Lax Pairs for the Modified KdV Equation
Abstract
:1. Introduction
2. Direct Method
3. Lax Pairs for the mKdV Equation
4. Gauge Equivalence
5. Concluding Comments
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Methods of Defining Solutions of Nonlinear PDEs Independent of the Methods for Testing Integrability
References
- Drazin, P.G.; Johnson, R.S. Solitons: An Introduction; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Ablowitz, M.; Segur, H. Solitons and the Inverse Scattering Transform (SIAM Studies in Applied Mathematics, 4); Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1981. [Google Scholar]
- Newell, A.C. Solitons in Mathematics and Physics; CBMS-NSF Regional Conference Series in Applied Mathematics, 48; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1985. [Google Scholar]
- Zakharov, V.E. (Ed.) What Is Integrability? Springer Series in Nonlinear Dynamics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1991. [Google Scholar]
- Mikhailov, A.V. (Ed.) Introduction. In Integrability; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2009; Volume 767. [Google Scholar]
- Lax, P.D. Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 1968, 62, 467. [Google Scholar] [CrossRef]
- Hickman, M.; Hereman, W.; Larueb, J.; Goktasc, U. Scaling invariant Lax pairs of nonlinear evolution equations. Appl. Anal. 2012, 91, 381–402. [Google Scholar] [CrossRef]
- Calogero, F.; Nucci, M.C. Lax pairs galore. J. Math. Phys. 1991, 32, 72–74. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Shabat, A.B. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Its Appl. 1974, 8, 226. [Google Scholar] [CrossRef]
- Flaschka, H.; Newell, A.C. Monodromy-and spectrum-preserving deformations I. Commun. Math. Phys. 1980, 76, 65–116. [Google Scholar] [CrossRef]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Applied Mathematical Sciences; Springer: New York, NY, USA, 1989; Volume 81. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Graduate Texts in Mathematics 107; Springer: New York, NY, USA, 1986. [Google Scholar]
- Bluman, G.W.; Anco, S.C. Symmetry and Integration Methods for Differential Equations; Applied Mathematical Sciences; Springer: New York, NY, USA, 2002; Volume 154. [Google Scholar]
- Liu, C.S.; Chang, J.R. A homogenization method to solve inverse Cauchy–Stefan problems for recovering non-smooth moving boundary, heat flux and initial value. Inv. Prob. Sci. Eng. 2021, 29, 2772–2803. [Google Scholar] [CrossRef]
- Boureghda, A. Solution of an ice melting problem using a fixed domain method with a moving boundary. Bull. Math. Soc. Sci. Math. Roum. 2019, 62, 341–354. [Google Scholar]
- Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18, 1025–1042. [Google Scholar]
- Levi, D.; Winternitz, P. Non-classical symmetry reduction: Example of the Boussinesq equation. J. Phys. A Math. Gen. 1989, 22, 2915. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Kruskal, M. New Similarity Reductions of the Boussinesq Equation. J. Math. Phys. 1988, 30, 2201–2213. [Google Scholar] [CrossRef]
- Ibragimov, N.H. CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: London, UK; Tokyo, Japan, 1994; Volume 2: Applications in Engineering and Physical Sciences. [Google Scholar]
- Clarkson, P.A.; Winternitz, P. The Painleve Property, One Century Later; Conte, R., Ed.; CRM Series in Mathematical Physics; Springer: New York, NY, USA, 1999; pp. 559–660. [Google Scholar]
- Clarkson, P.A.; Mansfield, E.L. Algorithms for the non-classical method of symmetry reductions. SIAM J. Appl. Math. 1994, 54, 1693–1719. [Google Scholar] [CrossRef]
- Temuer, C.; Bluman, G. An algorithmic method for showing existence of nontrivial non-classical symmetries of partial differential equations without solving determining equations. J. Math. Anal. Appl. 2014, 411, 281–296. [Google Scholar]
- Temuer, C.; Tong, L.; Bluman, G. Some Connections between Classical and Nonclassical Symmetries of a Partial Differential Equation and Their Applications. Mathematics 2020, 8, 524. [Google Scholar] [CrossRef]
- Olver, P.J.; Rosenau, P. The construction of special solutions to partial differential equations. Phys. Lett. A 1986, 147, 107. [Google Scholar] [CrossRef]
