3, 4, 5 | 0.476818 | 0.571732 | −0.094914 | 0.371323 | 0.443796 | −0.072473 |
2 | 1, 3, 4, 5 | 0.500364 | 0.471037 | 0.029327 | 0.388915 | 0.354920 | 0.033995 |
3 | 1, 2, 4, 5 | 0.491625 | 0.503445 | −0.011820 | 0.378446 | 0.395941 | −0.017495 |
4 | 1, 2, 3, 5 | 0.501656 | 0.471982 | 0.029674 | 0.392949 | 0.351124 | 0.041824 |
5 | 1, 2, 3, 4 | 0.500390 | 0.473456 | 0.026934 | 0.381941 | 0.387893 | −0.005952 |
Mean Abs. Diff. | 0.494171 | 0.498330 | 0.038534 | 0.382715 | 0.386735 | 0.034348 |
Variables | Coefficient Est. | Std. Error | VIF | t Value | F Value | (Pr > t) |
---|---|---|---|---|---|---|
(INTERCEPT) | 0.0122 | 0.2027 | 5.1767 | 0.0600 | 2.0169 | 0.9521 |
CERTIFICATE | 1.4485 | 1.0199 | 3.5536 | 1.4200 | 4.8553 | 0.1565 |
CHILDJOBLESS | −1.406 | 0.6381 | 3.3722 | −2.2030 | 4.2129 | 0.0283 |
DIPLOMA | −4.7625 | 2.3203 | 4.4612 | −2.0530 | 8.2561 | 0.0409 |
DISABILITYU70 | 11.1682 | 3.8868 | 3.4764 | 2.8730 | 4.5821 | 0.0043 |
HIGHBED | −0.5626 | 0.2628 | 2.9668 | −2.1410 | 25.8273 | 0.0331 |
NOCAR | 5.7104 | 1.1236 | 1.7804 | 5.0820 | 11.7489 | 6.36 × 10−7 |
NOEDU | 19.7162 | 5.7521 | 3.0316 | 3.4280 | 6.1727 | 0.0007 |
OCC_MANAGERS | 3.2178 | 1.2952 | 2.7523 | 2.4840 | 9.0378 | 0.0135 |
OCC_PROF | −1.3914 | 0.4628 | 3.6245 | −3.0060 | 12.5369 | 0.0029 |
OCC_SERVICE_L | −9.0765 | 2.5634 | 5.6759 | −3.5410 | 4.5320 | 0.0005 |
SEPDIVORCED | 4.0726 | 1.9131 | 5.1767 | 2.1290 | 2.0169 | 0.0340 |
Measures | RFPE | AIC |
---|---|---|
RMSE | 0.494268 | 0.492444 |
MAE | 0.382724 | 0.385877 |
Elimination Criteria | Testing Dataset | Training Dataset | Measurement | |||||
---|---|---|---|---|---|---|---|---|
RMSE | MAE | |||||||
Train. | Test. | Diff. | Train. | Test. | Diff. | |||
RFPE | 1 | 2, 3, 4, 5 | 0.476818 | 0.571732 | −0.094914 | 0.371323 | 0.443796 | −0.072473 |
2 | 1, 3, 4, 5 | 0.500364 | 0.471037 | 0.029327 | 0.388915 | 0.354920 | 0.033995 | |
3 | 1, 2, 4, 5 | 0.491625 | 0.503445 | −0.011820 | 0.378446 | 0.395941 | −0.017495 | |
4 | 1, 2, 3, 5 | 0.501656 | 0.471982 | 0.029674 | 0.392949 | 0.351124 | 0.041824 | |
5 | 1, 2, 3, 4 | 0.500390 | 0.473456 | 0.026934 | 0.381941 | 0.387893 | −0.005952 | |
Mean Abs. Diff. | 0.494171 | 0.498330 | 0.038534 | 0.382715 | 0.386735 | 0.034348 | ||
AIC | 1 | 2, 3, 4, 5 | 0.475679 | 0.553801 | −0.078122 | 0.373278 | 0.435709 | −0.062431 |
2 | 1, 3, 4, 5 | 0.498819 | 0.465867 | 0.032953 | 0.392083 | 0.360863 | 0.031220 | |
3 | 1, 2, 4, 5 | 0.488506 | 0.508005 | −0.019499 | 0.382623 | 0.398990 | −0.016367 | |
4 | 1, 2, 3, 5 | 0.500340 | 0.459248 | 0.041092 | 0.396239 | 0.344114 | 0.052125 | |
5 | 1, 2, 3, 4 | 0.498395 | 0.468168 | 0.030227 | 0.385111 | 0.388907 | −0.003796 | |
Mean Abs. Diff. | 0.492348 | 0.491018 | 0.040378 | 0.385867 | 0.385717 | 0.033188 |
Measures | RFPE | p-Value | BIC | PRESS |
---|---|---|---|---|
RMSE | 0.494268 | 0.533903 | 0.496012 | 0.506705 |
MAE | 0.382724 | 0.415332 | 0.391171 | 0.398664 |
Elimination Criteria | Testing Dataset | Training Dataset | Measurements | |||||
---|---|---|---|---|---|---|---|---|
RMSE | MAE | |||||||
Train. | Test. | Diff. | Train. | Test. | Diff. | |||
