Positive Solutions for a System of Hadamard Fractional Boundary Value Problems on an Infinite Interval
Abstract
:1. Introduction
2. Auxiliary Results
- (A1)
- , , , , , are nondecreasing functions, , , and (given by (6)).
- (A2)
- The functions are not identical zero on any subinterval of I, and , .
- (A3)
- The functions satisfy the conditions(i) , on any subinterval of I;(ii) are measurable for every ;(iii) , are continuous on , for a.e. ;(iv) For any , there exist the functions with and , such that
3. Existence of Positive Solutions
- (A4)
- there exist non-negative functions withsuch thatfor all .
- (A5)
- there exist non-negative functions withsuch thatfor all .
- (A6)
- andfor all ;
- (A7)
- andfor all ,
- (A8)
- andfor all
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Khamsi, M.A.; Kirk, W.A. An Introduction to Metric Spaces and Fixed Point Theory; John Wiley and Sons, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Krasnosel’skii, M.A. Some problems of nonlinear analysis. Amer. Math. Soc. Transl. 1958, 10, 345–409. [Google Scholar]
- Krasnosel’skii, M.A. Positive Solution of Operator Equations; Noordhoff: Groningen, The Netherlands, 1964. [Google Scholar]
- Krasnosel’skii, M.A.; Zabreiko, P.P. Geometrical Methods of Nonlinear Analysis; Springer: New York, NY, USA, 1984. [Google Scholar]
- Subrahmanyam, P.V. Elementary Fixed Point Theorems; Springer: Singapore, 2019. [Google Scholar]
- Debnath, P.; Konwar, N.; Radenovic, S. (Eds.) Metric Fixed Point Theory, Applications in Science, Engineering and Behavioral Sciences; Springer: Singapore, 2021. [Google Scholar]
- Leggett, R.; Williams, L. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 1979, 28, 673–688. [Google Scholar] [CrossRef]
- Avery, R.I.; Peterson, A.C. Three positive fixed points of nonlinear operators on ordered Banach spaces. Comput. Math. Appl. 2001, 42, 313–322. [Google Scholar] [CrossRef]
- Luca, R.; Tudorache, A. On a system of Hadamard fractional differential equations with nonlocal boundary conditions on an infinite interval. Fractal Fract. 2023, 7, 458. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Asawasamrit, S.; Promsakon, C. Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain. Open Math. 2017, 15, 645–666. [Google Scholar]
- Zhang, W.; Liu, W. Existence, uniqueness, and multiplicity results on positive solutions for a class of Hadamard-type fractional boundary value problem on an infinite interval. Math. Methods Appl. Sci. 2020, 43, 2251–2275. [Google Scholar] [CrossRef]
- Tudorache, A.; Luca, R. Positive solutions for a singular fractional boundary value problem. Math. Methods Appl. Sci. 2020, 43, 10190–10203. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ahmad, B.; Henderson, J.; Luca, R. Boundary Value Problems for Fractional Differential Equations and Systems; Trends in Abstract and Applied Analysis 9; World Scientific: Hackensack, NJ, USA, 2021. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus Models and Numerical Methods; Series on Complexity, Nonlinearity and Chaos; World Scientific: Boston, MA, USA, 2012. [Google Scholar]
- Baleanu, D.; Tenreiro Machado, J.A.; Luo, A.C.J. (Eds.) Fractional Dynamics and Control; Springer: New York, NY, USA, 2012. [Google Scholar]
- Das, S. Functional Fractional Calculus for System Identification and Controls; Springer: New York, NY, USA, 2008. [Google Scholar]
- Henderson, J.; Luca, R. Boundary Value Problems for Systems of Differential, Difference and Fractional Equations. Positive Solutions; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Klafter, J.; Lim, S.C.; Metzler, R. (Eds.) Fractional Dynamics in Physics; World Scientific: Singapore, 2011. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. (Eds.) Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Zhou, Y.; Wang, J.R.; Zhang, L. Basic Theory of Fractional Differential Equations, 2nd ed.; World Scientific: Singapore, 2016. [Google Scholar]
- Butkovskii, A.G.; Postnov, S.S.; Postnova, E.A. Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation. Autom. Remote Control 2013, 74, 543–574. [Google Scholar]
- Butkovskii, A.G.; Postnov, S.S.; Postnova, E.A. Fractional integro-differential calculus and its control-theoretical applications. II. Fractional dynamic systems: Modeling and hardware implementation. Autom. Remote Control 2013, 74, 725–749. [Google Scholar] [CrossRef]
- Makhlouf, A.B.; Mchiri, L. Some results on the study of Caputo-Hadamard fractional stochastic differential equations. Chaos Solitons Fractals 2022, 155, 111757. [Google Scholar] [CrossRef]
- Liu, J.; Wei, W.; Wang, J.; Xu, W. Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations. Appl. Math. Lett. 2023, 140, 108586. [Google Scholar] [CrossRef]
- Rhaima, M. Ulam type stability for Caputo-Hadamard fractional functional stochastic differential equations with delay. Math. Methods Appl. Sci. 2023, 46, 10995–11006. [Google Scholar] [CrossRef]
- Thiramanus, P.; Ntouyas, S.K.; Tariboon, J. Positive solutions for Hadamard fractional differential equations on infinite domain. Adv. Differ. Equ. 2016, 2016, 1–18. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudorache, A.; Luca, R. Positive Solutions for a System of Hadamard Fractional Boundary Value Problems on an Infinite Interval. Axioms 2023, 12, 793. https://doi.org/10.3390/axioms12080793
Tudorache A, Luca R. Positive Solutions for a System of Hadamard Fractional Boundary Value Problems on an Infinite Interval. Axioms. 2023; 12(8):793. https://doi.org/10.3390/axioms12080793
Chicago/Turabian StyleTudorache, Alexandru, and Rodica Luca. 2023. "Positive Solutions for a System of Hadamard Fractional Boundary Value Problems on an Infinite Interval" Axioms 12, no. 8: 793. https://doi.org/10.3390/axioms12080793
APA StyleTudorache, A., & Luca, R. (2023). Positive Solutions for a System of Hadamard Fractional Boundary Value Problems on an Infinite Interval. Axioms, 12(8), 793. https://doi.org/10.3390/axioms12080793