- Pucci, E.; Saccomandi, G. On the weak symmetry groups of partial differential equations. J. Math. Anal. Appl. 1992, 163, 588–598. [Google Scholar] [CrossRef]
- Nucci, M.C.; Clarkson, P.A. The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation. Phys. Lett. A 1992, 164, 49–56. [Google Scholar] [CrossRef]
- Baumann, G.; Haager, G.; Nonnenmacher, T.F. Applications of nonclassical symmetries. J. Phys. A Math. Gen. 1994, 27, 6479. [Google Scholar] [CrossRef]
- Fokas, A.S.; Liu, Q.M. Nonlinear interaction of traveling waves of nonintegrable equations. Phys. Rev. Lett. 1994, 72, 3293. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, R.Z. Conditional Lie–Bäcklund symmetry and reductions of evolution equations. J. Phys. A Math. Gen. 1995, 28, 3841. [Google Scholar] [CrossRef]
- Burde, G.I. New similarity reductions of the steady-state boundary layer equations. J. Phys. A Math. Gen. 1996, 29, 1665. [Google Scholar] [CrossRef]
- Goard, J.; Broadbridge, P. Solutions to nonlinear partial differential equations from symmetry-enhancing and symmetry-preserving constraints. J. Math. Anal. Appl. 1999, 238, 369–384. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Mansfield, E.L. Open problems in symmetry analysis. Contemp. Math. 2001, 285, 195–205. [Google Scholar]
- Saccomandi, G. A remarkable class of non-classical symmetries of the steady two-dimensional boundary-layer equations. J. Phys. A Math. Theor. 2004, 37, 7005. [Google Scholar] [CrossRef]
- Kunzinger, M.; Popovych, R.O. Generalized conditional symmetries of evolution equations. J. Math. Anal. Appl. 2011, 379, 444–460. [Google Scholar] [CrossRef]
- Burde, G.I. Partially nonclassical method and conformal invariance. AIP Conf. Proc. 2019, 2116, 190005. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F.; Kumei, S. Applications of Symmetry Methods to Partial Differential Equations; Applied Mathematical Sciences; Springer: New York, NY, USA; Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; London, UK, 2010; Volume 168. [Google Scholar]
- Hirota, R. Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons. Phys. Rev. Lett. 1971, 27, 1192. [Google Scholar] [CrossRef]
- Hietarinta, J. Hirota’s Bilinear Method and Its Connection with Integrability. In Integrability; Mikhailov, A.V., Ed.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2009; Volume 767, p. 279. [Google Scholar]
- Hereman, W.; Nuseir, A. Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 1997, 43, 13–27. [Google Scholar] [CrossRef]
- Burde, G.I. Static algebraic solitons in Korteweg–de Vries type systems and the Hirota transformation. Phys. Rev. E 2011, 84, 026615. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cole, J.D. Similarity Methods for Differential Equations; Applied Mathematical Science Series 13; Springer: New York, NY, USA, 1974. [Google Scholar]
- Burde, G.I. The construction of special explicit solutions of the boundary-layer equations. Steady flows. Q. J. Mech. Appl. Math. 1994, 47, 247–260. [Google Scholar] [CrossRef]
- Olver, P.J.; Vorobev, E.M. CRC Handbook of Lie Group Analysis of Differential Equations; Ibragimov, N.H., Ed.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Clarkson, P.A. Nonclassical symmetry reductions of the Boussinesq equation. Chaos Solitons Fractals 1995, 5, 2261–2301. [Google Scholar] [CrossRef]
- Pucci, E.; Saccomandi, G. Evolution equations, invariant surface conditions and functional separation of variables. Phys. D Nonlinear Phenom. 2000, 139, 28–47. [Google Scholar] [CrossRef]
- Burde, G.I. Generalized Kaup–Kupershmidt solitons and other solitary wave solutions of the higher order KdV equations. J. Phys. A Math. Theor. 2010, 43, 085208. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burde, G.I. Lax Pairs for the Modified KdV Equation. Axioms 2024, 13, 121. https://doi.org/10.3390/axioms13020121
Burde GI. Lax Pairs for the Modified KdV Equation. Axioms. 2024; 13(2):121. https://doi.org/10.3390/axioms13020121
Chicago/Turabian StyleBurde, Georgy I. 2024. "Lax Pairs for the Modified KdV Equation" Axioms 13, no. 2: 121. https://doi.org/10.3390/axioms13020121
APA StyleBurde, G. I. (2024). Lax Pairs for the Modified KdV Equation. Axioms, 13(2), 121. https://doi.org/10.3390/axioms13020121