RFPE | 1 | 2, 3, 4, 5 | 0.476818 | 0.571732 | −0.094914 | 0.371323 | 0.443796 | −0.072473 |
2 | 1, 3, 4, 5 | 0.500364 | 0.471037 | 0.029327 | 0.388915 | 0.354920 | 0.033995 | |
3 | 1, 2, 4, 5 | 0.491625 | 0.503445 | −0.011820 | 0.378446 | 0.395941 | −0.017495 | |
4 | 1, 2, 3, 5 | 0.501656 | 0.471982 | 0.029674 | 0.392949 | 0.351124 | 0.041824 | |
5 | 1, 2, 3, 4 | 0.500390 | 0.473456 | 0.026934 | 0.381941 | 0.387893 | −0.005952 | |
Mean Abs. Diff. | 0.494171 | 0.498330 | 0.038534 | 0.382715 | 0.386735 | 0.034348 | ||
p-value | 1 | 2, 3, 4, 5 | 0.519079 | 0.588888 | −0.069809 | 0.403196 | 0.463334 | −0.060138 |
2 | 1, 3, 4, 5 | 0.541130 | 0.503723 | 0.037407 | 0.420914 | 0.392837 | 0.028077 | |
3 | 1, 2, 4, 5 | 0.532616 | 0.539056 | −0.006439 | 0.409819 | 0.437554 | −0.027735 | |
4 | 1, 2, 3, 5 | 0.539241 | 0.511821 | 0.027420 | 0.424460 | 0.378545 | 0.045915 | |
5 | 1, 2, 3, 4 | 0.537111 | 0.521020 | 0.016090 | 0.418238 | 0.403838 | 0.014400 | |
Mean Abs. Diff. | 0.533835 | 0.532902 | 0.031433 | 0.415325 | 0.415221 | 0.035253 | ||
BIC | 1 | 2, 3, 4, 5 | 0.478908 | 0.558554 | −0.079646 | 0.379655 | 0.436716 | −0.057061 |
2 | 1, 3, 4, 5 | 0.501584 | 0.472891 | 0.028693 | 0.395994 | 0.371731 | 0.024263 | |
3 | 1, 2, 4, 5 | 0.493470 | 0.506130 | −0.012660 | 0.389651 | 0.397295 | −0.007644 | |
4 | 1, 2, 3, 5 | 0.503437 | 0.464889 | 0.038548 | 0.400090 | 0.355224 | 0.044866 | |
5 | 1, 2, 3, 4 | 0.502196 | 0.470759 | 0.031437 | 0.390417 | 0.394151 | −0.003734 | |
Mean Abs. Diff. | 0.495919 | 0.494644 | 0.038197 | 0.391161 | 0.391023 | 0.027514 | ||
PRESS | 1 | 2, 3, 4, 5 | 0.488093 | 0.574441 | −0.086348 | 0.386242 | 0.447798 | −0.061556 |
2 | 1, 3, 4, 5 | 0.511723 | 0.485957 | 0.025767 | 0.401845 | 0.385843 | 0.016003 | |
3 | 1, 2, 4, 5 | 0.506614 | 0.507073 | −0.000459 | 0.398344 | 0.399954 | −0.001610 | |
4 | 1, 2, 3, 5 | 0.514386 | 0.474490 | 0.039896 | 0.409298 | 0.355806 | 0.053492 | |
5 | 1, 2, 3, 4 | 0.512207 | 0.484332 | 0.027875 | 0.397540 | 0.403109 | −0.005568 | |
Mean Abs. Diff. | 0.506605 | 0.505259 | 0.036069 | 0.398654 | 0.398502 | 0.027646 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Untadi, A.; Li, L.D.; Li, M.; Dodd, R. Modeling Socioeconomic Determinants of Building Fires through Backward Elimination by Robust Final Prediction Error Criterion. Axioms 2023, 12, 524. https://doi.org/10.3390/axioms12060524
Untadi A, Li LD, Li M, Dodd R. Modeling Socioeconomic Determinants of Building Fires through Backward Elimination by Robust Final Prediction Error Criterion. Axioms. 2023; 12(6):524. https://doi.org/10.3390/axioms12060524
Chicago/Turabian StyleUntadi, Albertus, Lily D. Li, Michael Li, and Roland Dodd. 2023. "Modeling Socioeconomic Determinants of Building Fires through Backward Elimination by Robust Final Prediction Error Criterion" Axioms 12, no. 6: 524. https://doi.org/10.3390/axioms12060524
APA StyleUntadi, A., Li, L. D., Li, M., & Dodd, R. (2023). Modeling Socioeconomic Determinants of Building Fires through Backward Elimination by Robust Final Prediction Error Criterion. Axioms, 12(6), 524. https://doi.org/10.3390/axioms12060524