Entropy of Difference: A New Tool for Measuring Complexity
Abstract
:1. Introduction
2. The Entropy of Difference Method
3. Periodic Signal
4. Chaotic Logistic Map Example
5. KLm(p|q) Divergences Versus m on Real Data and on Maps
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
P["+"]= P["-"] = 1/2; P["-", x__] := P[x] - P["+", x]; P[x__, "-"] := P[x] - P[x, "+"]; P[x__, "-", y__] := P[x] P[y] - P[x, "+", y]; P[x__] :=1/(StringLength[StringJoin[x]] + 1)!
References
- Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Bian, C.; Qin, C.; Ma, Q.D.Y.; Shen, Q. Modified permutation-entropy analysis of heartbeat dynamics. Phys. Rev. E 2012, 85, 021906. [Google Scholar] [CrossRef]
- Zunino, L.; Pérez, D.G.; Martín, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A. Permutation entropy of fractional Brownian motion and fractional Gaussian noise. Phys. Lett. A 2008, 372, 4768. [Google Scholar] [CrossRef]
- Li, X.; Ouyang, G.; Richard, D.A. Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 2007, 77, 70. [Google Scholar] [CrossRef]
- Li, X.; Cui, S.; Voss, L.J. Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology 2008, 109, 448. [Google Scholar] [CrossRef] [PubMed]
- Frank, B.; Pompe, B.; Schneider, U.; Hoyer, D. Permutation entropy improves fetal behavioural state classification based on heart rate analysis from biomagnetic recordings in near term fetuses. Med. Biol. Eng. Comput. 2006, 44, 179. [Google Scholar] [CrossRef] [PubMed]
- Olofsen, E.; Sleigh, J.W.; Dahan, A. Permutation entropy of the electroencephalogram: A measure of anaesthetic drug effect. Br. J. Anaesth. 2008, 101, 810. [Google Scholar] [CrossRef] [PubMed]
- Rosso, O.A.; Zunino, L.; Perez, D.G.; Figliola, A.; Larrondo, H.A.; Garavaglia, M.; Martin, M.T.; Plastino, A. Extracting features of Gaussian self-similar stochastic processes via the Bandt–Pompe approach. Phys. Rev. E 2007, 76, 061114. [Google Scholar] [CrossRef] [PubMed]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Statist. 1951, 22, 79. [Google Scholar] [CrossRef]
- Roldán, E.; Parrondo, J.M.R. Entropy production and Kullback–Leibler divergence between stationary trajectories of discrete systems. Phys. Rev. E 2012, 85, 031129. [Google Scholar] [CrossRef] [PubMed]
- May, R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459. [Google Scholar] [CrossRef] [PubMed]
- Jakobson, M. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys. 1981, 81, 39–88. [Google Scholar] [CrossRef]
- Ginelli, F.; Poggi, P.; Turchi, A.; Chate, H.; Livi, R.; Politi, A. Characterizing Dynamics with Covariant Lyapunov Vectors. Phys. Rev. Lett. 2007, 99, 130601. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.wessa.net/ (accessed on 1 February 2024).
m | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|
6 | 24 | 120 | 720 | 5040 | |
13 | 73 | 501 | 4051 | 37,633 | |
4 | 8 | 16 | 32 | 64 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
1 | 2 | 2 | 1 | |||||||||||||
1 | 3 | 5 | 3 | 3 | 5 | 3 | 1 | |||||||||
1 | 4 | 9 | 6 | 9 | 16 | 11 | 4 | 4 | 11 | 16 | 9 | 6 | 9 | 4 | 1 |
1 | |
0.982 | 2.01 | 2.01 | 0.991 | |||||||||
0.924 | 3.00 | 5.05 | 3.00 | 3.00 | 5.05 | 3.00 | 0.960 | |||||
0.756 | 3.86 | 9.10 | 5.92 | 9.23 | 16.0 | 11.0 | 4.03 | 3.86 | 11.1 | 16.2 | 9.10 | |
5.78 | 9.22 | 4.03 | 0.768 |
0.999998 | |
1.91361 | |
2.81364 | |
3.71059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardone, P.; Sonnino, G. Entropy of Difference: A New Tool for Measuring Complexity. Axioms 2024, 13, 130. https://doi.org/10.3390/axioms13020130
Nardone P, Sonnino G. Entropy of Difference: A New Tool for Measuring Complexity. Axioms. 2024; 13(2):130. https://doi.org/10.3390/axioms13020130
Chicago/Turabian StyleNardone, Pasquale, and Giorgio Sonnino. 2024. "Entropy of Difference: A New Tool for Measuring Complexity" Axioms 13, no. 2: 130. https://doi.org/10.3390/axioms13020130
APA StyleNardone, P., & Sonnino, G. (2024). Entropy of Difference: A New Tool for Measuring Complexity. Axioms, 13(2), 130. https://doi.org/10.3390/axioms13020130